/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8/common/header.h" #include "encodemv.h" #include "vp8/common/entropymode.h" #include "vp8/common/findnearmv.h" #include "mcomp.h" #include "vp8/common/systemdependent.h" #include #include #include #include "vp8/common/pragmas.h" #include "vpx/vpx_encoder.h" #include "vpx_mem/vpx_mem.h" #include "bitstream.h" #include "vp8/common/defaultcoefcounts.h" #include "vp8/common/seg_common.h" #include "vp8/common/pred_common.h" #if defined(SECTIONBITS_OUTPUT) unsigned __int64 Sectionbits[500]; #endif #ifdef ENTROPY_STATS int intra_mode_stats[10][10][10]; static unsigned int tree_update_hist [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2]; static unsigned int tree_update_hist_8x8 [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2]; extern unsigned int active_section; #endif #ifdef MODE_STATS int count_mb_seg[4] = { 0, 0, 0, 0 }; #endif #define vp8_cost_upd ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8) static void update_mode( vp8_writer *const w, int n, vp8_token tok [/* n */], vp8_tree tree, vp8_prob Pnew [/* n-1 */], vp8_prob Pcur [/* n-1 */], unsigned int bct [/* n-1 */] [2], const unsigned int num_events[/* n */] ) { unsigned int new_b = 0, old_b = 0; int i = 0; vp8_tree_probs_from_distribution( n--, tok, tree, Pnew, bct, num_events, 256, 1 ); do { new_b += vp8_cost_branch(bct[i], Pnew[i]); old_b += vp8_cost_branch(bct[i], Pcur[i]); } while (++i < n); if (new_b + (n << 8) < old_b) { int i = 0; vp8_write_bit(w, 1); do { const vp8_prob p = Pnew[i]; vp8_write_literal(w, Pcur[i] = p ? p : 1, 8); } while (++i < n); } else vp8_write_bit(w, 0); } static void update_mbintra_mode_probs(VP8_COMP *cpi) { VP8_COMMON *const x = & cpi->common; vp8_writer *const w = & cpi->bc; { vp8_prob Pnew [VP8_YMODES-1]; unsigned int bct [VP8_YMODES-1] [2]; update_mode( w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count ); } { #if CONFIG_UVINTRA //vp8_write_bit(w, 0); #else vp8_prob Pnew [VP8_UV_MODES-1]; unsigned int bct [VP8_UV_MODES-1] [2]; update_mode( w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree, Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->uv_mode_count ); #endif } } void update_skip_probs(VP8_COMP *cpi) { #if CONFIG_NEWENTROPY VP8_COMMON *const pc = & cpi->common; int prob_skip_false[3] = {0, 0, 0}; int k; for (k=0;kskip_false_count[k] + cpi->skip_true_count[k]) ) { prob_skip_false[k] = cpi->skip_false_count[k] * 256 / (cpi->skip_false_count[k] + cpi->skip_true_count[k]); if (prob_skip_false[k] <= 1) prob_skip_false[k] = 1; if (prob_skip_false[k] > 255) prob_skip_false[k] = 255; } else prob_skip_false[k] = 128; pc->mbskip_pred_probs[k] = prob_skip_false[k]; } #else int prob_skip_false = 0; if ( (cpi->skip_false_count + cpi->skip_true_count) ) { prob_skip_false = cpi->skip_false_count * 256 / (cpi->skip_false_count + cpi->skip_true_count); if (prob_skip_false <= 1) prob_skip_false = 1; if (prob_skip_false > 255) prob_skip_false = 255; } else prob_skip_false = 128; cpi->prob_skip_false = prob_skip_false; #endif } // This function updates the reference frame prediction stats static void update_refpred_stats( VP8_COMP *cpi ) { VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & cpi->mb.e_mbd; int mb_row, mb_col; int i; int tot_count; int ref_pred_count[PREDICTION_PROBS][2]; vp8_prob new_pred_probs[PREDICTION_PROBS]; unsigned char pred_context; unsigned char pred_flag; int old_cost, new_cost; // Clear the prediction hit counters vpx_memset(ref_pred_count, 0, sizeof(ref_pred_count)); // Set the prediction probability structures to defaults if ( cm->frame_type == KEY_FRAME ) { // Set the prediction probabilities to defaults cm->ref_pred_probs[0] = 120; cm->ref_pred_probs[1] = 80; cm->ref_pred_probs[2] = 40; vpx_memset(cpi->ref_pred_probs_update, 0, sizeof(cpi->ref_pred_probs_update) ); } else { // For non-key frames....... // Scan through the macroblocks and collate prediction counts. xd->mode_info_context = cm->mi; for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Get the prediction context and status pred_flag = get_pred_flag( xd, PRED_REF ); pred_context = get_pred_context( cm, xd, PRED_REF ); // Count prediction success ref_pred_count[pred_context][pred_flag]++; // Step on to the next mb xd->mode_info_context++; } // this is to account for the border in mode_info_context xd->mode_info_context++; } // From the prediction counts set the probabilities for each context for ( i = 0; i < PREDICTION_PROBS; i++ ) { // MB reference frame not relevent to key frame encoding if ( cm->frame_type != KEY_FRAME ) { // Work out the probabilities for the reference frame predictor tot_count = ref_pred_count[i][0] + ref_pred_count[i][1]; if ( tot_count ) { new_pred_probs[i] = ( ref_pred_count[i][0] * 255 ) / tot_count; // Clamp to minimum allowed value new_pred_probs[i] += !new_pred_probs[i]; } else new_pred_probs[i] = 128; } else new_pred_probs[i] = 128; // Decide whether or not to update the reference frame probs. // Returned costs are in 1/256 bit units. old_cost = (ref_pred_count[i][0] * vp8_cost_zero(cm->ref_pred_probs[i])) + (ref_pred_count[i][1] * vp8_cost_one(cm->ref_pred_probs[i])); new_cost = (ref_pred_count[i][0] * vp8_cost_zero(new_pred_probs[i])) + (ref_pred_count[i][1] * vp8_cost_one(new_pred_probs[i])); // Cost saving must be >= 8 bits (2048 