/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "limits.h" #include "vpx_mem/vpx_mem.h" #include "segmentation.h" void vp8_update_gf_useage_maps(VP8_COMP *cpi, VP8_COMMON *cm, MACROBLOCK *x) { int mb_row, mb_col; MODE_INFO *this_mb_mode_info = cm->mi; x->gf_active_ptr = (signed char *)cpi->gf_active_flags; if ((cm->frame_type == KEY_FRAME) || (cm->refresh_golden_frame)) { // Reset Gf useage monitors vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; } else { // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // If using golden then set GF active flag if not already set. // If using last frame 0,0 mode then leave flag as it is // else if using non 0,0 motion or intra modes then clear // flag if it is currently set if ((this_mb_mode_info->mbmi.ref_frame == GOLDEN_FRAME) || (this_mb_mode_info->mbmi.ref_frame == ALTREF_FRAME)) { if (*(x->gf_active_ptr) == 0) { *(x->gf_active_ptr) = 1; cpi->gf_active_count ++; } } else if ((this_mb_mode_info->mbmi.mode != ZEROMV) && *(x->gf_active_ptr)) { *(x->gf_active_ptr) = 0; cpi->gf_active_count--; } x->gf_active_ptr++; // Step onto next entry this_mb_mode_info++; // skip to next mb } // this is to account for the border this_mb_mode_info++; } } } void vp8_enable_segmentation(VP8_PTR ptr) { VP8_COMP *cpi = (VP8_COMP *)(ptr); // Set the appropriate feature bit cpi->mb.e_mbd.segmentation_enabled = 1; cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } void vp8_disable_segmentation(VP8_PTR ptr) { VP8_COMP *cpi = (VP8_COMP *)(ptr); // Clear the appropriate feature bit cpi->mb.e_mbd.segmentation_enabled = 0; } void vp8_set_segmentation_map(VP8_PTR ptr, unsigned char *segmentation_map) { VP8_COMP *cpi = (VP8_COMP *)(ptr); // Copy in the new segmentation map vpx_memcpy( cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols) ); // Signal that the map should be updated. cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } void vp8_set_segment_data(VP8_PTR ptr, signed char *feature_data, unsigned char abs_delta) { VP8_COMP *cpi = (VP8_COMP *)(ptr); cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta; vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data, sizeof(cpi->mb.e_mbd.segment_feature_data)); //#if CONFIG_SEGFEATURES // TBD ?? Set the feature mask // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, // sizeof(cpi->mb.e_mbd.segment_feature_mask)); } // Based on set of segment counts calculate a probability tree static void calc_segtree_probs( MACROBLOCKD * xd, int * segcounts, vp8_prob * segment_tree_probs ) { int count1,count2; int tot_count; int i; // Blank the strtucture to start with vpx_memset(segment_tree_probs, 0, sizeof(segment_tree_probs)); // Total count for all segments count1 = segcounts[0] + segcounts[1]; count2 = segcounts[2] + segcounts[3]; tot_count = count1 + count2; // Work out probabilities of each segment if (tot_count) segment_tree_probs[0] = (count1 * 255) / tot_count; if (count1 > 0) segment_tree_probs[1] = (segcounts[0] * 255) / count1; if (count2 > 0) segment_tree_probs[2] = (segcounts[2] * 255) / count2; // Clamp probabilities to minimum allowed value for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { if (segment_tree_probs[i] == 0) segment_tree_probs[i] = 1; } } // Based on set of segment counts and probabilities calculate a cost estimate static int cost_segmap( MACROBLOCKD * xd, int * segcounts, vp8_prob * probs ) { int cost; int count1,count2; // Cost the top node of the tree count1 = segcounts[0] + segcounts[1]; count2 = segcounts[2] + segcounts[3]; cost = count1 * vp8_cost_zero(probs[0]) + count2 * vp8_cost_one(probs[0]); // Now add the cost of each individual segment branch if (count1 > 0) cost += segcounts[0] * vp8_cost_zero(probs[1]) + segcounts[1] * vp8_cost_one(probs[1]); if (count2 > 0) cost += segcounts[2] * vp8_cost_zero(probs[2]) + segcounts[3] * vp8_cost_one(probs[2]) ; return cost; } void choose_segmap_coding_method( VP8_COMP *cpi ) { VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & cpi->mb.e_mbd; int i; int tot_count; int no_pred_cost; int t_pred_cost = INT_MAX; int pred_context; int mb_row, mb_col; int segmap_index = 0; unsigned char segment_id; int temporal_predictor_count[SEGMENT_PREDICTION_PROBS][2]; int no_pred_segcounts[MAX_MB_SEGMENTS]; int t_unpred_seg_counts[MAX_MB_SEGMENTS]; vp8_prob no_pred_tree[MB_FEATURE_TREE_PROBS]; vp8_prob t_pred_tree[MB_FEATURE_TREE_PROBS]; vp8_prob t_nopred_prob[SEGMENT_PREDICTION_PROBS]; // Set default state for the segment tree probabilities and the // temporal coding probabilities vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); vpx_memset(xd->mb_segment_pred_probs, 255, sizeof(xd->mb_segment_pred_probs)); vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts)); vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts)); vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count)); // First of all generate stats regarding how well the last segment map // predicts this one // Initialize macroblod decoder mode info context for to the first mb // in the frame xd->mode_info_context = cm->mi; for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { segment_id = xd->mode_info_context->mbmi.segment_id; // Count the number of hits on each segment with no prediction no_pred_segcounts[segment_id]++; // Temporal prediction not allowed on key frames if (cm->frame_type != KEY_FRAME) { // Get temporal prediction context pred_context = 0; if (mb_col != 0) pred_context += (xd->mode_info_context-1)->mbmi.seg_id_predicted; if (mb_row != 0) { pred_context += (xd->mode_info_context-cm->mode_info_stride)-> mbmi.seg_id_predicted; } // Test to see if the last frame segment id at the same // location correctly predicts the segment_id for this MB. // Update the prediction flag and count as appropriate; if ( segment_id == cpi->last_segmentation_map[segmap_index] ) { xd->mode_info_context->mbmi.seg_id_predicted = 1; temporal_predictor_count[pred_context][1]++; } else { xd->mode_info_context->mbmi.seg_id_predicted = 0; temporal_predictor_count[pred_context][0]++; // Update the "undpredicted" segment count t_unpred_seg_counts[segment_id]++; } } // Step on to the next mb xd->mode_info_context++; // Step on to the next entry in the segment maps segmap_index++; } // this is to account for the border in mode_info_context xd->mode_info_context++; } // Work out probability tree for coding segments without prediction // and the cost. calc_segtree_probs( xd, no_pred_segcounts, no_pred_tree ); no_pred_cost = cost_segmap( xd, no_pred_segcounts, no_pred_tree ); // Key frames cannot use temporal prediction if (cm->frame_type != KEY_FRAME) { // Work out probability tree for coding those segments not // predicted using the temporal method and the cost. calc_segtree_probs( xd, t_unpred_seg_counts, t_pred_tree ); t_pred_cost = cost_segmap( xd, t_unpred_seg_counts, t_pred_tree ); // Add in the cost of the signalling for each prediction context for ( i = 0; i < SEGMENT_PREDICTION_PROBS; i++ ) { tot_count = temporal_predictor_count[i][0] + temporal_predictor_count[i][1]; // Work out the context probabilities for the segment // prediction flag if ( tot_count ) { t_nopred_prob[i] = ( temporal_predictor_count[i][0] * 255 ) / tot_count; // Clamp to minimum allowed value if ( t_nopred_prob[i] < 1 ) t_nopred_prob[i] = 1; } else t_nopred_prob[i] = 1; // Add in the predictor signaling cost t_pred_cost += ( temporal_predictor_count[i][0] * vp8_cost_zero(t_nopred_prob[i]) ) + ( temporal_predictor_count[i][1] * vp8_cost_one(t_nopred_prob[i]) ); } } // Now choose which coding method to use. if ( t_pred_cost < no_pred_cost ) { xd->temporal_update = 1; vpx_memcpy( xd->mb_segment_tree_probs, t_pred_tree, sizeof(t_pred_tree) ); vpx_memcpy( &xd->mb_segment_pred_probs, t_nopred_prob, sizeof(t_nopred_prob) ); } else { xd->temporal_update = 0; vpx_memcpy( xd->mb_segment_tree_probs, no_pred_tree, sizeof(no_pred_tree) ); } }