/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_tile_common.h" void vp9_enable_segmentation(VP9_PTR ptr) { VP9_COMP *cpi = (VP9_COMP *)(ptr); // Set the appropriate feature bit cpi->mb.e_mbd.segmentation_enabled = 1; cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } void vp9_disable_segmentation(VP9_PTR ptr) { VP9_COMP *cpi = (VP9_COMP *)(ptr); // Clear the appropriate feature bit cpi->mb.e_mbd.segmentation_enabled = 0; } void vp9_set_segmentation_map(VP9_PTR ptr, unsigned char *segmentation_map) { VP9_COMP *cpi = (VP9_COMP *)(ptr); // Copy in the new segmentation map vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols)); // Signal that the map should be updated. cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } void vp9_set_segment_data(VP9_PTR ptr, signed char *feature_data, unsigned char abs_delta) { VP9_COMP *cpi = (VP9_COMP *)(ptr); cpi->mb.e_mbd.mb_segment_abs_delta = abs_delta; vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data, sizeof(cpi->mb.e_mbd.segment_feature_data)); // TBD ?? Set the feature mask // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, // sizeof(cpi->mb.e_mbd.segment_feature_mask)); } // Based on set of segment counts calculate a probability tree static void calc_segtree_probs(MACROBLOCKD *xd, int *segcounts, vp9_prob *segment_tree_probs) { // Work out probabilities of each segment segment_tree_probs[0] = get_binary_prob(segcounts[0] + segcounts[1] + segcounts[2] + segcounts[3], segcounts[4] + segcounts[5] + segcounts[6] + segcounts[7]); segment_tree_probs[1] = get_binary_prob(segcounts[0] + segcounts[1], segcounts[2] + segcounts[3]); segment_tree_probs[2] = get_binary_prob(segcounts[0], segcounts[1]); segment_tree_probs[3] = get_binary_prob(segcounts[2], segcounts[3]); segment_tree_probs[4] = get_binary_prob(segcounts[4] + segcounts[5], segcounts[6] + segcounts[7]); segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); } // Based on set of segment counts and probabilities calculate a cost estimate static int cost_segmap(MACROBLOCKD *xd, int *segcounts, vp9_prob *probs) { int cost; int count1, count2; // Cost the top node of the tree count1 = segcounts[0] + segcounts[1] + segcounts[2] + segcounts[3]; count2 = segcounts[3] + segcounts[4] + segcounts[5] + segcounts[6]; cost = count1 * vp9_cost_zero(probs[0]) + count2 * vp9_cost_one(probs[0]); // Cost subsequent levels if (count1 > 0) { count1 = segcounts[0] + segcounts[1]; count2 = segcounts[2] + segcounts[3]; cost += count1 * vp9_cost_zero(probs[1]) + count2 * vp9_cost_one(probs[1]); if (count1 > 0) cost += segcounts[0] * vp9_cost_zero(probs[2]) + segcounts[1] * vp9_cost_one(probs[2]); if (count2 > 0) cost += segcounts[2] * vp9_cost_zero(probs[3]) + segcounts[3] * vp9_cost_one(probs[3]); } if (count2 > 0) { count1 = segcounts[4] + segcounts[5]; count2 = segcounts[6] + segcounts[7]; cost += count1 * vp9_cost_zero(probs[4]) + count2 * vp9_cost_one(probs[4]); if (count1 > 0) cost += segcounts[4] * vp9_cost_zero(probs[5]) + segcounts[5] * vp9_cost_one(probs[5]); if (count2 > 0) cost += segcounts[6] * vp9_cost_zero(probs[6]) + segcounts[7] * vp9_cost_one(probs[6]); } return cost; } static void count_segs(VP9_COMP *cpi, MODE_INFO *mi, int *no_pred_segcounts, int (*temporal_predictor_count)[2], int *t_unpred_seg_counts, int bw, int bh, int mb_row, int mb_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int segment_id = mi->mbmi.segment_id; xd->mode_info_context = mi; set_mb_row_col(cm, xd, mb_row, bh, mb_col, bw); // Count the number of hits on each segment with no prediction no_pred_segcounts[segment_id]++; // Temporal prediction not allowed on key frames if (cm->frame_type != KEY_FRAME) { // Test to see if the segment id matches the predicted value. const int pred_seg_id = vp9_get_pred_mb_segid(cm, mi->mbmi.sb_type, mb_row, mb_col); const int seg_predicted = (segment_id == pred_seg_id); // Get the segment id prediction context const int pred_context = vp9_get_pred_context(cm, xd, PRED_SEG_ID); // Store the prediction status for this mb and update counts // as appropriate vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted); temporal_predictor_count[pred_context][seg_predicted]++; if (!seg_predicted) // Update the "unpredicted" segment count t_unpred_seg_counts[segment_id]++; } } void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; int no_pred_cost; int t_pred_cost = INT_MAX; int i; int tile_col, mb_row, mb_col; int temporal_predictor_count[PREDICTION_PROBS][2]; int no_pred_segcounts[MAX_MB_SEGMENTS]; int