/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_seg_common.h" #ifdef ENC_DEBUG extern int enc_debug; #endif static INLINE int plane_idx(int plane) { return plane == 0 ? 0 : plane == 1 ? 16 : 20; } void vp9_ht_quantize_b_4x4(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type) { MACROBLOCKD *const xd = &mb->e_mbd; BLOCK *const b = &mb->block[0]; BLOCKD *const d = &xd->block[0]; int i, rc, eob; int zbin; int x, y, z, sz; int16_t *coeff_ptr = mb->coeff + b_idx * 16; // ht is luma-only int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[0].qcoeff, b_idx, 16); int16_t *dqcoeff_ptr = BLOCK_OFFSET(xd->plane[0].dqcoeff, b_idx, 16); int16_t *zbin_boost_ptr = b->zrun_zbin_boost; int16_t *zbin_ptr = b->zbin; int16_t *round_ptr = b->round; int16_t *quant_ptr = b->quant; uint8_t *quant_shift_ptr = b->quant_shift; int16_t *dequant_ptr = d->dequant; int zbin_oq_value = b->zbin_extra; const int *pt_scan; #if CONFIG_CODE_NONZEROCOUNT int nzc = 0; #endif switch (tx_type) { case ADST_DCT: pt_scan = vp9_row_scan_4x4; break; case DCT_ADST: pt_scan = vp9_col_scan_4x4; break; default: pt_scan = vp9_default_zig_zag1d_4x4; break; } vpx_memset(qcoeff_ptr, 0, 32); vpx_memset(dqcoeff_ptr, 0, 32); eob = -1; if (!b->skip_block) { for (i = 0; i < 16; i++) { rc = pt_scan[i]; z = coeff_ptr[rc]; zbin = zbin_ptr[rc] + *zbin_boost_ptr + zbin_oq_value; zbin_boost_ptr++; sz = (z >> 31); // sign of z x = (z ^ sz) - sz; // x = abs(z) if (x >= zbin) { x += round_ptr[rc]; y = (((x * quant_ptr[rc]) >> 16) + x) >> quant_shift_ptr[rc]; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[rc] = x; // write to destination dqcoeff_ptr[rc] = x * dequant_ptr[rc]; // dequantized value if (y) { eob = i; // last nonzero coeffs #if CONFIG_CODE_NONZEROCOUNT ++nzc; // number of nonzero coeffs #endif zbin_boost_ptr = b->zrun_zbin_boost; // reset zero runlength } } } } xd->plane[0].eobs[b_idx] = eob + 1; #if CONFIG_CODE_NONZEROCOUNT xd->nzcs[b_idx] = nzc; #endif } void vp9_regular_quantize_b_4x4(MACROBLOCK *mb, int b_idx, int y_blocks) { MACROBLOCKD *const xd = &mb->e_mbd; const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx); const int c_idx = plane_idx(pb_idx.plane); BLOCK *const b = &mb->block[c_idx]; BLOCKD *const d = &xd->block[c_idx]; int i, rc, eob; int zbin; int x, y, z, sz; int16_t *coeff_ptr = mb->coeff + b_idx * 16; int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16); int16_t *dqcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16); int16_t *zbin_boost_ptr = b->zrun_zbin_boost; int16_t *zbin_ptr = b->zbin; int16_t *round_ptr = b->round; int16_t *quant_ptr = b->quant; uint8_t *quant_shift_ptr = b->quant_shift; int16_t *dequant_ptr = d->dequant; int zbin_oq_value = b->zbin_extra; #if CONFIG_CODE_NONZEROCOUNT int nzc = 0; #endif if (c_idx == 0) assert(pb_idx.plane == 0); if (c_idx == 16) assert(pb_idx.plane == 1); if (c_idx == 20) assert(pb_idx.plane == 2); vpx_memset(qcoeff_ptr, 0, 32); vpx_memset(dqcoeff_ptr, 0, 32); eob = -1; if (!b->skip_block) { for (i = 0; i < 16; i++) { rc = vp9_default_zig_zag1d_4x4[i]; z = coeff_ptr[rc]; zbin = zbin_ptr[rc] + *zbin_boost_ptr + zbin_oq_value; zbin_boost_ptr++; sz = (z >> 31); // sign of z x = (z ^ sz) - sz; // x = abs(z) if (x >= zbin) { x += round_ptr[rc]; y = (((x * quant_ptr[rc]) >> 16) + x) >> quant_shift_ptr[rc]; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[rc] = x; // write to destination dqcoeff_ptr[rc] = x * dequant_ptr[rc]; // dequantized value if (y) { eob = i; // last nonzero coeffs #if CONFIG_CODE_NONZEROCOUNT ++nzc; // number of nonzero coeffs #endif zbin_boost_ptr = b->zrun_zbin_boost; // reset zero runlength } } } } xd->plane[pb_idx.plane].eobs[pb_idx.block] = eob + 1; #if CONFIG_CODE_NONZEROCOUNT xd->nzcs[b_idx] = nzc; #endif } void vp9_regular_quantize_b_8x8(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type, int y_blocks) { MACROBLOCKD *const xd = &mb->e_mbd; const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx); const int c_idx = plane_idx(pb_idx.plane); int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16); int16_t *dqcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16); BLOCK *const b = &mb->block[c_idx]; BLOCKD *const d = &xd->block[c_idx]; const int *pt_scan; switch (tx_type) { case ADST_DCT: pt_scan = vp9_row_scan_8x8; break; case DCT_ADST: pt_scan = vp9_col_scan_8x8; break; default: pt_scan = vp9_default_zig_zag1d_8x8; break; } if (c_idx == 0) assert(pb_idx.plane == 0); if (c_idx == 16) assert(pb_idx.plane == 1); if (c_idx == 20) assert(pb_idx.plane == 2); vpx_memset(qcoeff_ptr, 0, 64 * sizeof(int16_t)); vpx_memset(dqcoeff_ptr, 0, 64 * sizeof(int16_t)); if (!b->skip_block) { int i, rc, eob; int zbin; int x, y, z, sz; int zero_run; int16_t *zbin_boost_ptr = b->zrun_zbin_boost; int16_t *coeff_ptr = mb->coeff + 16 * b_idx; int16_t *zbin_ptr = b->zbin; int16_t *round_ptr = b->round; int16_t *quant_ptr = b->quant; uint8_t *quant_shift_ptr = b->quant_shift; int16_t *dequant_ptr = d->dequant; int zbin_oq_value = b->zbin_extra; #if CONFIG_CODE_NONZEROCOUNT int nzc = 0; #endif eob = -1; // Special case for DC as it is the one triggering access in various // tables: {zbin, quant, quant_shift, dequant}_ptr[rc != 0] { z = coeff_ptr[0]; zbin = (zbin_ptr[0] + zbin_boost_ptr[0] + zbin_oq_value); zero_run = 1; sz = (z >> 31); // sign of z x = (z ^ sz) - sz; // x = abs(z) if (x >= zbin) { x += (round_ptr[0]); y = ((int)(((int)(x * quant_ptr[0]) >> 16) + x)) >> quant_shift_ptr[0]; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[0] = x; // write to destination dqcoeff_ptr[0] = x * dequant_ptr[0]; // dequantized value if (y) { eob = 0; // last nonzero coeffs #if CONFIG_CODE_NONZEROCOUNT ++nzc; // number of nonzero coeffs #endif zero_run = 0; } } } for (i = 1; i < 64; i++) { rc = pt_scan[i]; z = coeff_ptr[rc]; zbin = (zbin_ptr[1] + zbin_boost_ptr[zero_run] + zbin_oq_value); // The original code was incrementing zero_run while keeping it at // maximum 15 by adding "(zero_run < 15)". The same is achieved by // removing the opposite of the sign mask of "(zero_run - 15)". zero_run -= (zero_run - 15) >> 31; sz = (z >> 31); // sign of z x = (z ^ sz) - sz; // x = abs(z) if (x >= zbin) { x += (round_ptr[rc != 0]); y = ((int)(((int)(x * quant_ptr[1]) >> 16) + x)) >> quant_shift_ptr[1]; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[rc] = x; // write to destination dqcoeff_ptr[rc] = x * dequant_ptr[1]; // dequantized value if (y) { eob = i; // last nonzero coeffs #if CONFIG_CODE_NONZEROCOUNT ++nzc; // number of nonzero coeffs #endif zero_run = 0; } } } xd->plane[pb_idx.plane].eobs[pb_idx.block] = eob + 1; #if CONFIG_CODE_NONZEROCOUNT xd->nzcs[b_idx] = nzc; #endif } else { xd->plane[pb_idx.plane].eobs[pb_idx.block] = 0; #if CONFIG_CODE_NONZEROCOUNT xd->nzcs[b_idx] = 0; #endif } } static void quantize(int16_t *zbin_boost_orig_ptr, int16_t *coeff_ptr, int n_coeffs, int skip_block, int16_t *zbin_ptr, int16_t *round_ptr, int16_t *quant_ptr, uint8_t *quant_shift_ptr, int16_t *qcoeff_ptr, int16_t *dqcoeff_ptr, int16_t *dequant_ptr, int zbin_oq_value, uint16_t *eob_ptr, #if CONFIG_CODE_NONZEROCOUNT uint16_t *nzc_ptr, #endif const int *scan, int mul) { int