/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "encodemb.h" #include "encodemv.h" #include "vp8/common/common.h" #include "onyx_int.h" #include "vp8/common/extend.h" #include "vp8/common/entropymode.h" #include "vp8/common/quant_common.h" #include "segmentation.h" #include "vp8/common/setupintrarecon.h" #include "encodeintra.h" #include "vp8/common/reconinter.h" #include "rdopt.h" #include "pickinter.h" #include "vp8/common/findnearmv.h" #include "vp8/common/reconintra.h" #include #include #include "vp8/common/subpixel.h" #include "vpx_ports/vpx_timer.h" #if CONFIG_RUNTIME_CPU_DETECT #define RTCD(x) &cpi->common.rtcd.x #define IF_RTCD(x) (x) #else #define RTCD(x) NULL #define IF_RTCD(x) NULL #endif extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ; extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); extern void vp8_auto_select_speed(VP8_COMP *cpi); extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, MB_ROW_COMP *mbr_ei, int mb_row, int count); void vp8_build_block_offsets(MACROBLOCK *x); void vp8_setup_block_ptrs(MACROBLOCK *x); int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset); int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); #ifdef MODE_STATS unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int inter_uv_modes[4] = {0, 0, 0, 0}; unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int y_modes[5] = {0, 0, 0, 0, 0}; unsigned int uv_modes[4] = {0, 0, 0, 0}; unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; #endif /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp8_activity_masking(). */ #define VP8_ACTIVITY_AVG_MIN (64) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const unsigned char VP8_VAR_OFFS[16]= { 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 }; // Original activity measure from Tim T's code. static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x ) { unsigned int act; unsigned int sse; int sum; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0, &sse, &sum); /* This requires a full 32 bits of precision. */ act = (sse<<8) - sum*sum; /* Drop 4 to give us some headroom to work with. */ act = (act + 8) >> 4; /* If the region is flat, lower the activity some more. */ if (act < 8<<12) act = act < 5<<12 ? act : 5<<12; return act; } // Stub for alternative experimental activity measures. static unsigned int alt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x ) { unsigned int mb_activity = VP8_ACTIVITY_AVG_MIN; x->e_mbd.mode_info_context->mbmi.mode = DC_PRED; x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); mb_activity = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff); return mb_activity; } // Measure the activity of the current macroblock // What we measure here is TBD so abstracted to this function static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x ) { unsigned int mb_activity; if ( 1 ) { // Original activity measure from Tim T's code. mb_activity = tt_activity_measure( cpi, x ); } else { // Or use and alternative. mb_activity = alt_activity_measure( cpi, x ); } return mb_activity; } // Calculate an "average" mb activity value for the frame static void calc_av_activity( VP8_COMP *cpi, INT64 activity_sum ) { // Simple mean for now cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs); if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; } #define OUTPUT_NORM_ACT_STATS 0 // Calculate a normalized activity value for each mb static void calc_norm_activity( VP8_COMP *cpi, MACROBLOCK *x ) { VP8_COMMON *const cm = & cpi->common; int mb_row, mb_col; unsigned int act; unsigned int a; unsigned int b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n"); #endif // Reset pointers to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; x->mb_norm_activity_ptr = cpi->mb_norm_activity_map; // Calculate normalized mb activity number. for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Read activity from the map act = *(x->mb_activity_ptr); // Calculate a normalized activity number a = act + 2*cpi->activity_avg; b = 2*act + cpi->activity_avg; if ( b >= a ) *(x->mb_norm_activity_ptr) = (int)((b + (a>>1))/a); else *(x->mb_norm_activity_ptr) = -(int)((a + (b>>1))/b); if ( *(x->mb_norm_activity_ptr) == 0 ) { *(x->mb_norm_activity_ptr) = 1; } #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_norm_activity_ptr)); #endif // Increment activity map pointers x->mb_activity_ptr++; x->mb_norm_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } // Loop through all MBs. Note activity of each, average activity and // calculate a normalized activity for each static void build_activity_map( VP8_COMP *cpi ) { MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; int mb_row, mb_col; unsigned int mb_activity; INT64 activity_sum = 0; // Initialise source buffer pointer