t_unpred_seg_counts[MAX_MB_SEGMENTS]; vp9_prob no_pred_tree[MB_SEG_TREE_PROBS]; vp9_prob t_pred_tree[MB_SEG_TREE_PROBS]; vp9_prob t_nopred_prob[PREDICTION_PROBS]; const int mis = cm->mode_info_stride; MODE_INFO *mi_ptr, *mi; // Set default state for the segment tree probabilities and the // temporal coding probabilities vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); vpx_memset(cm->segment_pred_probs, 255, sizeof(cm->segment_pred_probs)); vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts)); vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts)); vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count)); // First of all generate stats regarding how well the last segment map // predicts this one for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) { vp9_get_tile_col_offsets(cm, tile_col); mi_ptr = cm->mi + cm->cur_tile_mb_col_start; for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) { mi = mi_ptr; for (mb_col = cm->cur_tile_mb_col_start; mb_col < cm->cur_tile_mb_col_end; mb_col += 4, mi += 4) { if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) { count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 4, 4, mb_row, mb_col); } else if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X32) { count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 4, 2, mb_row, mb_col); if (mb_row + 2 != cm->mb_rows) count_segs(cpi, mi + 2 * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 4, 2, mb_row + 2, mb_col); } else if (mi->mbmi.sb_type == BLOCK_SIZE_SB32X64) { count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 2, 4, mb_row, mb_col); if (mb_col + 2 != cm->mb_cols) count_segs(cpi, mi + 2, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 2, 4, mb_row, mb_col + 2); } else { for (i = 0; i < 4; i++) { int x_idx = (i & 1) << 1, y_idx = i & 2; MODE_INFO *sb_mi = mi + y_idx * mis + x_idx; if (mb_col + x_idx >= cm->mb_cols || mb_row + y_idx >= cm->mb_rows) { continue; } if (sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X32) { count_segs(cpi, sb_mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 2, 2, mb_row + y_idx, mb_col + x_idx); } else if (sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X16) { count_segs(cpi, sb_mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 2, 1, mb_row + y_idx, mb_col + x_idx); if (mb_row + y_idx + 1 != cm->mb_rows) count_segs(cpi, sb_mi + mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 2, 1, mb_row + y_idx + 1, mb_col + x_idx); } else if (sb_mi->mbmi.sb_type == BLOCK_SIZE_SB16X32) { count_segs(cpi, sb_mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1, 2, mb_row + y_idx, mb_col + x_idx); if (mb_col + x_idx + 1 != cm->mb_cols) count_segs(cpi, sb_mi + 1, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1, 2, mb_row + y_idx, mb_col + x_idx + 1); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_mb = x_idx + (j & 1); const int y_idx_mb = y_idx + (j >> 1); MODE_INFO *mb_mi = mi + x_idx_mb + y_idx_mb * mis; if (mb_col + x_idx_mb >= cm->mb_cols || mb_row + y_idx_mb >= cm->mb_rows) { continue; } assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16); count_segs(cpi, mb_mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1, 1, mb_row + y_idx_mb, mb_col + x_idx_mb); } } } } } } } // Work out probability tree for coding segments without prediction // and the cost. calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree); no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree); // Key frames cannot use temporal prediction if (cm->frame_type != KEY_FRAME) { // Work out probability tree for coding those segments not // predicted using the temporal method and the cost. calc_segtree_probs(xd, t_unpred_seg_counts, t_pred_tree); t_pred_cost = cost_segmap(xd, t_unpred_seg_counts, t_pred_tree); // Add in the cost of the signalling for each prediction context for (i = 0; i < PREDICTION_PROBS; i++) { t_nopred_prob[i] = get_binary_prob(temporal_predictor_count[i][0], temporal_predictor_count[i][1]); // Add in the predictor signaling cost t_pred_cost += (temporal_predictor_count[i][0] * vp9_cost_zero(t_nopred_prob[i])) + (temporal_predictor_count[i][1] * vp9_cost_one(t_nopred_prob[i])); } } // Now choose which coding method to use. if (t_pred_cost < no_pred_cost) { cm->temporal_update = 1; vpx_memcpy(xd->mb_segment_tree_probs, t_pred_tree, sizeof(t_pred_tree)); vpx_memcpy(&cm->segment_pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); } else { cm->temporal_update = 0; vpx_memcpy(xd->mb_segment_tree_probs, no_pred_tree, sizeof(no_pred_tree)); } }