i, rc, eob; int zbin; int x, y, z, sz; int zero_run = 0; int16_t *zbin_boost_ptr = zbin_boost_orig_ptr; #if CONFIG_CODE_NONZEROCOUNT int nzc = 0; #endif vpx_memset(qcoeff_ptr, 0, n_coeffs*sizeof(int16_t)); vpx_memset(dqcoeff_ptr, 0, n_coeffs*sizeof(int16_t)); eob = -1; if (!skip_block) { for (i = 0; i < n_coeffs; i++) { rc = scan[i]; z = coeff_ptr[rc] * mul; zbin = (zbin_ptr[rc != 0] + zbin_boost_ptr[zero_run] + zbin_oq_value); zero_run += (zero_run < 15); sz = (z >> 31); // sign of z x = (z ^ sz) - sz; // x = abs(z) if (x >= zbin) { x += (round_ptr[rc != 0]); y = ((int)(((int)(x * quant_ptr[rc != 0]) >> 16) + x)) >> quant_shift_ptr[rc != 0]; // quantize (x) x = (y ^ sz) - sz; // get the sign back qcoeff_ptr[rc] = x; // write to destination dqcoeff_ptr[rc] = x * dequant_ptr[rc != 0] / mul; // dequantized value if (y) { eob = i; // last nonzero coeffs zero_run = 0; #if CONFIG_CODE_NONZEROCOUNT ++nzc; // number of nonzero coeffs #endif } } } } *eob_ptr = eob + 1; #if CONFIG_CODE_NONZEROCOUNT *nzc_ptr = nzc; #endif } void vp9_regular_quantize_b_16x16(MACROBLOCK *mb, int b_idx, TX_TYPE tx_type, int y_blocks) { MACROBLOCKD *const xd = &mb->e_mbd; const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx); const int c_idx = plane_idx(pb_idx.plane); BLOCK *const b = &mb->block[c_idx]; BLOCKD *const d = &xd->block[c_idx]; const int *pt_scan; switch (tx_type) { case ADST_DCT: pt_scan = vp9_row_scan_16x16; break; case DCT_ADST: pt_scan = vp9_col_scan_16x16; break; default: pt_scan = vp9_default_zig_zag1d_16x16; break; } if (c_idx == 0) assert(pb_idx.plane == 0); if (c_idx == 16) assert(pb_idx.plane == 1); if (c_idx == 20) assert(pb_idx.plane == 2); quantize(b->zrun_zbin_boost, mb->coeff + 16 * b_idx, 256, b->skip_block, b->zbin, b->round, b->quant, b->quant_shift, BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16), BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16), d->dequant, b->zbin_extra, &xd->plane[pb_idx.plane].eobs[pb_idx.block], #if CONFIG_CODE_NONZEROCOUNT &xd->nzcs[b_idx], #endif pt_scan, 1); } void vp9_regular_quantize_b_32x32(MACROBLOCK *mb, int b_idx, int y_blocks) { MACROBLOCKD *const xd = &mb->e_mbd; const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, b_idx); const int c_idx = plane_idx(pb_idx.plane); BLOCK *const b = &mb->block[c_idx]; BLOCKD *const d = &xd->block[c_idx]; if (c_idx == 0) assert(pb_idx.plane == 0); if (c_idx == 16) assert(pb_idx.plane == 1); if (c_idx == 20) assert(pb_idx.plane == 2); quantize(b->zrun_zbin_boost, mb->coeff + b_idx * 16, 1024, b->skip_block, b->zbin, b->round, b->quant, b->quant_shift, BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16), BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16), d->dequant, b->zbin_extra, &xd->plane[pb_idx.plane].eobs[pb_idx.block], #if CONFIG_CODE_NONZEROCOUNT &xd->nzcs[b_idx], #endif vp9_default_zig_zag1d_32x32, 2); } void vp9_quantize_sby_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bw = 1 << (mb_width_log2(bsize) - 1); const int bh = 1 << (mb_height_log2(bsize) - 1); int n; for (n = 0; n < bw * bh; n++) vp9_regular_quantize_b_32x32(x, n * 64, bw * bh * 64); } void vp9_quantize_sby_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bw = 1 << bwl; const int bh = 1 << mb_height_log2(bsize); const int bstride = 16 << bwl; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; TX_TYPE tx_type = get_tx_type_16x16(&x->e_mbd, 4 * x_idx + y_idx * bstride); x->quantize_b_16x16(x, n * 16, tx_type, 16 * bw * bh); } } void vp9_quantize_sby_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl; const int bh = 