/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef __INC_VP8_INT_H #define __INC_VP8_INT_H #include #include "vpx_ports/config.h" #include "vp8/common/onyx.h" #include "treewriter.h" #include "tokenize.h" #include "vp8/common/onyxc_int.h" #include "variance.h" #include "dct.h" #include "encodemb.h" #include "quantize.h" #include "vp8/common/entropy.h" #include "vp8/common/threading.h" #include "vpx_ports/mem.h" #include "vpx/internal/vpx_codec_internal.h" #include "mcomp.h" #include "temporal_filter.h" #include "vp8/common/findnearmv.h" #include "lookahead.h" //#define SPEEDSTATS 1 #define MIN_GF_INTERVAL 4 #define DEFAULT_GF_INTERVAL 7 #define KEY_FRAME_CONTEXT 5 #define MAX_LAG_BUFFERS (CONFIG_REALTIME_ONLY? 1 : 25) #define AF_THRESH 25 #define AF_THRESH2 100 #define ARF_DECAY_THRESH 12 #if CONFIG_DUALPRED #define MAX_MODES 33 #else /* CONFIG_DUALPRED */ #define MAX_MODES 21 #endif /* CONFIG_DUALPRED */ #define MIN_THRESHMULT 32 #define MAX_THRESHMULT 512 #define GF_ZEROMV_ZBIN_BOOST 12 #define LF_ZEROMV_ZBIN_BOOST 6 #define MV_ZBIN_BOOST 4 #define ZBIN_OQ_MAX 192 #if !(CONFIG_REALTIME_ONLY) #define VP8_TEMPORAL_ALT_REF 1 #endif typedef struct { int kf_indicated; unsigned int frames_since_key; unsigned int frames_since_golden; int filter_level; int frames_till_gf_update_due; int recent_ref_frame_usage[MAX_REF_FRAMES]; MV_CONTEXT mvc[2]; int mvcosts[2][MVvals+1]; #ifdef MODE_STATS // Stats int y_modes[VP8_YMODES]; int uv_modes[VP8_UV_MODES]; int i8x8_modes[VP8_I8X8_MODES]; int b_modes[B_MODE_COUNT]; int inter_y_modes[MB_MODE_COUNT]; int inter_uv_modes[VP8_UV_MODES]; int inter_b_modes[B_MODE_COUNT]; #endif /* interframe intra mode probs */ vp8_prob ymode_prob[VP8_YMODES-1]; /* keyframe intra mode probs */ #if CONFIG_QIMODE vp8_prob kf_ymode_prob[8][VP8_YMODES-1]; #else vp8_prob kf_ymode_prob[VP8_YMODES-1]; #endif #if CONFIG_UVINTRA vp8_prob kf_uv_mode_prob[VP8_YMODES][VP8_UV_MODES-1]; vp8_prob uv_mode_prob[VP8_YMODES][VP8_UV_MODES-1]; #else vp8_prob kf_uv_mode_prob[VP8_UV_MODES-1]; vp8_prob uv_mode_prob[VP8_UV_MODES-1]; #endif /* intra MB type cts this frame */ int ymode_count[VP8_YMODES], uv_mode_count[VP8_UV_MODES]; int count_mb_ref_frame_usage[MAX_REF_FRAMES]; int this_frame_percent_intra; int last_frame_percent_intra; } CODING_CONTEXT; typedef struct { double frame; double intra_error; double coded_error; double ssim_weighted_pred_err; double pcnt_inter; double pcnt_motion; double pcnt_second_ref; double pcnt_neutral; double MVr; double mvr_abs; double MVc; double mvc_abs; double MVrv; double MVcv; double mv_in_out_count; double new_mv_count; double duration; double count; } FIRSTPASS_STATS; typedef struct { int frames_so_far; double frame_intra_error; double frame_coded_error; double frame_pcnt_inter; double frame_pcnt_motion; double frame_mvr; double frame_mvr_abs; double frame_mvc; double frame_mvc_abs; } ONEPASS_FRAMESTATS; typedef struct { struct { int err; union { int_mv mv; MB_PREDICTION_MODE mode; } m; } ref[MAX_REF_FRAMES]; } MBGRAPH_MB_STATS; typedef struct { MBGRAPH_MB_STATS *mb_stats; } MBGRAPH_FRAME_STATS; typedef enum { THR_ZEROMV = 0, THR_DC = 1, THR_NEARESTMV = 2, THR_NEARMV = 3, THR_ZEROG = 4, THR_NEARESTG = 5, THR_ZEROA = 6, THR_NEARESTA = 7, THR_NEARG = 8, THR_NEARA = 9, THR_V_PRED = 10, THR_H_PRED = 11, THR_TM = 12, THR_NEWMV = 13, THR_NEWG = 14, THR_NEWA = 15, THR_SPLITMV = 16, THR_SPLITG = 17, THR_SPLITA = 18, THR_B_PRED = 