in these units) if ( (old_cost - new_cost) >= 2048 ) { cpi->ref_pred_probs_update[i] = 1; cm->ref_pred_probs[i] = new_pred_probs[i]; } else cpi->ref_pred_probs_update[i] = 0; } } } static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m); } static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m); } static void write_i8x8_mode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc,vp8_i8x8_mode_tree, p, vp8_i8x8_mode_encodings + m); } static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m); } static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m); } static void write_split(vp8_writer *bc, int x) { vp8_write_token( bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x ); } static int prob_update_savings(const unsigned int *ct, const vp8_prob oldp, const vp8_prob newp, const vp8_prob upd) { const int old_b = vp8_cost_branch(ct, oldp); const int new_b = vp8_cost_branch(ct, newp); const int update_b = 8 + vp8_cost_upd; return old_b - new_b - update_b; } static void pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount) { const TOKENEXTRA *const stop = p + xcount; unsigned int split; unsigned int shift; int count = w->count; unsigned int range = w->range; unsigned int lowvalue = w->lowvalue; while (p < stop) { const int t = p->Token; vp8_token *const a = vp8_coef_encodings + t; const vp8_extra_bit_struct *const b = vp8_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; /* skip one or two nodes */ if (p->skip_eob_node) { n-=p->skip_eob_node; i = 2*p->skip_eob_node; } do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = vp8_coef_tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = vp8_norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *pp = b->prob; int v = e >> 1; int n = L; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = b->tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = vp8_norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); } { split = (range + 1) >> 1; if (e & 1) { lowvalue += split; range = range - split; } else { range = split; } range <<= 1; if ((lowvalue & 0x80000000)) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } lowvalue <<= 1; if (!++count) { count = -8; w->buffer[w->pos++] = (lowvalue >> 24); lowvalue &= 0xffffff; } } } ++p; } w->count = count; w->lowvalue = lowvalue; w->range = range; } static void write_partition_size(unsigned char *cx_data, int size) { signed char csize; csize = size & 0xff; *cx_data = csize; csize = (size >> 8) & 0xff; *(cx_data + 1) = csize; csize = (size >> 16) & 0xff; *(cx_data + 2) = csize; } static void write_mv_ref ( vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p ) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m <= SPLITMV); #endif vp8_write_token(w, vp8_mv_ref_tree, p, vp8_mv_ref_encoding_array - NEARESTMV + m); } static void write_sub_mv_ref ( vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p ) { #if CONFIG_DEBUG assert(LEFT4X4 <= m && m <= NEW4X4); #endif vp8_write_token(w, vp8_sub_mv_ref_tree, p, vp8_sub_mv_ref_encoding_array - LEFT4X4 + m); } static void write_mv ( vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc ) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_motion_vector(w, &e, mvc); } #if CONFIG_HIGH_PRECISION_MV static void write_mv_hp ( vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT_HP *mvc ) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_motion_vector_hp(w, &e, mvc); } #endif // This function writes the current macro block's segnment id to the bitstream // It should only be called if a segment map update is indicated. static void write_mb_segid(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *x) { // Encode the MB segment id. if (x->segmentation_enabled && x->update_mb_segmentation_map) { switch (mi->segment_id) { case 0: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[1]); break; case 1: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 1, x->mb_segment_tree_probs[1]); break; case 2: vp8_write(w, 1, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[2]); break; case 3: vp8_write(w, 1, x->mb_segment_tree_probs[0]); vp8_write(w, 1, x->mb_segment_tree_probs[2]); break; // TRAP.. This should not happen default: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[1]); break; } } } // This function encodes the reference frame static void encode_ref_frame( vp8_writer *const w, VP8_COMMON *const cm, MACROBLOCKD *xd, int segment_id, MV_REFERENCE_FRAME rf ) { int seg_ref_active; int seg_ref_count = 0; seg_ref_active = segfeature_active( xd, segment_id, SEG_LVL_REF_FRAME ); if ( seg_ref_active ) { seg_ref_count = check_segref( xd, segment_id, INTRA_FRAME ) + check_segref( xd, segment_id, LAST_FRAME ) + check_segref( xd, segment_id, GOLDEN_FRAME ) + check_segref( xd, segment_id, ALTREF_FRAME ); } // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if ( !seg_ref_active || (seg_ref_count > 1) ) { // Values used in prediction model coding unsigned char prediction_flag; vp8_prob pred_prob; MV_REFERENCE_FRAME pred_rf; // Get the context probability the prediction flag pred_prob = get_pred_prob( cm, xd, PRED_REF ); // Get the predicted value. pred_rf = get_pred_ref( cm, xd ); // Did the chosen reference frame match its predicted value. prediction_flag = ( xd->mode_info_context->mbmi.ref_frame == pred_rf ); set_pred_flag( xd, PRED_REF, prediction_flag ); vp8_write( w, prediction_flag, pred_prob ); // If not predicted correctly then code value explicitly if ( !prediction_flag ) { vp8_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy( mod_refprobs, cm->mod_refprobs[pred_rf], sizeof(mod_refprobs) ); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if ( seg_ref_active ) { mod_refprobs[INTRA_FRAME] *= check_segref( xd, segment_id, INTRA_FRAME ); mod_refprobs[LAST_FRAME] *= check_segref( xd, segment_id, LAST_FRAME ); mod_refprobs[GOLDEN_FRAME] *= ( check_segref( xd, segment_id, GOLDEN_FRAME ) * check_segref( xd, segment_id, ALTREF_FRAME ) ); } if ( mod_refprobs[0] ) { vp8_write(w, (rf != INTRA_FRAME), mod_refprobs[0] ); } // Inter coded if (rf != INTRA_FRAME) { if ( mod_refprobs[1] ) { vp8_write(w, (rf != LAST_FRAME), mod_refprobs[1] ); } if (rf != LAST_FRAME) { if ( mod_refprobs[2] ) { vp8_write(w, (rf != GOLDEN_FRAME), mod_refprobs[2] ); } } } } } // if using the prediction mdoel we have nothing further to do because // the reference frame is fully coded by the segment } // Update the probabilities used to encode reference frame data static void update_ref_probs( VP8_COMP *const cpi ) { VP8_COMMON *const cm = & cpi->common; const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; cm->prob_intra_coded = (rf_intra + rf_inter) ? rf_intra * 255 / (rf_intra + rf_inter) : 1; if (!cm->prob_intra_coded) cm->prob_intra_coded = 1; cm->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (!cm->prob_last_coded) cm->prob_last_coded = 1; cm->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (!cm->prob_gf_coded) cm->prob_gf_coded = 1; // Compute a modified set of probabilities to use when prediction of the // reference frame fails compute_mod_refprobs( cm ); } static void pack_inter_mode_mvs(VP8_COMP *const cpi) { int i; VP8_COMMON *const pc = & cpi->common; vp8_writer *const w = & cpi->bc; const MV_CONTEXT *mvc = pc->fc.mvc; #if CONFIG_HIGH_PRECISION_MV const MV_CONTEXT_HP *mvc_hp = pc->fc.mvc_hp; #endif MACROBLOCKD *xd = &cpi->mb.e_mbd; MODE_INFO *m; MODE_INFO *prev_m; const int mis = pc->mode_info_stride; int mb_row, mb_col; int row, col; // Values used in prediction model coding vp8_prob pred_prob; unsigned char prediction_flag; int row_delta[4] = { 0, +1, 0, -1}; int col_delta[4] = {+1, -1, +1, +1}; cpi->mb.partition_info = cpi->mb.pi; // Update the probabilities used to encode reference frame data update_ref_probs( cpi ); #ifdef ENTROPY_STATS active_section = 1; #endif if (pc->mb_no_coeff_skip) { #if CONFIG_NEWENTROPY int k; update_skip_probs( cpi ); for (k=0;kmbskip_pred_probs[k], 8); #else update_skip_probs( cpi ); vp8_write_literal(w, cpi->prob_skip_false, 8); #endif } vp8_write_literal(w, pc->prob_intra_coded, 8); vp8_write_literal(w, pc->prob_last_coded, 8); vp8_write_literal(w, pc->prob_gf_coded, 8); if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { vp8_write(w, 1, 128); vp8_write(w, 1, 128); for (i = 0; i < COMP_PRED_CONTEXTS; i++) { if (cpi->single_pred_count[i] + cpi->comp_pred_count[i]) { pc->prob_comppred[i] = cpi->single_pred_count[i] * 255 / (cpi->single_pred_count[i] + cpi->comp_pred_count[i]); if (pc->prob_comppred[i] < 1) pc->prob_comppred[i] = 1; } else { pc->prob_comppred[i] = 128; } vp8_write_literal(w, pc->prob_comppred[i], 8); } } else if (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY) { vp8_write(w, 0, 128); } else /* compound prediction only */ { vp8_write(w, 1, 128); vp8_write(w, 0, 128); } update_mbintra_mode_probs(cpi); #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) vp8_write_mvprobs_hp(cpi); else #endif vp8_write_mvprobs(cpi); mb_row = 0; for (row=0; row < pc->mb_rows; row += 2) { m = pc->mi + row * mis; prev_m = pc->prev_mi + row * mis; mb_col = 0; for (col=0; col < pc->mb_cols; col += 2) { int i; // Process the 4 MBs in the order: // top-left, top-right, bottom-left, bottom-right for (i=0; i<4; i++) { const MB_MODE_INFO *const mi = & m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame; const MB_PREDICTION_MODE mode = mi->mode; const int segment_id = mi->segment_id; int dy = row_delta[i]; int dx = col_delta[i]; int offset_extended = dy * mis + dx; if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) { // MB lies outside frame, move on mb_row += dy; mb_col += dx; m += offset_extended; prev_m += offset_extended; cpi->mb.partition_info += offset_extended; continue; } // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV // values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; // Make sure the MacroBlockD mode info pointer is set correctly xd->mode_info_context = m; xd->prev_mode_info_context = prev_m; #ifdef ENTROPY_STATS active_section = 9; #endif if (cpi->mb.e_mbd.update_mb_segmentation_map) { // Is temporal coding of the segment map enabled if (pc->temporal_update) { prediction_flag = get_pred_flag( xd, PRED_SEG_ID ); pred_prob = get_pred_prob( pc, xd, PRED_SEG_ID); // Code the segment id prediction flag for this mb vp8_write( w, prediction_flag, pred_prob ); // If the mb segment id wasn't predicted code explicitly if (!prediction_flag) write_mb_segid(w, mi, &cpi->mb.e_mbd); } else { // Normal unpredicted coding write_mb_segid(w, mi, &cpi->mb.e_mbd); } } if ( pc->mb_no_coeff_skip && ( !segfeature_active( xd, segment_id, SEG_LVL_EOB ) || ( get_segdata( xd, segment_id, SEG_LVL_EOB ) != 0 ) ) ) { #if CONFIG_NEWENTROPY