1 << (mb_height_log2(bsize) + 1); const int bstride = 4 << bwl; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; TX_TYPE tx_type = get_tx_type_8x8(&x->e_mbd, 2 * x_idx + y_idx * bstride); x->quantize_b_8x8(x, n * 4, tx_type, 4 * bw * bh); } } void vp9_quantize_sby_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl; const int bh = 1 << (mb_height_log2(bsize) + 2); MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const TX_TYPE tx_type = get_tx_type_4x4(xd, n); if (tx_type != DCT_DCT) { vp9_ht_quantize_b_4x4(x, n, tx_type); } else { x->quantize_b_4x4(x, n, bw * bh); } } } void vp9_quantize_sbuv_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { assert(bsize == BLOCK_SIZE_SB64X64); vp9_regular_quantize_b_32x32(x, 256, 256); vp9_regular_quantize_b_32x32(x, 320, 256); } void vp9_quantize_sbuv_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize); const int bhl = mb_height_log2(bsize); const int uoff = 16 << (bhl + bwl); int i; for (i = uoff; i < ((uoff * 3) >> 1); i += 16) x->quantize_b_16x16(x, i, DCT_DCT, uoff); } void vp9_quantize_sbuv_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize); const int bhl = mb_height_log2(bsize); const int uoff = 16 << (bhl + bwl); int i; for (i = uoff; i < ((uoff * 3) >> 1); i += 4) x->quantize_b_8x8(x, i, DCT_DCT, uoff); } void vp9_quantize_sbuv_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize); const int bhl = mb_height_log2(bsize); const int uoff = 16 << (bhl + bwl); int i; for (i = uoff; i < ((uoff * 3) >> 1); i++) x->quantize_b_4x4(x, i, uoff); } /* quantize_b_pair function pointer in MACROBLOCK structure is set to one of * these two C functions if corresponding optimized routine is not available. * NEON optimized version implements currently the fast quantization for pair * of blocks. */ void vp9_regular_quantize_b_4x4_pair(MACROBLOCK *x, int b_idx1, int b_idx2, int y_blocks) { vp9_regular_quantize_b_4x4(x, b_idx1, y_blocks); vp9_regular_quantize_b_4x4(x, b_idx2, y_blocks); } static void invert_quant(int16_t *quant, uint8_t *shift, int d) { unsigned t; int l; t = d; for (l = 0; t > 1; l++) t >>= 1; t = 1 + (1 << (16 + l)) / d; *quant = (int16_t)(t - (1 << 16)); *shift = l; } void vp9_init_quantizer(VP9_COMP *cpi) { int i; int quant_val; int q; static const int zbin_boost[16] = { 0, 0, 0, 8, 8, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40 }; for (q = 0; q < QINDEX_RANGE; q++) { int qzbin_factor = (vp9_dc_quant(q, 0) < 148) ? 84 : 80; int qrounding_factor = 48; if (q == 0) { qzbin_factor = 64; qrounding_factor = 64; } // dc values quant_val = vp9_dc_quant(q, cpi->common.y_dc_delta_q); invert_quant(cpi->Y1quant[q] + 0, cpi->Y1quant_shift[q] + 0, quant_val); cpi->Y1zbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->Y1round[q][0] = (qrounding_factor * quant_val) >> 7; cpi->common.y_dequant[q][0] = quant_val; cpi->zrun_zbin_boost_y1[q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp9_dc_uv_quant(q, cpi->common.uv_dc_delta_q); invert_quant(cpi->UVquant[q] + 0, cpi->UVquant_shift[q] + 0, quant_val); cpi->UVzbin[q][0] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->UVround[q][0] = (qrounding_factor * quant_val) >> 7; cpi->common.uv_dequant[q][0] = quant_val; cpi->zrun_zbin_boost_uv[q][0] = (quant_val * zbin_boost[0]) >> 7; // all the 4x4 ac values =; for (i = 1; i < 16; i++) { int rc = vp9_default_zig_zag1d_4x4[i]; quant_val = vp9_ac_yquant(q); invert_quant(cpi->Y1quant[q] + rc, cpi->Y1quant_shift[q] + rc, quant_val); cpi->Y1zbin[q][rc] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->Y1round[q][rc] = (qrounding_factor * quant_val) >> 7; cpi->common.y_dequant[q][rc] = quant_val; cpi->zrun_zbin_boost_y1[q][i] = ROUND_POWER_OF_TWO(quant_val * zbin_boost[i], 7); quant_val = vp9_ac_uv_quant(q, cpi->common.uv_ac_delta_q); invert_quant(cpi->UVquant[q] + rc, cpi->UVquant_shift[q] + rc, quant_val); cpi->UVzbin[q][rc] = ROUND_POWER_OF_TWO(qzbin_factor * quant_val, 7); cpi->UVround[q][rc] = (qrounding_factor * quant_val) >> 7; cpi->common.uv_dequant[q][rc] = quant_val; cpi->zrun_zbin_boost_uv[q][i] = ROUND_POWER_OF_TWO(quant_val * zbin_boost[i], 7); } } } void vp9_mb_init_quantizer(VP9_COMP *cpi, MACROBLOCK *x) { int i; int qindex; MACROBLOCKD *xd = &x->e_mbd; int zbin_extra; int segment_id = xd->mode_info_context->mbmi.segment_id; // Select the baseline MB Q index allowing for any segment level change. if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) { if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) { // Abs Value qindex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q); } else { // Delta Value qindex = cpi->common.base_qindex + vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q); // Clamp to valid range qindex = clamp(qindex, 0, MAXQ); } } else { qindex = cpi->common.base_qindex; } // Y zbin_extra = (cpi->common.y_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; for (i = 0; i < 16; i++) { x->block[i].quant = cpi->Y1quant[qindex]; x->block[i].quant_shift = cpi->Y1quant_shift[qindex]; x->block[i].zbin = cpi->Y1zbin[qindex]; x->block[i].round = cpi->Y1round[qindex]; x->e_mbd.block[i].dequant = cpi->common.y_dequant[qindex]; x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[qindex]; x->block[i].zbin_extra = (int16_t)zbin_extra; // Segment skip feature. x->block[i].skip_block = vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP); } // UV zbin_extra = (cpi->common.uv_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; for (i = 16; i < 24; i++) { x->block[i].quant = cpi->UVquant[qindex]; x->block[i].quant_shift = cpi->UVquant_shift[qindex]; x->block[i].zbin = cpi->UVzbin[qindex]; x->block[i].round = cpi->UVround[qindex]; x->e_mbd.block[i].dequant = cpi->common.uv_dequant[qindex]; x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[qindex]; x->block[i].zbin_extra = (int16_t)zbin_extra; // Segment skip feature. x->block[i].skip_block = vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP); } /* save this macroblock QIndex for vp9_update_zbin_extra() */ x->e_mbd.q_index = qindex; } void vp9_update_zbin_extra(VP9_COMP *cpi, MACROBLOCK *x) { int i; const int qindex = x->e_mbd.q_index; const int y_zbin_extra = (cpi->common.y_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; const int uv_zbin_extra = (cpi->common.uv_dequant[qindex][1] * (cpi->zbin_mode_boost + x->act_zbin_adj)) >> 7; for (i = 0; i < 16; i++) x->block[i].zbin_extra = (int16_t)y_zbin_extra; for (i = 16; i < 24; i++) x->block[i].zbin_extra = (int16_t)uv_zbin_extra; } void vp9_frame_init_quantizer(VP9_COMP *cpi) { // Clear Zbin mode boost for default case cpi->zbin_mode_boost = 0; // MB level quantizer setup vp9_mb_init_quantizer(cpi, &cpi->mb); } void vp9_set_quantizer(struct VP9_COMP *cpi, int Q) { VP9_COMMON *cm = &cpi->common; cm->base_qindex = Q; // Set lossless mode if (cm->base_qindex <= 4) cm->base_qindex = 0; // if any of the delta_q values are changing update flag will // have to be set. cm->y_dc_delta_q = 0; cm->uv_dc_delta_q = 0; cm->uv_ac_delta_q = 0; // quantizer has to be reinitialized if any delta_q changes. // As there are not any here for now this is inactive code. // if(update) // vp9_init_quantizer(cpi); }