19, THR_I8X8_PRED = 20, #if CONFIG_DUALPRED THR_DUAL_ZEROLG = 21, THR_DUAL_NEARESTLG = 22, THR_DUAL_NEARLG = 23, THR_DUAL_ZEROLA = 24, THR_DUAL_NEARESTLA = 25, THR_DUAL_NEARLA = 26, THR_DUAL_ZEROGA = 27, THR_DUAL_NEARESTGA = 28, THR_DUAL_NEARGA = 29, THR_DUAL_NEWLG = 30, THR_DUAL_NEWLA = 31, THR_DUAL_NEWGA = 32, #endif /* CONFIG_DUALPRED */ } THR_MODES; typedef enum { DIAMOND = 0, NSTEP = 1, HEX = 2 } SEARCH_METHODS; typedef struct { int RD; SEARCH_METHODS search_method; int improved_quant; int improved_dct; int auto_filter; int recode_loop; int iterative_sub_pixel; int half_pixel_search; int quarter_pixel_search; int thresh_mult[MAX_MODES]; int max_step_search_steps; int first_step; int optimize_coefficients; int use_fastquant_for_pick; int no_skip_block4x4_search; int improved_mv_pred; } SPEED_FEATURES; typedef struct { MACROBLOCK mb; int totalrate; } MB_ROW_COMP; typedef struct { TOKENEXTRA *start; TOKENEXTRA *stop; } TOKENLIST; typedef struct { int ithread; void *ptr1; void *ptr2; } ENCODETHREAD_DATA; typedef struct { int ithread; void *ptr1; } LPFTHREAD_DATA; typedef struct VP8_ENCODER_RTCD { VP8_COMMON_RTCD *common; vp8_variance_rtcd_vtable_t variance; vp8_fdct_rtcd_vtable_t fdct; vp8_encodemb_rtcd_vtable_t encodemb; vp8_quantize_rtcd_vtable_t quantize; vp8_search_rtcd_vtable_t search; vp8_temporal_rtcd_vtable_t temporal; } VP8_ENCODER_RTCD; enum { BLOCK_16X8, BLOCK_8X16, BLOCK_8X8, BLOCK_4X4, BLOCK_16X16, BLOCK_MAX_SEGMENTS }; typedef struct VP8_COMP { DECLARE_ALIGNED(16, short, Y1quant[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, unsigned char, Y1quant_shift[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y1zbin[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y1round[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y2quant[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, unsigned char, Y2quant_shift[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y2zbin[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y2round[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, UVquant[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, unsigned char, UVquant_shift[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, UVzbin[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, UVround[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, zrun_zbin_boost_y1[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, zrun_zbin_boost_y2[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, zrun_zbin_boost_uv[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y1quant_fast[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, Y2quant_fast[QINDEX_RANGE][16]); DECLARE_ALIGNED(16, short, UVquant_fast[QINDEX_RANGE][16]); MACROBLOCK mb; VP8_COMMON common; vp8_writer bc, bc2; // bool_writer *bc2; VP8_CONFIG oxcf; struct lookahead_ctx *lookahead; struct lookahead_entry *source; struct lookahead_entry *alt_ref_source; YV12_BUFFER_CONFIG *Source; YV12_BUFFER_CONFIG *un_scaled_source; YV12_BUFFER_CONFIG scaled_source; int source_alt_ref_pending; // frame in src_buffers has been identified to be encoded as an alt ref int source_alt_ref_active; // an alt ref frame has been encoded and is usable int is_src_frame_alt_ref; // source of frame to encode is an exact copy of an alt ref frame int gold_is_last; // golden frame same as last frame ( short circuit gold searches) int alt_is_last; // Alt reference frame same as last ( short circuit altref