vp8_encode_bool(w, mi->mb_skip_coeff, get_pred_prob(pc, xd, PRED_MBSKIP)); #else vp8_encode_bool(w, mi->mb_skip_coeff, cpi->prob_skip_false); #endif } // Encode the reference frame. encode_ref_frame( w, pc, xd, segment_id, rf ); if (rf == INTRA_FRAME) { #ifdef ENTROPY_STATS active_section = 6; #endif if ( !segfeature_active( xd, segment_id, SEG_LVL_MODE ) ) write_ymode(w, mode, pc->fc.ymode_prob); if (mode == B_PRED) { int j = 0; #if CONFIG_COMP_INTRA_PRED int uses_second = m->bmi[0].as_mode.second != (B_PREDICTION_MODE) (B_DC_PRED - 1); vp8_write(w, uses_second, 128); #endif do { #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE mode2 = m->bmi[j].as_mode.second; #endif write_bmode(w, m->bmi[j].as_mode.first, pc->fc.bmode_prob); #if CONFIG_COMP_INTRA_PRED if (uses_second) { write_bmode(w, mode2, pc->fc.bmode_prob); } #endif } while (++j < 16); } if(mode == I8X8_PRED) { write_i8x8_mode(w, m->bmi[0].as_mode.first, pc->i8x8_mode_prob); write_i8x8_mode(w, m->bmi[2].as_mode.first, pc->i8x8_mode_prob); write_i8x8_mode(w, m->bmi[8].as_mode.first, pc->i8x8_mode_prob); write_i8x8_mode(w, m->bmi[10].as_mode.first, pc->i8x8_mode_prob); } else { #if CONFIG_UVINTRA write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob[mode]); #ifdef MODE_STATS if(mode!=B_PRED) ++cpi->y_uv_mode_count[mode][mi->uv_mode]; #endif #else write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob); #endif /*CONFIG_UVINTRA*/ } } else { int_mv best_mv, best_second_mv; int ct[4]; vp8_prob mv_ref_p [VP8_MVREFS-1]; { int_mv n1, n2; vp8_find_near_mvs(xd, m, prev_m, &n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias); vp8_mv_ref_probs(&cpi->common, mv_ref_p, ct); #ifdef ENTROPY_STATS accum_mv_refs(mode, ct); #endif } #ifdef ENTROPY_STATS active_section = 3; #endif // Is the segment coding of mode enabled if ( !segfeature_active( xd, segment_id, SEG_LVL_MODE ) ) { write_mv_ref(w, mode, mv_ref_p); vp8_accum_mv_refs(&cpi->common, mode, ct); } if (mi->second_ref_frame && (mode == NEWMV || mode == SPLITMV)) { int_mv n1, n2; vp8_find_near_mvs(xd, m, prev_m, &n1, &n2, &best_second_mv, ct, mi->second_ref_frame, cpi->common.ref_frame_sign_bias); } // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { vp8_write(w, mi->second_ref_frame != INTRA_FRAME, get_pred_prob( pc, xd, PRED_COMP ) ); } { switch (mode) /* new, split require MVs */ { case NEWMV: #ifdef ENTROPY_STATS active_section = 5; #endif #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) write_mv_hp(w, &mi->mv.as_mv, &best_mv, mvc_hp); else #endif write_mv(w, &mi->mv.as_mv, &best_mv, mvc); if (mi->second_ref_frame) { #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) write_mv_hp(w, &mi->second_mv.as_mv, &best_second_mv, mvc_hp); else #endif write_mv(w, &mi->second_mv.as_mv, &best_second_mv, mvc); } break; case SPLITMV: { int j = 0; #ifdef MODE_STATS ++count_mb_seg [mi->partitioning]; #endif write_split(w, mi->partitioning); do { B_PREDICTION_MODE blockmode; int_mv blockmv; const int *const L = vp8_mbsplits [mi->partitioning]; int k = -1; /* first block in subset j */ int mv_contz; int_mv leftmv, abovemv; blockmode = cpi->mb.partition_info->bmi[j].mode; blockmv = cpi->mb.partition_info->bmi[j].mv; #if CONFIG_DEBUG while (j != L[++k]) if (k >= 16) assert(0); #else while (j != L[++k]); #endif leftmv.as_int = left_block_mv(m, k); abovemv.as_int = above_block_mv(m, k, mis); mv_contz = vp8_mv_cont(&leftmv, &abovemv); write_sub_mv_ref(w, blockmode, vp8_sub_mv_ref_prob2 [mv_contz]); if (blockmode == NEW4X4) { #ifdef ENTROPY_STATS active_section = 11; #endif #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) write_mv_hp(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT_HP *) mvc_hp); else #endif write_mv(w, &blockmv.as_mv, &best_mv, (const MV_CONTEXT *) mvc); if (mi->second_ref_frame) { #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) write_mv_hp(w, &cpi->mb.partition_info->bmi[j].second_mv.as_mv, &best_second_mv, (const MV_CONTEXT_HP *) mvc_hp); else #endif write_mv(w, &cpi->mb.partition_info->bmi[j].second_mv.as_mv, &best_second_mv, (const MV_CONTEXT *) mvc); } } } while (++j < cpi->mb.partition_info->count); } break; default: break; } } } // Next MB mb_row += dy; mb_col += dx; m += offset_extended; prev_m += offset_extended; cpi->mb.partition_info += offset_extended; #if CONFIG_DEBUG assert((prev_m-cpi->common.prev_mip)==(m-cpi->common.mip)); assert((prev_m-cpi->common.prev_mi)==(m-cpi->common.mi)); #endif } } // Next SB mb_row += 2; m += mis + (1 - (pc->mb_cols & 0x1)); prev_m += mis + (1 - (pc->mb_cols & 0x1)); cpi->mb.partition_info += mis + (1 - (pc->mb_cols & 0x1)); } } static void write_kfmodes(VP8_COMP *cpi) { vp8_writer *const bc = & cpi->bc; VP8_COMMON *const c = & cpi->common; const int mis = c->mode_info_stride; MACROBLOCKD *xd = &cpi->mb.e_mbd; MODE_INFO *m; int i; int row, col; int mb_row, mb_col; #if CONFIG_NEWENTROPY int prob_skip_false[3] = {0, 0, 0}; #else int prob_skip_false = 0; #endif int row_delta[4] = { 0, +1, 0, -1}; int col_delta[4] = {+1, -1, +1, +1}; if (c->mb_no_coeff_skip) { // Divide by 0 check. 