x->src = *cpi->Source; // Set pointer to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // measure activity mb_activity = mb_activity_measure( cpi, x ); // Keep frame sum activity_sum += mb_activity; // Store MB level activity details. *x->mb_activity_ptr = mb_activity; // Increment activity map pointer x->mb_activity_ptr++; // adjust to the next column of source macroblocks x->src.y_buffer += 16; } // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; } // Calculate an "average" MB activity calc_av_activity(cpi, activity_sum); // Calculate a normalized activity number of each mb calc_norm_activity( cpi, x ); } // Activity masking based on Tim T's original code void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { unsigned int a; unsigned int b; unsigned int act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + 2*cpi->activity_avg; b = 2*act + cpi->activity_avg; //tmp = (unsigned int)(((INT64)tmp*b + (a>>1))/a); x->rdmult = (unsigned int)(((INT64)x->rdmult*b + (a>>1))/a); // For now now zbin adjustment on mode choice x->act_zbin_adj = 0; } // Stub function to use a normalized activity measure stored at mb level. void vp8_norm_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { int norm_act; norm_act = *(x->mb_norm_activity_ptr); if (norm_act > 0) x->rdmult = norm_act * (x->rdmult); else x->rdmult = -(x->rdmult / norm_act); // For now now zbin adjustment on mode choice x->act_zbin_adj = 0; } static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *segment_counts, int *totalrate) { int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int map_index = (mb_row * cpi->common.mb_cols); #if CONFIG_MULTITHREAD const int nsync = cpi->mt_sync_range; const int rightmost_col = cm->mb_cols - 1; volatile const int *last_row_current_mb_col; if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; else last_row_current_mb_col = &rightmost_col; #endif // reset above block coeffs xd->above_context = cm->above_context; xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); cpi->tplist[mb_row].start = *tp; //printf("Main mb_row = %d\n", mb_row); // Distance of Mb to the top & bottom edges, specified in 1/8th pel // units as they are always compared to values that are in 1/8th pel units xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; // Set up limit values for vertical motion vector components // to prevent them extending beyond the UMV borders x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); // Set the mb activity pointer to the start of the row. x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; x->mb_norm_activity_ptr = &cpi->mb_norm_activity_map[map_index]; // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Distance of Mb to the left & right edges, specified in // 1/8th pel units as they are always compared to values // that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; // Set up limit values for horizontal motion vector components // to prevent them extending beyond the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; #if CONFIG_MULTITHREAD if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) { if ((mb_col & (nsync - 1)) == 0) { while (mb_col > (*last_row_current_mb_col - nsync) && (*last_row_current_mb_col) != (cm->mb_cols - 1)) { x86_pause_hint(); thread_sleep(0); } } } #endif if(cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); // Is segmentation enabled // MB level adjutment to quantizer if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id for current MB (with range checking) if (cpi->segmentation_map[map_index+mb_col] <= 3) xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col]; else xd->mode_info_context->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x); } else xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default x->active_ptr = cpi->active_map + map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp); #ifdef MODE_STATS y_modes[xd->mbmi.mode] ++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset); #ifdef MODE_STATS inter_y_modes[xd->mbmi.mode] ++; if (xd->mbmi.mode == SPLITMV) { int b; for (b = 0; b < xd->mbmi.partition_count; b++) { inter_b_modes[x->partition->bmi[b].mode] ++; } } #endif // Count of last ref frame 0,0 useage if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) cpi->inter_zz_count ++; // Special case code for cyclic refresh // If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode // during vp8cx_encode_inter_macroblock()) back into the global sgmentation map if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled) { cpi->segmentation_map[map_index+mb_col] = xd->mode_info_context->mbmi.segment_id; // If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh): // Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0) // else mark it as dirty (1). if (xd->mode_info_context->mbmi.segment_id) cpi->cyclic_refresh_map[map_index+mb_col] = -1; else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[map_index+mb_col] == 1) cpi->cyclic_refresh_map[map_index+mb_col] = 0; } else cpi->cyclic_refresh_map[map_index+mb_col] = 1; } } cpi->tplist[mb_row].stop = *tp; // Increment pointer into gf useage flags structure. x->gf_active_ptr++; // Increment the activity mask pointers. x->mb_activity_ptr++; x->mb_norm_activity_ptr++; /* save the block info */ for (i = 0; i < 16; i++) xd->mode_info_context->bmi[i] = xd->block[i].bmi; // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; // Keep track of segment useage segment_counts[xd->mode_info_context->mbmi.segment_id] ++; // skip to next mb xd->mode_info_context++; x->partition_info++; xd->above_context++; #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded != 0) { cpi->mt_current_mb_col[mb_row] = mb_col; } #endif } //extend the recon for intra prediction vp8_extend_mb_row( &cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); // this is to account for the border xd->mode_info_context++; x->partition_info++; #if CONFIG_MULTITHREAD if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1)) { sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */ } #endif } void vp8_encode_frame(VP8_COMP *cpi) { int mb_row; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; TOKENEXTRA *tp = cpi->tok; int segment_counts[MAX_MB_SEGMENTS]; int totalrate; // Functions setup for all frame types so we can use MC in AltRef if (cm->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear16x16); } x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Point to base of GF active flags data structure x->vector_range = 32; // Reset frame count of inter 0,0 motion vector useage. cpi->inter_zz_count = 0; vpx_memset(segment_counts, 0, sizeof(segment_counts)); cpi->prediction_error = 0; cpi->intra_error = 0; cpi->skip_true_count = 0; cpi->skip_false_count = 0; x->act_zbin_adj = 0; #if 0 // Experimental code cpi->frame_distortion = 0; cpi->last_mb_distortion = 0; #endif totalrate = 0; x->partition_info = x->pi; xd->mode_info_context = cm->mi; xd->mode_info_stride = cm->mode_info_stride; xd->frame_type = cm->frame_type; xd->frames_since_golden = cm->frames_since_golden; xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; vp8_zero(cpi->MVcount); // vp8_zero( Contexts) vp8_zero(cpi->coef_counts); // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm); vp8cx_frame_init_quantizer(cpi); if (cpi->compressor_speed == 2) { if (cpi->oxcf.cpu_used < 0) cpi->Speed = -(cpi->oxcf.cpu_used); else vp8_auto_select_speed(cpi); } vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); vp8cx_initialize_me_consts(cpi, cm->base_qindex); // Copy data over into macro block data sturctures. x->src = * cpi->Source; xd->pre = cm->yv12_fb[cm->lst_fb_idx]; xd->dst = cm->yv12_fb[cm->new_fb_idx]; // set up frame new frame for intra coded blocks vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_context->mbmi.uv_mode = DC_PRED; xd->left_context = &cm->left_context; vp8_zero(cpi->count_mb_ref_frame_usage) vp8_zero(cpi->ymode_count) vp8_zero(cpi->uv_mode_count) x->mvc = cm->fc.mvc; vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { if(1) { // Build a frame level activity map build_activity_map(cpi); } // Reset various MB pointers. x->src = *cpi->Source; x->mb_activity_ptr = cpi->mb_activity_map; x->mb_norm_activity_ptr = cpi->mb_norm_activity_map; } { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded) { int i; vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count); for (i = 0; i < cm->mb_rows; i++) cpi->mt_current_mb_col[i] = -1; for (i = 0; i < cpi->encoding_thread_count; i++) { sem_post(&cpi->h_event_start_encoding[i]); } for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { vp8_zero(cm->left_context) tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; } sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */ cpi->tok_count = 0; for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++) { cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start; } if (xd->segmentation_enabled) { int i, j; if (xd->segmentation_enabled) { for (i = 0; i < cpi->encoding_thread_count; i++) { for (j = 0; j < 4; j++) segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; } } } for (i = 0; i < cpi->encoding_thread_count; i++) { totalrate += cpi->mb_row_ei[i].totalrate; } } else #endif { // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { vp8_zero(cm->left_context) encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } cpi->tok_count = tp - cpi->tok; } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); } // Work out the segment probabilites if segmentation is enabled if (xd->segmentation_enabled) { int tot_count; int