search) int gold_is_alt; // don't do both alt and gold search ( just do gold). //int refresh_alt_ref_frame; YV12_BUFFER_CONFIG last_frame_uf; TOKENEXTRA *tok; unsigned int tok_count; unsigned int frames_since_key; unsigned int key_frame_frequency; unsigned int this_key_frame_forced; unsigned int next_key_frame_forced; // Ambient reconstruction err target for force key frames int ambient_err; unsigned int mode_check_freq[MAX_MODES]; unsigned int mode_test_hit_counts[MAX_MODES]; unsigned int mode_chosen_counts[MAX_MODES]; unsigned int mbs_tested_so_far; unsigned int mbs_dual_count; int rd_thresh_mult[MAX_MODES]; int rd_baseline_thresh[MAX_MODES]; int rd_threshes[MAX_MODES]; #if CONFIG_DUALPRED int rd_single_diff, rd_dual_diff, rd_hybrid_diff; int rd_prediction_type_threshes[4][NB_PREDICTION_TYPES]; int dual_pred_count[3], single_pred_count[3]; #endif /* CONFIG_DUALPRED */ int RDMULT; int RDDIV ; CODING_CONTEXT coding_context; // Rate targetting variables int64_t prediction_error; int64_t last_prediction_error; int64_t intra_error; int64_t last_intra_error; int this_frame_target; int projected_frame_size; int last_q[2]; // Separate values for Intra/Inter int last_boosted_qindex; // Last boosted GF/KF/ARF q double rate_correction_factor; double key_frame_rate_correction_factor; double gf_rate_correction_factor; int frames_till_gf_update_due; // Count down till next GF int current_gf_interval; // GF interval chosen when we coded the last GF int gf_overspend_bits; // Total bits overspent becasue of GF boost (cumulative) int non_gf_bitrate_adjustment; // Used in the few frames following a GF to recover the extra bits spent in that GF int kf_overspend_bits; // Extra bits spent on key frames that need to be recovered on inter frames int kf_bitrate_adjustment; // Current number of bit s to try and recover on each inter frame. int max_gf_interval; int baseline_gf_interval; int active_arnr_frames; // <= cpi->oxcf.arnr_max_frames int64_t key_frame_count; int prior_key_frame_distance[KEY_FRAME_CONTEXT]; int per_frame_bandwidth; // Current section per frame bandwidth target int av_per_frame_bandwidth; // Average frame size target for clip int min_frame_bandwidth; // Minimum allocation that should be used for any frame int inter_frame_target; double output_frame_rate; int64_t last_time_stamp_seen; int64_t last_end_time_stamp_seen; int64_t first_time_stamp_ever; int ni_av_qi; int ni_tot_qi; int ni_frames; int avg_frame_qindex; double tot_q; double avg_q; int zbin_over_quant; int zbin_mode_boost; int zbin_mode_boost_enabled; int64_t total_byte_count; int buffered_mode; int buffer_level; int bits_off_target; int rolling_target_bits; int rolling_actual_bits; int long_rolling_target_bits; int long_rolling_actual_bits; int64_t total_actual_bits; int total_target_vs_actual; // debug stats int worst_quality; int active_worst_quality; int best_quality; int active_best_quality; int cq_target_quality; int drop_frames_allowed; // Are we permitted to drop frames? int drop_frame; // Drop this frame? int drop_count; // How many frames have we dropped? int max_drop_count; // How many frames should we drop? int max_consec_dropped_frames; // Limit number of consecutive frames that can be dropped. int ymode_count [VP8_YMODES]; /* intra MB type cts this frame */ int uv_mode_count[VP8_UV_MODES]; /* intra MB type cts this frame */ unsigned int MVcount [2] [MVvals]; /* (row,col) MV cts this frame */ unsigned int coef_counts [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; /* for this frame */ //DECLARE_ALIGNED(16, int, coef_counts_backup [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]); //not used any more //save vp8_tree_probs_from_distribution result for each frame to avoid repeat calculation vp8_prob frame_coef_probs [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES]; unsigned int frame_branch_ct [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES][2]; #if CONFIG_T8X8 unsigned int coef_counts_8x8 [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; /* for this frame */ vp8_prob frame_coef_probs_8x8 [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES]; unsigned int frame_branch_ct_8x8 [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES][2]; #endif int gfu_boost; int kf_boost; int last_boost; int target_bandwidth; struct vpx_codec_pkt_list *output_pkt_list; #if 0 // Experimental code for lagged and one pass ONEPASS_FRAMESTATS one_pass_frame_stats[MAX_LAG_BUFFERS]; int one_pass_frame_index; #endif MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS]; int mbgraph_n_frames; // number of frames filled in the above int static_mb_pct; // % forced skip mbs by segmentation int decimation_factor; int decimation_count; // for real time encoding int avg_encode_time; //microsecond int avg_pick_mode_time; //microsecond int Speed; unsigned int cpu_freq; //Mhz int compressor_speed; int interquantizer; int auto_gold; int auto_adjust_gold_quantizer; int goldfreq; int auto_worst_q; int cpu_used; int horiz_scale; int vert_scale; int pass; int prob_intra_coded; int prob_last_coded; int prob_gf_coded; int prob_skip_false; int last_skip_false_probs[3]; int last_skip_probs_q[3]; #if CONFIG_DUALPRED int prob_dualpred[3]; #endif /* CONFIG_DUALPRED */ int recent_ref_frame_usage[MAX_REF_FRAMES]; int count_mb_ref_frame_usage[MAX_REF_FRAMES]; int this_frame_percent_intra; int last_frame_percent_intra; int ref_frame_flags; SPEED_FEATURES sf; int error_bins[1024]; // Data used for real time conferencing mode to help determine if it would be good to update the gf int inter_zz_count; int gf_bad_count; int gf_update_recommended; int skip_true_count; int skip_false_count; #if CONFIG_T8X8 int t4x4_count; int t8x8_count; #endif #if CONFIG_UVINTRA int y_uv_mode_count[VP8_YMODES][VP8_UV_MODES]; #endif unsigned char *segmentation_map; unsigned char *last_segmentation_map; // segment threashold for encode breakout int segment_encode_breakout[MAX_MB_SEGMENTS]; unsigned char *active_map; unsigned int active_map_enabled; // Video conferencing cyclic refresh mode flags etc // This is a mode designed to clean up the background over time in live encoding scenarious. It uses segmentation int cyclic_refresh_mode_enabled; int cyclic_refresh_mode_max_mbs_perframe; int cyclic_refresh_mode_index; int cyclic_refresh_q; signed char *cyclic_refresh_map; #if CONFIG_MULTITHREAD // multithread data int * mt_current_mb_col; int mt_sync_range; int b_multi_threaded; int encoding_thread_count; pthread_t *h_encoding_thread; pthread_t h_filter_thread; MB_ROW_COMP *mb_row_ei; ENCODETHREAD_DATA *en_thread_data; LPFTHREAD_DATA lpf_thread_data; //events sem_t *h_event_start_encoding; sem_t h_event_end_encoding; sem_t h_event_start_lpf; sem_t h_event_end_lpf; #endif TOKENLIST *tplist; unsigned int partition_sz[MAX_PARTITIONS]; // end of multithread data fractional_mv_step_fp *find_fractional_mv_step; vp8_full_search_fn_t full_search_sad; vp8_refining_search_fn_t refining_search_sad; vp8_diamond_search_fn_t diamond_search_sad; vp8_variance_fn_ptr_t fn_ptr[BLOCK_MAX_SEGMENTS]; unsigned int time_receive_data; unsigned int time_compress_data; unsigned int time_pick_lpf; unsigned int time_encode_mb_row; int base_skip_false_prob[QINDEX_RANGE]; struct twopass_rc { unsigned int section_intra_rating; double section_max_qfactor; unsigned int next_iiratio; unsigned int this_iiratio; FIRSTPASS_STATS *total_stats; FIRSTPASS_STATS *this_frame_stats; FIRSTPASS_STATS *stats_in, *stats_in_end, *stats_in_start; FIRSTPASS_STATS *total_left_stats; int first_pass_done; int64_t bits_left; int64_t clip_bits_total; double avg_iiratio; double modified_error_total; double modified_error_used; double modified_error_left; double kf_intra_err_min; double gf_intra_err_min; int frames_to_key; int maxq_max_limit; int maxq_min_limit; int gf_decay_rate; int static_scene_max_gf_interval; int kf_bits; int gf_group_error_left; // Remaining error from uncoded frames in a gf group. Two pass use only // Projected total bits available for a key frame group of frames int64_t kf_group_bits; // Error score of frames still to be coded in kf group int64_t kf_group_error_left; int gf_group_bits; // Projected Bits available for a group of frames including 1 GF or ARF int gf_bits; // Bits for the golden frame or ARF - 2 pass only int alt_extra_bits; double est_max_qcorrection_factor; } twopass; #if CONFIG_RUNTIME_CPU_DETECT VP8_ENCODER_RTCD rtcd; #endif #if VP8_TEMPORAL_ALT_REF YV12_BUFFER_CONFIG alt_ref_buffer; YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS]; int fixed_divide[512]; #endif #if CONFIG_INTERNAL_STATS int count; double total_y; double total_u; double total_v; double total ; double total_sq_error; double totalp_y; double totalp_u; double totalp_v; double totalp; double total_sq_error2; int bytes; double summed_quality; double summed_weights; unsigned int tot_recode_hits; double total_ssimg_y; double total_ssimg_u; double total_ssimg_v; double total_ssimg_all; int b_calculate_ssimg; #endif int b_calculate_psnr; // Per MB activity measurement unsigned int activity_avg; unsigned int * mb_activity_map; int * mb_norm_activity_map; // Record of which MBs still refer to last golden frame either // directly or through 0,0 unsigned char *gf_active_flags; int gf_active_count; int output_partition; //Store last frame's MV info for next frame MV prediction int_mv *lfmv; int *lf_ref_frame_sign_bias; int *lf_ref_frame; int force_next_frame_intra; /* force next frame to intra when kf_auto says so */ int droppable; } VP8_COMP; void control_data_rate(VP8_COMP *cpi); void vp8_encode_frame(VP8_COMP *cpi); void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned long *size); void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x); int rd_cost_intra_mb(MACROBLOCKD *x); void vp8_tokenize_mb(VP8_COMP *, MACROBLOCKD *, TOKENEXTRA **); void vp8_set_speed_features(VP8_COMP *cpi); #if CONFIG_DEBUG #define CHECK_MEM_ERROR(lval,expr) do {\ lval = (expr); \ if(!lval) \ vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,\ "Failed to allocate "#lval" at %s:%d", \ __FILE__,__LINE__);\ } while(0) #else #define CHECK_MEM_ERROR(lval,expr) do {\ lval = (expr); \ if(!lval) \ vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,\ "Failed to allocate "#lval);\ } while(0) #endif #endif