/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include #include #include #include static unsigned int do_16x16_motion_iteration ( VP8_COMP *cpi, int_mv *ref_mv, int_mv *dst_mv ) { MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &xd->block[0]; vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; unsigned int best_err; int step_param, further_steps; static int dummy_cost[2*mv_max+1]; int *mvcost[2] = { &dummy_cost[mv_max+1], &dummy_cost[mv_max+1] }; int *mvsadcost[2] = { &dummy_cost[mv_max+1], &dummy_cost[mv_max+1] }; int col_min = (ref_mv->as_mv.col>>3) - MAX_FULL_PEL_VAL + ((ref_mv->as_mv.col & 7)?1:0); int row_min = (ref_mv->as_mv.row>>3) - MAX_FULL_PEL_VAL + ((ref_mv->as_mv.row & 7)?1:0); int col_max = (ref_mv->as_mv.col>>3) + MAX_FULL_PEL_VAL; int row_max = (ref_mv->as_mv.row>>3) + MAX_FULL_PEL_VAL; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; int_mv ref_full; // Further step/diamond searches as necessary if (cpi->Speed < 8) { step_param = cpi->sf.first_step + ((cpi->Speed > 5) ? 1 : 0); further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; } else { step_param = cpi->sf.first_step + 2; further_steps = 0; } /* Get intersection of UMV window and valid MV window to reduce # of checks in diamond search. */ if (x->mv_col_min < col_min ) x->mv_col_min = col_min; if (x->mv_col_max > col_max ) x->mv_col_max = col_max; if (x->mv_row_min < row_min ) x->mv_row_min = row_min; if (x->mv_row_max > row_max ) x->mv_row_max = row_max; ref_full.as_mv.col = ref_mv->as_mv.col >> 3; ref_full.as_mv.row = ref_mv->as_mv.row >> 3; /*cpi->sf.search_method == HEX*/ best_err = vp8_hex_search(x, b, d, &ref_full, dst_mv, step_param, x->errorperbit, &v_fn_ptr, mvsadcost, mvcost, ref_mv); // Try sub-pixel MC //if (bestsme > error_thresh && bestsme < INT_MAX) { int distortion; unsigned int sse; best_err = cpi->find_fractional_mv_step(x, b, d, dst_mv, ref_mv, x->errorperbit, &v_fn_ptr, mvcost, &distortion, &sse); } vp8_set_mbmode_and_mvs(x, NEWMV, dst_mv); vp8_build_inter16x16_predictors_mby(xd); VARIANCE_INVOKE(&cpi->rtcd.variance, satd16x16) (xd->dst.y_buffer, xd->dst.y_stride, xd->predictor, 16, &best_err); /* restore UMV window */ x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; return best_err; } static int do_16x16_motion_search ( VP8_COMP *cpi, int_mv *ref_mv, int_mv *dst_mv, YV12_BUFFER_CONFIG *buf, int buf_mb_y_offset, YV12_BUFFER_CONFIG *ref, int mb_y_offset ) { MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; unsigned int err, tmp_err; int_mv tmp_mv; int n; for (n = 0; n < 16; n++) { BLOCKD *d = &xd->block[n]; BLOCK *b = &x->block[n]; b->base_src = &buf->y_buffer; b->src_stride = buf->y_stride; b->src = buf->y_stride * (n & 12) + (n & 3) * 4 + buf_mb_y_offset; d->base_pre = &ref->y_buffer; d->pre_stride = ref->y_stride; d->pre = ref->y_stride * (n & 12) + (n & 3) * 4 + mb_y_offset; } // Try zero MV first // FIXME should really use something like near/nearest MV and/or MV prediction xd->pre.y_buffer = ref->y_buffer + mb_y_offset; xd->pre.y_stride = ref->y_stride; VARIANCE_INVOKE(&cpi->rtcd.variance, satd16x16) (ref->y_buffer + mb_y_offset, ref->y_stride, xd->dst.y_buffer, xd->dst.y_stride, &err); dst_mv->as_int = 0; // Test last reference frame using the previous best mv as the // starting point (best reference) for the search tmp_err = do_16x16_motion_iteration(cpi, ref_mv, &tmp_mv); if (tmp_err < err) { err = tmp_err; dst_mv->as_int = tmp_mv.as_int; } // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well if (ref_mv->as_int) { int tmp_err; int_mv zero_ref_mv, tmp_mv; zero_ref_mv.as_int = 0; tmp_err = do_16x16_motion_iteration(cpi, &zero_ref_mv, &tmp_mv); if (tmp_err < err) { dst_mv->as_int = tmp_mv.as_int; err = tmp_err; } } return err; } static int do_16x16_zerozero_search ( VP8_COMP *cpi, int_mv *dst_mv, YV12_BUFFER_CONFIG *buf, int buf_mb_y_offset, YV12_BUFFER_CONFIG *ref, int mb_y_offset ) { MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; unsigned int err; int n; for (n = 0; n < 16; n++) { BLOCKD *d = &xd->block[n]; BLOCK *b = &x->block[n]; b->base_src = &buf->y_buffer; b->src_stride = buf->y_stride; b->src = buf->y_stride * (n & 12) + (n & 3) * 4 + buf_mb_y_offset; d->base_pre = &ref->y_buffer; d->pre_stride = ref->y_stride; d->pre = ref->y_stride * (n & 12) + (n & 3) * 4 + mb_y_offset; } // Try zero MV first // FIXME should really use something like near/nearest MV and/or MV prediction xd->pre.y_buffer = ref->y_buffer + mb_y_offset; xd->pre.y_stride = ref->y_stride; VARIANCE_INVOKE(&cpi->rtcd.variance, satd16x16) (ref->y_buffer + mb_y_offset, ref->y_stride, xd->dst.y_buffer, xd->dst.y_stride, &err); dst_mv->as_int = 0; return err; } static int find_best_16x16_intra ( VP8_COMP *cpi, YV12_BUFFER_CONFIG *buf, int mb_y_offset, MB_PREDICTION_MODE *pbest_mode ) { MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; MB_PREDICTION_MODE best_mode = -1, mode; int best_err = INT_MAX; // calculate SATD for each intra prediction mode; // we're intentionally not doing 4x4, we just want a rough estimate for (mode = DC_PRED; mode <= TM_PRED; mode++) { unsigned int err; xd->mode_info_context->mbmi.mode = mode; RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mby)(xd); VARIANCE_INVOKE(&cpi->rtcd.variance, satd16x16) (xd->predictor, 16, buf->y_buffer + mb_y_offset, buf->y_stride, &err); // find best if (err < best_err) { best_err = err; best_mode = mode; } } if (pbest_mode) *pbest_mode = best_mode; return best_err; } static void update_mbgraph_mb_stats ( VP8_COMP *cpi, MBGRAPH_MB_STATS *stats, YV12_BUFFER_CONFIG *buf, int mb_y_offset, YV12_BUFFER_CONFIG *golden_ref, int_mv *prev_golden_ref_mv, int gld_y_offset, YV12_BUFFER_CONFIG *alt_ref, int_mv *prev_alt_ref_mv, int arf_y_offset ) { MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; int intra_error; // FIXME in practice we're completely ignoring chroma here xd->dst.y_buffer = buf->y_buffer + mb_y_offset; // do intra 16x16 prediction intra_error = find_best_16x16_intra(cpi, buf, mb_y_offset, &stats->ref[INTRA_FRAME].m.mode); if (intra_error <= 0) intra_error = 1; stats->ref[INTRA_FRAME].err = intra_error; // Golden frame MV search, if it exists and is different than last frame if (golden_ref) { int g_motion_error = do_16x16_motion_search(cpi, prev_golden_ref_mv, &stats->ref[GOLDEN_FRAME].m.mv, buf, mb_y_offset, golden_ref, gld_y_offset); stats->ref[GOLDEN_FRAME].err = g_motion_error; } else { stats->ref[GOLDEN_FRAME].err = INT_MAX; stats->ref[GOLDEN_FRAME].m.mv.as_int = 0; } // Alt-ref frame MV search, if it exists and is different than last/golden frame if (alt_ref) { //int a_motion_error = do_16x16_motion_search(cpi, prev_alt_ref_mv, // &stats->ref[ALTREF_FRAME].m.mv, // buf, mb_y_offset, // alt_ref, arf_y_offset); int a_motion_error = do_16x16_zerozero_search( cpi, &stats->ref[ALTREF_FRAME].m.mv, buf, mb_y_offset, alt_ref, arf_y_offset); stats->ref[ALTREF_FRAME].err = a_motion_error; } else { stats->ref[ALTREF_FRAME].err = INT_MAX; stats->ref[ALTREF_FRAME].m.mv.as_int = 0; } } static void update_mbgraph_frame_stats ( VP8_COMP *cpi, MBGRAPH_FRAME_STATS *stats, YV12_BUFFER_CONFIG *buf, YV12_BUFFER_CONFIG *golden_ref, YV12_BUFFER_CONFIG *alt_ref ) { MACROBLOCK * const x = &cpi->mb; VP8_COMMON * const cm = &cpi->common; MACROBLOCKD * const xd = &x->e_mbd; int mb_col, mb_row, offset = 0; int mb_y_offset = 0, arf_y_offset = 0, gld_y_offset = 0; int_mv arf_top_mv, gld_top_mv; MODE_INFO mi_local; // Set up limit values for motion vectors to prevent them extending outside the UMV borders arf_top_mv.as_int = 0; gld_top_mv.as_int = 0; x->mv_row_min = -(VP8BORDERINPIXELS - 19); x->mv_row_max = (cm->mb_rows - 1) * 16 + VP8BORDERINPIXELS - 19; xd->up_available = 0; xd->dst.y_stride = buf->y_stride; xd->pre.y_stride = buf->y_stride; xd->dst.uv_stride = buf->uv_stride; xd->mode_info_context = &mi_local; for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { int_mv arf_left_mv, gld_left_mv; int mb_y_in_offset = mb_y_offset; int arf_y_in_offset = arf_y_offset; int gld_y_in_offset = gld_y_offset; // Set up limit values for motion vectors to prevent them extending outside the UMV borders arf_left_mv.as_int = arf_top_mv.as_int; gld_left_mv.as_int = gld_top_mv.as_int; x->mv_col_min = -(VP8BORDERINPIXELS - 19); x->mv_col_max = (cm->mb_cols - 1) * 16 + VP8BORDERINPIXELS - 19; xd->left_available = 0; for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { MBGRAPH_MB_STATS *mb_stats = &stats->mb_stats[offset + mb_col]; update_mbgraph_mb_stats(cpi, mb_stats, buf, mb_y_in_offset, golden_ref, &gld_left_mv, gld_y_in_offset, alt_ref, &arf_left_mv, arf_y_in_offset); arf_left_mv.as_int = mb_stats->ref[ALTREF_FRAME].m.mv.as_int; gld_left_mv.as_int = mb_stats->ref[GOLDEN_FRAME].m.mv.as_int; if (mb_col == 0) { arf_top_mv.as_int = arf_left_mv.as_int; gld_top_mv.as_int = gld_left_mv.as_int; } xd->left_available = 1; mb_y_in_offset += 16; gld_y_in_offset += 16; arf_y_in_offset += 16; x->mv_col_min -= 16; x->mv_col_max -= 16; } xd->up_available = 1; mb_y_offset += buf->y_stride * 16; gld_y_offset += golden_ref->y_stride * 16; if (alt_ref) arf_y_offset += alt_ref->y_stride * 16; x->mv_row_min -= 16; x->mv_row_max -= 16; offset += cm->mb_cols; } } // Test for small magnitude (<= 1 pel mvs) int small_mv( MV mv ) { if ( (abs( (int)mv.col ) > 2) || (abs( (int)mv.row ) > 2) ) return FALSE; else return TRUE; } //void separate_arf_mbs_byzz void separate_arf_mbs ( VP8_COMP *cpi ) { VP8_COMMON * const cm = &cpi->common; int mb_col, mb_row, offset, i; int ncnt[4]; int n_frames = cpi->mbgraph_n_frames; int * arf_not_zz; CHECK_MEM_ERROR(arf_not_zz, vpx_calloc(cm->mb_rows * cm->mb_cols * sizeof(*arf_not_zz), 1)); vpx_memset(arf_not_zz, 0, sizeof(arf_not_zz)); // We are not interested in results beyond the alt ref itself. if ( n_frames > cpi->frames_till_gf_update_due ) n_frames = cpi->frames_till_gf_update_due; // defer cost to reference frames for (i = n_frames - 1; i >= 0; i--) { MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; for (offset = 0, mb_row = 0; mb_row < cm->mb_rows; offset += cm->mb_cols, mb_row++) { for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { MBGRAPH_MB_STATS *mb_stats = &frame_stats->mb_stats[offset + mb_col]; int altref_err = mb_stats->ref[ALTREF_FRAME].err; int intra_err = mb_stats->ref[INTRA_FRAME ].err + 250; int golden_err = mb_stats->ref[GOLDEN_FRAME].err + 250; // Test for altref vs intra and gf and that its mv was 0,0. if ( (altref_err > 1000) || (altref_err > intra_err) || (altref_err > golden_err) ) { arf_not_zz[offset + mb_col]++; } } } } vpx_memset(ncnt, 0, sizeof(ncnt)); for (offset = 0, mb_row = 0; mb_row < cm->mb_rows; offset += cm->mb_cols, mb_row++) { for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // If any of the blocks in the sequence failed then the MB // goes in segment 0 if ( arf_not_zz[offset + mb_col] ) { ncnt[0]++; cpi->segmentation_map[offset + mb_col] = 0; } else { ncnt[1]++; cpi->segmentation_map[offset + mb_col] = 1; } } } // Only bother with segmentation if over 10% of the MBs in static segment //if ( ncnt[1] && (ncnt[0] / ncnt[1] < 10) ) if ( 1 ) { // Note % of blocks that are marked as static if ( cm->MBs ) cpi->static_mb_pct = (ncnt[1] * 100) / cm->MBs; // This error case should not be reachable as this function should // never be called with the common data structure unititialized. else cpi->static_mb_pct = 0; vp8_enable_segmentation((VP8_PTR) cpi); } else { cpi->static_mb_pct = 0; vp8_disable_segmentation((VP8_PTR) cpi); } // Free localy allocated storage vpx_free(arf_not_zz); } void vp8_update_mbgraph_stats ( VP8_COMP *cpi ) { VP8_COMMON * const cm = &cpi->common; int i, n_frames = vp8_lookahead_depth(cpi->lookahead); YV12_BUFFER_CONFIG *golden_ref = &cm->yv12_fb[cm->gld_fb_idx]; // we need to look ahead beyond where the ARF transitions into // being a GF - so exit if we don't look ahead beyond that if (n_frames <= cpi->frames_till_gf_update_due) return; if (n_frames > MAX_LAG_BUFFERS) n_frames = MAX_LAG_BUFFERS; cpi->mbgraph_n_frames = n_frames; for (i = 0; i < n_frames; i++) { MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; vpx_memset(frame_stats->mb_stats, 0, cm->mb_rows * cm->mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats)); } // do motion search to find contribution of each reference to data // later on in this GF group // FIXME really, the GF/last MC search should be done forward, and // the ARF MC search backwards, to get optimal results for MV caching for (i = 0; i < n_frames; i++) { MBGRAPH_FRAME_STATS *frame_stats = &cpi->mbgraph_stats[i]; struct lookahead_entry *q_cur = vp8_lookahead_peek(cpi->lookahead, i); assert(q_cur != NULL); update_mbgraph_frame_stats(cpi, frame_stats, &q_cur->img, golden_ref, cpi->Source); } vp8_clear_system_state(); //__asm emms; separate_arf_mbs(cpi); }