0 case possible with segment features #if CONFIG_NEWENTROPY int k; for (k=0;kskip_false_count[k] + cpi->skip_true_count[k]) ) { prob_skip_false[k] = cpi->skip_false_count[k] * 256 / (cpi->skip_false_count[k] + cpi->skip_true_count[k]); if (prob_skip_false[k] <= 1) prob_skip_false[k] = 1; if (prob_skip_false[k] > 255) prob_skip_false[k] = 255; } else prob_skip_false[k] = 255; c->mbskip_pred_probs[k] = prob_skip_false[k]; vp8_write_literal(bc, prob_skip_false[k], 8); } #else if ( (cpi->skip_false_count + cpi->skip_true_count) ) { prob_skip_false = cpi->skip_false_count * 256 / (cpi->skip_false_count + cpi->skip_true_count); if (prob_skip_false <= 1) prob_skip_false = 1; if (prob_skip_false > 255) prob_skip_false = 255; } else prob_skip_false = 255; cpi->prob_skip_false = prob_skip_false; vp8_write_literal(bc, prob_skip_false, 8); #endif } #if CONFIG_QIMODE if(!c->kf_ymode_probs_update) { vp8_write_literal(bc, c->kf_ymode_probs_index, 3); } #endif mb_row = 0; for (row=0; row < c->mb_rows; row += 2) { m = c->mi + row * mis; mb_col = 0; for (col=0; col < c->mb_cols; col += 2) { // Process the 4 MBs in the order: // top-left, top-right, bottom-left, bottom-right for (i=0; i<4; i++) { int ym; int segment_id; int dy = row_delta[i]; int dx = col_delta[i]; int offset_extended = dy * mis + dx; if ((mb_row >= c->mb_rows) || (mb_col >= c->mb_cols)) { // MB lies outside frame, move on mb_row += dy; mb_col += dx; m += offset_extended; continue; } // Make sure the MacroBlockD mode info pointer is set correctly xd->mode_info_context = m; ym = m->mbmi.mode; segment_id = m->mbmi.segment_id; if (cpi->mb.e_mbd.update_mb_segmentation_map) { write_mb_segid(bc, &m->mbmi, &cpi->mb.e_mbd); } if ( c->mb_no_coeff_skip && ( !segfeature_active( xd, segment_id, SEG_LVL_EOB ) || (get_segdata( xd, segment_id, SEG_LVL_EOB ) != 0) ) ) { #if CONFIG_NEWENTROPY vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, get_pred_prob(c, xd, PRED_MBSKIP)); #else vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false); #endif } #if CONFIG_QIMODE kfwrite_ymode(bc, ym, c->kf_ymode_prob[c->kf_ymode_probs_index]); #else kfwrite_ymode(bc, ym, c->kf_ymode_prob); #endif if (ym == B_PRED) { const int mis = c->mode_info_stride; int i = 0; #if CONFIG_COMP_INTRA_PRED int uses_second = m->bmi[0].as_mode.second != (B_PREDICTION_MODE) (B_DC_PRED - 1); vp8_write(bc, uses_second, 128); #endif do { const B_PREDICTION_MODE A = above_block_mode(m, i, mis); const B_PREDICTION_MODE L = left_block_mode(m, i); const int bm = m->bmi[i].as_mode.first; #if CONFIG_COMP_INTRA_PRED const int bm2 = m->bmi[i].as_mode.second; #endif #ifdef ENTROPY_STATS ++intra_mode_stats [A] [L] [bm]; #endif write_bmode(bc, bm, c->kf_bmode_prob [A] [L]); #if CONFIG_COMP_INTRA_PRED if (uses_second) { write_bmode(bc, bm2, c->kf_bmode_prob [A] [L]); } #endif } while (++i < 16); } if(ym == I8X8_PRED) { write_i8x8_mode(bc, m->bmi[0].as_mode.first, c->i8x8_mode_prob); write_i8x8_mode(bc, m->bmi[2].as_mode.first, c->i8x8_mode_prob); write_i8x8_mode(bc, m->bmi[8].as_mode.first, c->i8x8_mode_prob); write_i8x8_mode(bc, m->bmi[10].as_mode.first, c->i8x8_mode_prob); } else #if CONFIG_UVINTRA write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]); #else write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob); #endif // Next MB mb_row += dy; mb_col += dx; m += offset_extended; } } mb_row += 2; } } /* This function is used for debugging probability trees. */ static void print_prob_tree(vp8_prob coef_probs[BLOCK_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) { /* print coef probability tree */ int i,j,k,l; FILE* f = fopen("enc_tree_probs.txt", "a"); fprintf(f, "{\n"); for (i = 0; i < BLOCK_TYPES; i++) { fprintf(f, " {\n"); for (j = 0; j < COEF_BANDS; j++) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; k++) { fprintf(f, " {"); for (l = 0; l < ENTROPY_NODES; l++) { fprintf(f, "%3u, ", (unsigned int)(coef_probs [i][j][k][l])); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, "}\n"); fclose(f); } static void sum_probs_over_prev_coef_context( const unsigned int probs[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS], unsigned int* out) { int i, j; for (i=0; i < MAX_ENTROPY_TOKENS; ++i) { for (j=0; j < PREV_COEF_CONTEXTS; ++j) { const int tmp = out[i]; out[i] += probs[j][i]; /* check for wrap */ if (out[i] < tmp) out[i] = UINT_MAX; } } } static int default_coef_context_savings(VP8_COMP *cpi) { int savings = 0; int i = 0; do { int j = 0; do { int k = 0; do { /* at every context */ /* calc probs and branch cts for this frame only */ //vp8_prob new_p [ENTROPY_NODES]; //unsigned int branch_ct [ENTROPY_NODES] [2]; int t = 0; /* token/prob index */ vp8_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, cpi->frame_coef_probs [i][j][k], cpi->frame_branch_ct [i][j][k], cpi->coef_counts [i][j][k], 256, 1 ); do { const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t]; const vp8_prob oldp = cpi->common.fc.coef_probs [i][j][k][t]; const vp8_prob upd = vp8_coef_update_probs [i][j][k][t]; const int s = prob_update_savings(ct, oldp, newp, upd); if (s > 0) { savings += s; } } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); return savings; } void build_coeff_contexts(VP8_COMP *cpi) { int i = 0; do { int j = 0; do { int k = 0; do { vp8_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, cpi->frame_coef_probs [i][j][k], cpi->frame_branch_ct [i][j][k], cpi->coef_counts [i][j][k], 256, 1 ); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); i= 0; if(cpi->common.txfm_mode == ALLOW_8X8) { do { int j = 0; do { int k = 0; do { /* at every