i; // Set to defaults vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs)); tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3]; if (tot_count) { xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; tot_count = segment_counts[0] + segment_counts[1]; if (tot_count > 0) { xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; } tot_count = segment_counts[2] + segment_counts[3]; if (tot_count > 0) xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; // Zero probabilities not allowed for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++) { if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1; } } } // 256 rate units to the bit cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES // Make a note of the percentage MBs coded Intra. if (cm->frame_type == KEY_FRAME) { cpi->this_frame_percent_intra = 100; } else { int tot_modes; tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME] + cpi->count_mb_ref_frame_usage[LAST_FRAME] + cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] + cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; if (tot_modes) cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; } #if 0 { int cnt = 0; int flag[2] = {0, 0}; for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt]) { flag[0] = 1; vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount); break; } } for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt]) { flag[1] = 1; vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount); break; } } if (flag[0] || flag[1]) vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); } #endif // Adjust the projected reference frame useage probability numbers to reflect // what we have just seen. This may be usefull when we make multiple itterations // of the recode loop rather than continuing to use values from the previous frame. if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame) { const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if ((rf_intra + rf_inter) > 0) { cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); if (cpi->prob_intra_coded < 1) cpi->prob_intra_coded = 1; if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) { cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (cpi->prob_last_coded < 1) cpi->prob_last_coded = 1; cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (cpi->prob_gf_coded < 1) cpi->prob_gf_coded = 1; } } } #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } void vp8_setup_block_ptrs(MACROBLOCK *x) { int r, c; int i; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; } } x->block[24].src_diff = x->src_diff + 384; for (i = 0; i < 25; i++) { x->block[i].coeff = x->coeff + i * 16; } } void vp8_build_block_offsets(MACROBLOCK *x) { int block = 0; int br, bc; vp8_build_block_doffsets(&x->e_mbd); // y blocks for (br = 0; br < 4; br++) { for (bc = 0; bc < 4; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.y_buffer; this_block->src_stride = x->src.y_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // u blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.u_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // v blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.v_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } } static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = & x->e_mbd; const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; #ifdef MODE_STATS const int is_key = cpi->common.frame_type == KEY_FRAME; ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; if (m == B_PRED) { unsigned int *const bct = is_key ? b_modes : inter_b_modes; int b = 0; do { ++ bct[xd->block[b].bmi.mode]; } while (++b < 16); } #endif ++cpi->ymode_count[m]; ++cpi->uv_mode_count[uvm]; } // Experimental stub function to create a per MB zbin adjustment based on // some previously calculated measure of MB activity. void adjust_act_zbin( VP8_COMP *cpi, int rate, MACROBLOCK *x ) { INT64 act; INT64 a; INT64 b; // Read activity from the map act = (INT64)(*(x->mb_activity_ptr)); // Calculate a zbin adjustment for this mb a = act + 4*cpi->activity_avg; b = 4*act + cpi->activity_avg; if ( b > a ) //x->act_zbin_adj = (char)((b * 8) / a) - 8; x->act_zbin_adj = 8; else x->act_zbin_adj = 0; // Tmp force to 0 to disable. x->act_zbin_adj = 0; } int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) { int Error4x4, Error16x16; int rate4x4, rate16x16, rateuv; int dist4x4, dist16x16, distuv; int rate = 0; int rate4x4_tokenonly = 0; int rate16x16_tokenonly = 0; int rateuv_tokenonly = 0; x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; if (cpi->sf.RD && cpi->compressor_speed != 2) { vp8_rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv); rate += rateuv; Error16x16 = vp8_rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16); Error4x4 = vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4, Error16x16); rate += (Error4x4 < Error16x16) ? rate4x4 : rate16x16; if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { adjust_act_zbin( cpi, rate, x ); vp8_update_zbin_extra(cpi, x); } } else { int rate2, best_distortion; MB_PREDICTION_MODE mode, best_mode = DC_PRED; int this_rd; Error16x16 = INT_MAX; vp8_pick_intra_mbuv_mode(x); for (mode = DC_PRED; mode <= TM_PRED; mode ++) { int distortion2; x->e_mbd.mode_info_context->mbmi.mode = mode; RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby) (&x->e_mbd); distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16); rate2 = x->mbmode_cost[x->e_mbd.frame_type][mode]; this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); if (Error16x16 > this_rd) { Error16x16 = this_rd; best_mode = mode; best_distortion = distortion2; } } x->e_mbd.mode_info_context->mbmi.mode = best_mode; Error4x4 = vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate2, &best_distortion); } if (Error4x4 < Error16x16) { x->e_mbd.mode_info_context->mbmi.mode = B_PRED; vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); } else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); return rate; } #ifdef SPEEDSTATS extern int cnt_pm; #endif extern void vp8_fix_contexts(MACROBLOCKD *x); int vp8cx_encode_inter_macroblock ( VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset ) { MACROBLOCKD *const xd = &x->e_mbd; int intra_error = 0; int rate; int distortion; x->skip = 0; if (xd->segmentation_enabled) x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id]; else x->encode_breakout = cpi->oxcf.encode_breakout; if (cpi->sf.RD) { int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled; /* Are we using the fast quantizer for the mode selection? */ if(cpi->sf.use_fastquant_for_pick) { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb); /* the fast quantizer does not use zbin_extra, so * do not recalculate */ cpi->zbin_mode_boost_enabled = 0; } vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); /* switch back to the regular quantizer for the encode */ if (cpi->sf.improved_quant) { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb); } /* restore cpi->zbin_mode_boost_enabled */ cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled; } else vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); cpi->prediction_error += distortion; cpi->intra_error += intra_error; if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Adjust the zbin based on this MB rate. adjust_act_zbin( cpi, rate, x ); } #if 0 // Experimental RD code cpi->frame_distortion += distortion; cpi->last_mb_distortion = distortion; #endif // MB level adjutment to quantizer setup if (xd->segmentation_enabled) { // If cyclic update enabled if (cpi->cyclic_refresh_mode_enabled) { // Clear segment_id back to 0 if not coded (last frame 0,0) if ((xd->mode_info_context->mbmi.segment_id == 1) && ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV))) { xd->mode_info_context->mbmi.segment_id = 0; /* segment_id changed, so update */ vp8cx_mb_init_quantizer(cpi, x); } } } { // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to supress noise if (cpi->zbin_mode_boost_enabled) { if ( xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME ) cpi->zbin_mode_boost = 0; else { if (xd->mode_info_context->mbmi.mode == ZEROMV) { if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (xd->mode_info_context->mbmi.mode == SPLITMV) cpi->zbin_mode_boost = 0; else cpi->zbin_mode_boost = MV_ZBIN_BOOST; } } else cpi->zbin_mode_boost = 0; vp8_update_zbin_extra(cpi, x); } cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++; if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); if (xd->mode_info_context->mbmi.mode == B_PRED) { vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); } else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } sum_intra_stats(cpi, x); } else { int ref_fb_idx; vp8_build_uvmvs(xd, cpi->common.full_pixel); if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = cpi->common.lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = cpi->common.gld_fb_idx; else ref_fb_idx = cpi->common.alt_fb_idx; xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (!x->skip) { vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); // Clear mb_skip_coeff if mb_no_coeff_skip is not set if (!cpi->common.mb_no_coeff_skip) xd->mode_info_context->mbmi.mb_skip_coeff = 0; } else vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } if (!x->skip) vp8_tokenize_mb(cpi, xd, t); else { if (cpi->common.mb_no_coeff_skip) { xd->mode_info_context->mbmi.mb_skip_coeff = 1; cpi->skip_true_count ++; vp8_fix_contexts(xd); } else { vp8_stuff_mb(cpi, xd, t); xd->mode_info_context->mbmi.mb_skip_coeff = 0; cpi->skip_false_count ++; } } return rate; }