context */ /* calc probs and branch cts for this frame only */ //vp8_prob new_p [ENTROPY_NODES]; //unsigned int branch_ct [ENTROPY_NODES] [2]; int t = 0; /* token/prob index */ vp8_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp8_coef_encodings, vp8_coef_tree, cpi->frame_coef_probs_8x8 [i][j][k], cpi->frame_branch_ct_8x8 [i][j][k], cpi->coef_counts_8x8 [i][j][k], 256, 1 ); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } } static void update_coef_probs(VP8_COMP *cpi) { int i = 0; vp8_writer *const w = & cpi->bc; int update = 0; vp8_clear_system_state(); //__asm emms; // Build the cofficient contexts based on counts collected in encode loop build_coeff_contexts(cpi); /* dry run to see if there is any udpate at all needed */ do { int j = 0; do { int k = 0; int prev_coef_savings[ENTROPY_NODES] = {0}; do { int t = 0; /* token/prob index */ do { const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t]; vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t; const vp8_prob upd = vp8_coef_update_probs [i][j][k][t]; int s = prev_coef_savings[t]; int u = 0; s = prob_update_savings( cpi->frame_branch_ct [i][j][k][t], *Pold, newp, upd); if (s > 0) u = 1; update += u; } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); /* Is coef updated at all */ if(update==0) { vp8_write_bit(w, 0); } else { vp8_write_bit(w, 1); i=0; do { int j = 0; do { int k = 0; int prev_coef_savings[ENTROPY_NODES] = {0}; do { // calc probs and branch cts for this frame only int t = 0; /* token/prob index */ do { const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t]; vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t; const vp8_prob upd = vp8_coef_update_probs [i][j][k][t]; int s = prev_coef_savings[t]; int u = 0; s = prob_update_savings( cpi->frame_branch_ct [i][j][k][t], *Pold, newp, upd); if (s > 0) u = 1; vp8_write(w, u, upd); #ifdef ENTROPY_STATS ++ tree_update_hist [i][j][k][t] [u]; #endif if (u) { /* send/use new probability */ *Pold = newp; vp8_write_literal(w, newp, 8); } } while (++t < ENTROPY_NODES); // Accum token counts for generation of default statistics #ifdef ENTROPY_STATS t = 0; do { context_counters [i][j][k][t] += cpi->coef_counts [i][j][k][t]; } while (++t < MAX_ENTROPY_TOKENS); #endif } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } /* do not do this if not evena allowed */ if(cpi->common.txfm_mode == ALLOW_8X8) { /* dry run to see if update is necessary */ update = 0; i = 0; do { int j = 0; do { int k = 0; do { // calc probs and branch cts for this frame only int t = 0; /* token/prob index */ do { const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t]; vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t; const vp8_prob old = *Pold; const vp8_prob upd = vp8_coef_update_probs_8x8 [i][j][k][t]; const int old_b = vp8_cost_branch(ct, old); const int new_b = vp8_cost_branch(ct, newp); const int update_b = 8 + vp8_cost_upd; const int s = old_b - new_b - update_b; const int u = s > 0 ? 1 : 0; #ifdef ENTROPY_STATS ++ tree_update_hist_8x8 [i][j][k][t] [u]; #endif update += u; } while (++t < MAX_ENTROPY_TOKENS - 1); // Accum token counts for generation of default statistics #ifdef ENTROPY_STATS t = 0; do { context_counters_8x8 [i][j][k][t] += cpi->coef_counts_8x8 [i][j][k][t]; } while (++t < MAX_ENTROPY_TOKENS); #endif } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); if(update == 0) { vp8_write_bit(w, 0); } else { vp8_write_bit(w, 1); i = 0; do { int j = 0; do { int k = 0; do { int t = 0; /* token/prob index */ do { const unsigned int *ct = cpi->frame_branch_ct_8x8 [i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs_8x8 [i][j][k][t]; vp8_prob *Pold = cpi->common.fc.coef_probs_8x8 [i][j][k] + t; const vp8_prob old = *Pold; const vp8_prob upd = vp8_coef_update_probs_8x8 [i][j][k][t]; const int old_b = vp8_cost_branch(ct, old); const int new_b = vp8_cost_branch(ct, newp); const int update_b = 8 + vp8_cost_upd; const int s = old_b - new_b - update_b; const int u = s > 0 ? 1 : 0; vp8_write(w, u, upd); #ifdef ENTROPY_STATS ++ tree_update_hist_8x8 [i][j][k][t] [u]; #endif if (u) { /* send/use new probability */ *Pold = newp; vp8_write_literal(w, newp, 8); } } while (++t < MAX_ENTROPY_TOKENS - 1); // Accum token counts for generation of default statistics #ifdef ENTROPY_STATS t = 0; do { context_counters_8x8 [i][j][k][t] += cpi->coef_counts_8x8 [i][j][k][t]; } while (++t < MAX_ENTROPY_TOKENS); #endif } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } } } #ifdef PACKET_TESTING FILE *vpxlogc = 0; #endif static void put_delta_q(vp8_writer *bc, int delta_q) { if (delta_q != 0) { vp8_write_bit(bc, 1); vp8_write_literal(bc, abs(delta_q), 4); if (delta_q < 0) vp8_write_bit(bc, 1); else vp8_write_bit(bc, 0); } else vp8_write_bit(bc, 0); } #if CONFIG_QIMODE extern const unsigned int kf_y_mode_cts[8][VP8_YMODES]; static void decide_kf_ymode_entropy(VP8_COMP *cpi) { int mode_cost[MB_MODE_COUNT]; int cost; int bestcost = INT_MAX; int bestindex = 0; int i, j; for(i=0; i<8; i++) { vp8_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp8_kf_ymode_tree); cost = 0; for(j=0;jymode_count[j]; } if(cost < bestcost) { bestindex = i; bestcost = cost; } } cpi->common.kf_ymode_probs_index = bestindex; } #endif static void segment_reference_frames(VP8_COMP *cpi) { VP8_COMMON *oci = &cpi->common; MODE_INFO *mi = oci->mi; int ref[MAX_MB_SEGMENTS]={0}; int i,j; int mb_index=0; MACROBLOCKD *const xd = & cpi->mb.e_mbd; for (i = 0; i < oci->mb_rows; i++) { for (j = 0; j < oci->mb_cols; j++, mb_index++) { ref[mi[mb_index].mbmi.segment_id]|=(1<common; vp8_writer *const bc = & cpi->bc; MACROBLOCKD *const xd = & cpi->mb.e_mbd; int extra_bytes_packed = 0; unsigned char *cx_data = dest; oh.show_frame = (int) pc->show_frame; oh.type = (int)pc->frame_type; oh.version = pc->version; oh.first_partition_length_in_bytes = 0; cx_data += 3; #if defined(SECTIONBITS_OUTPUT) Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256; #endif //vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each //K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere //else. No need to call it again here. --yw //vp8_kf_default_bmode_probs( pc->kf_bmode_prob); // every keyframe send startcode, width, height, scale factor, clamp and color type if (oh.type == KEY_FRAME) { int v; // Start / synch code cx_data[0] = 0x9D; cx_data[1] = 0x01; cx_data[2] = 0x2a; v = (pc->horiz_scale << 14) | pc->Width; cx_data[3] = v; cx_data[4] = v >> 8; v = (pc->vert_scale << 14) | pc->Height; cx_data[5] = v; cx_data[6] = v >> 8; extra_bytes_packed = 7; cx_data += extra_bytes_packed ; vp8_start_encode(bc, cx_data); // signal clr type vp8_write_bit(bc, pc->clr_type); vp8_write_bit(bc, pc->clamp_type); } else vp8_start_encode(bc, cx_data); // Signal whether or not Segmentation is enabled vp8_write_bit(bc, (xd->segmentation_enabled) ? 1 : 0); // Indicate which features are enabled if ( xd->segmentation_enabled ) { // Indicate whether or not the segmentation map is being updated. vp8_write_bit(bc, (xd->update_mb_segmentation_map) ? 1 : 0); // If it is, then indicate the method that will be used. if ( xd->update_mb_segmentation_map ) { // Select the coding strategy (temporal or spatial) choose_segmap_coding_method( cpi ); // Take a copy of the segment map if it changed for // future comparison vpx_memcpy( pc->last_frame_seg_map, cpi->segmentation_map, pc->MBs ); // Write out the chosen coding method. vp8_write_bit(bc, (pc->temporal_update) ? 1:0); } vp8_write_bit(bc, (xd->update_mb_segmentation_data) ? 1 : 0); //segment_reference_frames(cpi); if (xd->update_mb_segmentation_data) { signed char Data; vp8_write_bit(bc, (xd->mb_segment_abs_delta) ? 1 : 0); // For each segments id... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each segmentation codable feature... for (j = 0; j < SEG_LVL_MAX; j++) { Data = get_segdata( xd, i, j ); #if CONFIG_FEATUREUPDATES // check if there's an update if(segfeature_changed( xd,i,j) ) { vp8_write_bit(bc, 1); if ( segfeature_active( xd, i, j ) ) { // this bit is to say we are still // active/ if we were inactive // this is unnecessary if ( old_segfeature_active( xd, i, j )) { vp8_write_bit(bc, 1); } // Is the segment data signed.. if ( is_segfeature_signed(j) ) { // Encode the relevant feature data if (Data < 0) { Data = - Data; vp8_write_literal(bc, Data, seg_feature_data_bits(j)); vp8_write_bit(bc, 1); } else { vp8_write_literal(bc, Data, seg_feature_data_bits(j)); vp8_write_bit(bc, 0); } } // Unsigned data element so no sign bit needed else vp8_write_literal(bc, Data, seg_feature_data_bits(j)); } // feature is inactive now else if ( old_segfeature_active( xd, i, j )) { vp8_write_bit(bc, 0); } } else { vp8_write_bit(bc,0); } #else // If the feature is enabled... if ( segfeature_active( xd, i, j ) ) { vp8_write_bit(bc, 1); // Is the segment data signed.. if ( is_segfeature_signed(j) ) { // Encode the relevant feature data if (Data < 0) { Data = - Data; vp8_write_literal(bc, Data, seg_feature_data_bits(j)); vp8_write_bit(bc, 1); } else { vp8_write_literal(bc, Data, seg_feature_data_bits(j)); vp8_write_bit(bc, 0); } } // Unsigned data element so no sign bit needed else vp8_write_literal(bc, Data, seg_feature_data_bits(j)); } else vp8_write_bit(bc, 0); #endif } } } #if CONFIG_FEATUREUPDATES // save the segment info for updates next frame save_segment_info ( xd ); #endif if (xd->update_mb_segmentation_map) { // Send the tree probabilities used to decode unpredicted // macro-block segments for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { int Data = xd->mb_segment_tree_probs[i]; if (Data != 255) { vp8_write_bit(bc, 1); vp8_write_literal(bc, Data, 8); } else vp8_write_bit(bc, 0); } // If predictive coding of segment map is enabled send the // prediction probabilities. if ( pc->temporal_update ) { for (i = 0; i < PREDICTION_PROBS; i++) { int Data = pc->segment_pred_probs[i]; if (Data != 255) { vp8_write_bit(bc, 1); vp8_write_literal(bc, Data, 8); } else vp8_write_bit(bc, 0); } } } } // Encode the common prediction model status flag probability updates for // the reference frame update_refpred_stats( cpi ); if ( pc->frame_type != KEY_FRAME ) { for (i = 0; i < PREDICTION_PROBS; i++) { if ( cpi->ref_pred_probs_update[i] ) { vp8_write_bit(bc, 1); vp8_write_literal(bc, pc->ref_pred_probs[i], 8); } else vp8_write_bit(bc, 0); } } vp8_write_bit(bc, pc->txfm_mode); // Encode the loop filter level and type vp8_write_bit(bc, pc->filter_type); vp8_write_literal(bc, pc->filter_level, 6); vp8_write_literal(bc, pc->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled). vp8_write_bit(bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated int send_update = xd->mode_ref_lf_delta_update; vp8_write_bit(bc, send_update); if (send_update) { int Data; // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { Data = xd->ref_lf_deltas[i]; // Frame level data if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) { xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i]; vp8_write_bit(bc, 1); if (Data > 0) { vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 0); // sign } else { Data = -Data; vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 1); // sign } } else vp8_write_bit(bc, 0); } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { Data = xd->mode_lf_deltas[i]; if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) { xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i]; vp8_write_bit(bc, 1); if (Data > 0) { vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 0); // sign } else { Data = -Data; vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 1); // sign } } else vp8_write_bit(bc, 0); } } } //signal here is multi token partition is enabled //vp8_write_literal(bc, pc->multi_token_partition, 2); vp8_write_literal(bc, 0, 2); // Frame Q baseline quantizer index vp8_write_literal(bc, pc->base_qindex, QINDEX_BITS); // Transmit Dc, Second order and Uv quantizer delta information put_delta_q(bc, pc->y1dc_delta_q); put_delta_q(bc, pc->y2dc_delta_q); put_delta_q(bc, pc->y2ac_delta_q); put_delta_q(bc, pc->uvdc_delta_q); put_delta_q(bc, pc->uvac_delta_q); // When there is a key frame all reference buffers are updated using the new key frame if (pc->frame_type != KEY_FRAME) { // Should the GF or ARF be updated using the transmitted frame or buffer vp8_write_bit(bc, pc->refresh_golden_frame); vp8_write_bit(bc, pc->refresh_alt_ref_frame); // For inter frames the current default behavior is that when // cm->refresh_golden_frame is set we copy the old GF over to // the ARF buffer. This is purely an encoder decision at present. if (pc->refresh_golden_frame) pc->copy_buffer_to_arf = 2; // If not being updated from current frame should either GF or ARF be updated from another buffer if (!pc->refresh_golden_frame) vp8_write_literal(bc, pc->copy_buffer_to_gf, 2); if (!pc->refresh_alt_ref_frame) vp8_write_literal(bc, pc->copy_buffer_to_arf, 2); // Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer) vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]); vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]); #if CONFIG_HIGH_PRECISION_MV // Signal whether to allow high MV precision vp8_write_bit(bc, (xd->allow_high_precision_mv) ? 1 : 0); #endif #if CONFIG_ENHANCED_INTERP // Signal the type of subpel filter to use vp8_write_literal(bc, (pc->mcomp_filter_type), 2); #endif } vp8_write_bit(bc, pc->refresh_entropy_probs); if (pc->frame_type != KEY_FRAME) vp8_write_bit(bc, pc->refresh_last_frame); #ifdef ENTROPY_STATS if (pc->frame_type == INTER_FRAME) active_section = 0; else active_section = 7; #endif vp8_clear_system_state(); //__asm emms; update_coef_probs(cpi); #ifdef ENTROPY_STATS active_section = 2; #endif // Write out the mb_no_coeff_skip flag vp8_write_bit(bc, pc->mb_no_coeff_skip); if (pc->frame_type == KEY_FRAME) { #if CONFIG_QIMODE decide_kf_ymode_entropy(cpi); #endif write_kfmodes(cpi); #ifdef ENTROPY_STATS active_section = 8; #endif } else { pack_inter_mode_mvs(cpi); vp8_update_mode_context(&cpi->common); #ifdef ENTROPY_STATS active_section = 1; #endif } vp8_stop_encode(bc); oh.first_partition_length_in_bytes = cpi->bc.pos; /* update frame tag */ { int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) | (oh.version << 1) | oh.type; dest[0] = v; dest[1] = v >> 8; dest[2] = v >> 16; } *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc.pos; vp8_start_encode(&cpi->bc2, cx_data + bc->pos); pack_tokens(&cpi->bc2, cpi->tok, cpi->tok_count); vp8_stop_encode(&cpi->bc2); *size += cpi->bc2.pos; } #ifdef ENTROPY_STATS void print_tree_update_probs() { int i, j, k, l; FILE *f = fopen("context.c", "a"); int Sum; fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); fprintf(f, "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n"); for (i = 0; i < BLOCK_TYPES; i++) { fprintf(f, " { \n"); for (j = 0; j < COEF_BANDS; j++) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; k++) { fprintf(f, " {"); for (l = 0; l < ENTROPY_NODES; l++) { Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1]; if (Sum > 0) { if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0) fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum); else fprintf(f, "%3ld, ", 1); } else fprintf(f, "%3ld, ", 128); } fprintf(f, "},\n"); } fprintf(f, " },\n"); } fprintf(f, " },\n"); } fprintf(f, "};\n"); fprintf(f, "const vp8_prob tree_update_probs_8x8[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {\n"); for (i = 0; i < BLOCK_TYPES; i++) { fprintf(f, " { \n"); for (j = 0; j < COEF_BANDS; j++) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; k++) { fprintf(f, " {"); for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) { Sum = tree_update_hist_8x8[i][j][k][l][0] + tree_update_hist_8x8[i][j][k][l][1]; if (Sum > 0) { if (((tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum) > 0) fprintf(f, "%3ld, ", (tree_update_hist_8x8[i][j][k][l][0] * 255) / Sum); else fprintf(f, "%3ld, ", 1); } else fprintf(f, "%3ld, ", 128); } fprintf(f, "},\n"); } fprintf(f, " },\n"); } fprintf(f, " },\n"); } fclose(f); } #endif