/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vp9_rtcd.h" #include "vpx_mem/vpx_mem.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_idct.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/decoder/vp9_dboolhuff.h" #include "vp9/decoder/vp9_decodeframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/decoder/vp9_read_bit_buffer.h" #include "vp9/decoder/vp9_thread.h" #include "vp9/decoder/vp9_treereader.h" typedef struct TileWorkerData { VP9_COMMON *cm; vp9_reader bit_reader; DECLARE_ALIGNED(16, MACROBLOCKD, xd); DECLARE_ALIGNED(16, unsigned char, token_cache[1024]); DECLARE_ALIGNED(16, int16_t, qcoeff[MAX_MB_PLANE][64 * 64]); DECLARE_ALIGNED(16, int16_t, dqcoeff[MAX_MB_PLANE][64 * 64]); DECLARE_ALIGNED(16, uint16_t, eobs[MAX_MB_PLANE][256]); } TileWorkerData; static int read_be32(const uint8_t *p) { return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; } static int is_compound_prediction_allowed(const VP9_COMMON *cm) { int i; for (i = 1; i < ALLOWED_REFS_PER_FRAME; ++i) if (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]) return 1; return 0; } static void setup_compound_prediction(VP9_COMMON *cm) { if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } } // len == 0 is not allowed static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return start + len > start && start + len <= end; } static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) { const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(vp9_reader *r) { TX_MODE tx_mode = vp9_read_literal(r, 2); if (tx_mode == ALLOW_32X32) tx_mode += vp9_read_bit(r); return tx_mode; } static void read_tx_probs(struct tx_probs *tx_probs, vp9_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 3; ++j) vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 2; ++j) vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 1; ++j) vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { COMPPREDMODE_TYPE mode = vp9_read_bit(r); if (mode) mode += vp9_read_bit(r); return mode; } static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) { int i; const int compound_allowed = is_compound_prediction_allowed(cm); cm->comp_pred_mode = compound_allowed ? read_comp_pred_mode(r) : SINGLE_PREDICTION_ONLY; if (compound_allowed) setup_compound_prediction(cm); if (cm->comp_pred_mode == HYBRID_PREDICTION) for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]); if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) { vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]); vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]); } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]); } static void update_mv_probs(vp9_prob *p, int n, vp9_reader *r) { int i; for (i = 0; i < n; ++i) if (vp9_read(r, NMV_UPDATE_PROB)) p[i] = (vp9_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(nmv_context *ctx, int allow_hp, vp9_reader *r) { int i, j; update_mv_probs(ctx->joints, MV_JOINTS - 1, r); for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->sign, 1, r); update_mv_probs(comp_ctx->classes, MV_CLASSES - 1, r); update_mv_probs(comp_ctx->class0, CLASS0_SIZE - 1, r); update_mv_probs(comp_ctx->bits, MV_OFFSET_BITS, r); } for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) update_mv_probs(comp_ctx->class0_fp[j], 3, r); update_mv_probs(comp_ctx->fp, 3, r); } if (allow_hp) { for (i = 0; i < 2; ++i) { nmv_component *const comp_ctx = &ctx->comps[i]; update_mv_probs(&comp_ctx->class0_hp, 1, r); update_mv_probs(&comp_ctx->hp, 1, r); } } } static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) { int i; xd->plane[0].dequant = cm->y_dequant[q_index]; for (i = 1; i < MAX_MB_PLANE; i++) xd->plane[i].dequant = cm->uv_dequant[q_index]; } // Allocate storage for each tile column. // TODO(jzern): when max_threads <= 1 the same storage could be used for each // tile. static void alloc_tile_storage(VP9D_COMP *pbi, int tile_rows, int tile_cols) { VP9_COMMON *const cm = &pbi->common; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); int i, tile_row, tile_col; CHECK_MEM_ERROR(cm, pbi->mi_streams, vpx_realloc(pbi->mi_streams, tile_rows * tile_cols * sizeof(*pbi->mi_streams))); for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileInfo tile; vp9_tile_init(&tile, cm, tile_row, tile_col); pbi->mi_streams[tile_row * tile_cols + tile_col] = &cm->mi[tile.mi_row_start * cm->mode_info_stride + tile.mi_col_start]; } } // 2 contexts per 'mi unit', so that we have one context per 4x4 txfm // block where mi unit size is 8x8. CHECK_MEM_ERROR(cm, pbi->above_context[0], vpx_realloc(pbi->above_context[0], sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 2 * aligned_mi_cols)); for (i = 1; i < MAX_MB_PLANE; ++i) { pbi->above_context[i] = pbi->above_context[0] + i * sizeof(*pbi->above_context[0]) * 2 * aligned_mi_cols; } // This is sized based on the entire frame. Each tile operates within its // column bounds. CHECK_MEM_ERROR(cm, pbi->above_seg_context, vpx_realloc(pbi->above_seg_context, sizeof(*pbi->above_seg_context) * aligned_mi_cols)); } static void inverse_transform_block(MACROBLOCKD* xd, int plane, int block, TX_SIZE tx_size, uint8_t *dst, int stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; const int eob = pd->eobs[block]; if (eob > 0) { TX_TYPE tx_type; const int plane_type = pd->plane_type; int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); switch (tx_size) { case TX_4X4: tx_type = get_tx_type_4x4(plane_type, xd, block); if (tx_type == DCT_DCT) xd->itxm_add(dqcoeff, dst, stride, eob); else vp9_iht4x4_16_add(dqcoeff, dst, stride, tx_type); break; case TX_8X8: tx_type = get_tx_type_8x8(plane_type, xd); vp9_iht8x8_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_16X16: tx_type = get_tx_type_16x16(plane_type, xd); vp9_iht16x16_add(tx_type, dqcoeff, dst, stride, eob); break; case TX_32X32: tx_type = DCT_DCT; vp9_idct32x32_add(dqcoeff, dst, stride, eob); break; default: assert(!"Invalid transform size"); } if (eob == 1) { vpx_memset(dqcoeff, 0, 2 * sizeof(dqcoeff[0])); } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) vpx_memset(dqcoeff, 0, 4 * (4 << tx_size) * sizeof(dqcoeff[0])); else if (tx_size == TX_32X32 && eob <= 34) vpx_memset(dqcoeff, 0, 256 * sizeof(dqcoeff[0])); else vpx_memset(dqcoeff, 0, (16 << (tx_size << 1)) * sizeof(dqcoeff[0])); } } } struct intra_args { VP9_COMMON *cm; MACROBLOCKD *xd; vp9_reader *r; uint8_t *token_cache; }; static void predict_and_reconstruct_intra_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct intra_args *const args = arg; VP9_COMMON *const cm = args->cm; MACROBLOCKD *const xd = args->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi_8x8[0]; const MB_PREDICTION_MODE mode = (plane == 0) ? ((mi->mbmi.sb_type < BLOCK_8X8) ? mi->bmi[block].as_mode : mi->mbmi.mode) : mi->mbmi.uv_mode; int x, y; uint8_t *dst; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); dst = &pd->dst.buf[4 * y * pd->dst.stride + 4 * x]; if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) extend_for_intra(xd, plane_bsize, plane, block, tx_size); vp9_predict_intra_block(xd, block >> (tx_size << 1), b_width_log2(plane_bsize), tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride); if (!mi->mbmi.skip_coeff) { vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r, args->token_cache); inverse_transform_block(xd, plane, block, tx_size, dst, pd->dst.stride); } } struct inter_args { VP9_COMMON *cm; MACROBLOCKD *xd; vp9_reader *r; int *eobtotal; uint8_t *token_cache; }; static void reconstruct_inter_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct inter_args *args = arg; VP9_COMMON *const cm = args->cm; MACROBLOCKD *const xd = args->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; int x, y; txfrm_block_to_raster_xy(plane_bsize, tx_size, block, &x, &y); *args->eobtotal += vp9_decode_block_tokens(cm, xd, plane, block, plane_bsize, x, y, tx_size, args->r, args->token_cache); inverse_transform_block(xd, plane, block, tx_size, &pd->dst.buf[4 * y * pd->dst.stride + 4 * x], pd->dst.stride); } static void set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bh = num_8x8_blocks_high_lookup[bsize]; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int offset = mi_row * cm->mode_info_stride + mi_col; const int tile_offset = tile->mi_row_start * cm->mode_info_stride + tile->mi_col_start; xd->mi_8x8 = cm->mi_grid_visible + offset; xd->prev_mi_8x8 = cm->prev_mi_grid_visible + offset; // we are using the mode info context stream here xd->mi_8x8[0] = xd->mi_stream + offset - tile_offset; xd->mi_8x8[0]->mbmi.sb_type = bsize; // Special case: if prev_mi is NULL, the previous mode info context // cannot be used. xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL; set_skip_context(xd, xd->above_context, xd->left_context, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col); } static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd, int idx, int mi_row, int mi_col) { MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; const int ref = mbmi->ref_frame[idx] - LAST_FRAME; const YV12_BUFFER_CONFIG *cfg = get_frame_ref_buffer(cm, ref); const struct scale_factors_common *sfc = &cm->active_ref_scale_comm[ref]; if (!vp9_is_valid_scale(sfc)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid scale factors"); xd->scale_factor[idx].sfc = sfc; setup_pre_planes(xd, idx, cfg, mi_row, mi_col, &xd->scale_factor[idx]); xd->corrupted |= cfg->corrupted; } static void decode_modes_b(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE bsize, uint8_t *token_cache) { const int less8x8 = bsize < BLOCK_8X8; MB_MODE_INFO *mbmi; set_offsets(cm, xd, tile, bsize, mi_row, mi_col); vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r); if (less8x8) bsize = BLOCK_8X8; // Has to be called after set_offsets mbmi = &xd->mi_8x8[0]->mbmi; if (mbmi->skip_coeff) { reset_skip_context(xd, bsize); } else { if (cm->seg.enabled) setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id, cm->base_qindex)); } if (!is_inter_block(mbmi)) { struct intra_args arg = { cm, xd, r, token_cache }; foreach_transformed_block(xd, bsize, predict_and_reconstruct_intra_block, &arg); } else { // Setup set_ref(cm, xd, 0, mi_row, mi_col); if (has_second_ref(mbmi)) set_ref(cm, xd, 1, mi_row, mi_col); xd->subpix.filter_x = xd->subpix.filter_y = vp9_get_filter_kernel(mbmi->interp_filter); // Prediction vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); // Reconstruction if (!mbmi->skip_coeff) { int eobtotal = 0; struct inter_args arg = { cm, xd, r, &eobtotal, token_cache }; foreach_transformed_block(xd, bsize, reconstruct_inter_block, &arg); if (!less8x8 && eobtotal == 0) mbmi->skip_coeff = 1; // skip loopfilter } } xd->corrupted |= vp9_reader_has_error(r); } static PARTITION_TYPE read_partition(VP9_COMMON *cm, MACROBLOCKD *xd, int hbs, int mi_row, int mi_col, BLOCK_SIZE bsize, vp9_reader *r) { const int ctx = partition_plane_context(xd->above_seg_context, xd->left_seg_context, mi_row, mi_col, bsize); const vp9_prob *const probs = get_partition_probs(cm, ctx); const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; PARTITION_TYPE p; if (has_rows && has_cols) p = treed_read(r, vp9_partition_tree, probs); else if (!has_rows && has_cols) p = vp9_read(r, probs[1]) ? PARTITION_SPLIT : PARTITION_HORZ; else if (has_rows && !has_cols) p = vp9_read(r, probs[2]) ? PARTITION_SPLIT : PARTITION_VERT; else p = PARTITION_SPLIT; if (!cm->frame_parallel_decoding_mode) ++cm->counts.partition[ctx][p]; return p; } static void decode_modes_sb(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader* r, BLOCK_SIZE bsize, uint8_t *token_cache) { const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; PARTITION_TYPE partition; BLOCK_SIZE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = read_partition(cm, xd, hbs, mi_row, mi_col, bsize, r); subsize = get_subsize(bsize, partition); if (subsize < BLOCK_8X8) { decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); } else { switch (partition) { case PARTITION_NONE: decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); break; case PARTITION_HORZ: decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); if (mi_row + hbs < cm->mi_rows) decode_modes_b(cm, xd, tile, mi_row + hbs, mi_col, r, subsize, token_cache); break; case PARTITION_VERT: decode_modes_b(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); if (mi_col + hbs < cm->mi_cols) decode_modes_b(cm, xd, tile, mi_row, mi_col + hbs, r, subsize, token_cache); break; case PARTITION_SPLIT: decode_modes_sb(cm, xd, tile, mi_row, mi_col, r, subsize, token_cache); decode_modes_sb(cm, xd, tile, mi_row, mi_col + hbs, r, subsize, token_cache); decode_modes_sb(cm, xd, tile, mi_row + hbs, mi_col, r, subsize, token_cache); decode_modes_sb(cm, xd, tile, mi_row + hbs, mi_col + hbs, r, subsize, token_cache); break; default: assert(!"Invalid partition type"); } } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd->above_seg_context, xd->left_seg_context, mi_row, mi_col, subsize, bsize); } static void setup_token_decoder(const uint8_t *data, const uint8_t *data_end, size_t read_size, struct vpx_internal_error_info *error_info, vp9_reader *r) { // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (vp9_reader_init(r, data, read_size)) vpx_internal_error(error_info, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(vp9_coeff_probs_model *coef_probs, vp9_reader *r) { int i, j, k, l, m; if (vp9_read_bit(r)) for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < REF_TYPES; j++) for (k = 0; k < COEF_BANDS; k++) for (l = 0; l < PREV_COEF_CONTEXTS; l++) if (k > 0 || l < 3) for (m = 0; m < UNCONSTRAINED_NODES; m++) vp9_diff_update_prob(r, &coef_probs[i][j][k][l][m]); } static void read_coef_probs(FRAME_CONTEXT *fc, TX_MODE tx_mode, vp9_reader *r) { const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) read_coef_probs_common(fc->coef_probs[tx_size], r); } static void setup_segmentation(struct segmentation *seg, struct vp9_read_bit_buffer *rb) { int i, j; seg->update_map = 0; seg->update_data = 0; seg->enabled = vp9_rb_read_bit(rb); if (!seg->enabled) return; // Segmentation map update seg->update_map = vp9_rb_read_bit(rb); if (seg->update_map) { for (i = 0; i < SEG_TREE_PROBS; i++) seg->tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; seg->temporal_update = vp9_rb_read_bit(rb); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) seg->pred_probs[i] = MAX_PROB; } } // Segmentation data update seg->update_data = vp9_rb_read_bit(rb); if (seg->update_data) { seg->abs_delta = vp9_rb_read_bit(rb); vp9_clearall_segfeatures(seg); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vp9_rb_read_bit(rb); if (feature_enabled) { vp9_enable_segfeature(seg, i, j); data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); if (vp9_is_segfeature_signed(j)) data = vp9_rb_read_bit(rb) ? -data : data; } vp9_set_segdata(seg, i, j, data); } } } } static void setup_loopfilter(struct loopfilter *lf, struct vp9_read_bit_buffer *rb) { lf->filter_level = vp9_rb_read_literal(rb, 6); lf->sharpness_level = vp9_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. lf->mode_ref_delta_update = 0; lf->mode_ref_delta_enabled = vp9_rb_read_bit(rb); if (lf->mode_ref_delta_enabled) { lf->mode_ref_delta_update = vp9_rb_read_bit(rb); if (lf->mode_ref_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) if (vp9_rb_read_bit(rb)) lf->ref_deltas[i] = vp9_rb_read_signed_literal(rb, 6); for (i = 0; i < MAX_MODE_LF_DELTAS; i++) if (vp9_rb_read_bit(rb)) lf->mode_deltas[i] = vp9_rb_read_signed_literal(rb, 6); } } } static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) { const int old = *delta_q; *delta_q = vp9_rb_read_bit(rb) ? vp9_rb_read_signed_literal(rb, 4) : 0; return old != *delta_q; } static void setup_quantization(VP9_COMMON *const cm, MACROBLOCKD *const xd, struct vp9_read_bit_buffer *rb) { int update = 0; cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS); update |= read_delta_q(rb, &cm->y_dc_delta_q); update |= read_delta_q(rb, &cm->uv_dc_delta_q); update |= read_delta_q(rb, &cm->uv_ac_delta_q); if (update) vp9_init_dequantizer(cm); xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; xd->itxm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add; } static INTERPOLATION_TYPE read_interp_filter_type( struct vp9_read_bit_buffer *rb) { const INTERPOLATION_TYPE literal_to_type[] = { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR }; return vp9_rb_read_bit(rb) ? SWITCHABLE : literal_to_type[vp9_rb_read_literal(rb, 2)]; } static void read_frame_size(struct vp9_read_bit_buffer *rb, int *width, int *height) { const int w = vp9_rb_read_literal(rb, 16) + 1; const int h = vp9_rb_read_literal(rb, 16) + 1; *width = w; *height = h; } static void setup_display_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { cm->display_width = cm->width; cm->display_height = cm->height; if (vp9_rb_read_bit(rb)) read_frame_size(rb, &cm->display_width, &cm->display_height); } static void apply_frame_size(VP9D_COMP *pbi, int width, int height) { VP9_COMMON *cm = &pbi->common; if (cm->width != width || cm->height != height) { // Change in frame size. if (cm->width == 0 || cm->height == 0) { // Assign new frame buffer on first call. cm->new_fb_idx = NUM_YV12_BUFFERS - 1; cm->fb_idx_ref_cnt[cm->new_fb_idx] = 1; } // TODO(agrange) Don't test width/height, check overall size. if (width > cm->width || height > cm->height) { // Rescale frame buffers only if they're not big enough already. if (vp9_resize_frame_buffers(cm, width, height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } cm->width = width; cm->height = height; vp9_update_frame_size(cm); } vp9_realloc_frame_buffer(get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9BORDERINPIXELS); } static void setup_frame_size(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { int width, height; read_frame_size(rb, &width, &height); apply_frame_size(pbi, width, height); setup_display_size(&pbi->common, rb); } static void setup_frame_size_with_refs(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; int width, height; int found = 0, i; for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { if (vp9_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *const cfg = get_frame_ref_buffer(cm, i); width = cfg->y_crop_width; height = cfg->y_crop_height; found = 1; break; } } if (!found) read_frame_size(rb, &width, &height); if (!width || !height) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame with invalid size"); apply_frame_size(pbi, width, height); setup_display_size(cm, rb); } static void setup_tile_context(VP9D_COMP *const pbi, MACROBLOCKD *const xd, int tile_row, int tile_col) { int i; const int tile_cols = 1 << pbi->common.log2_tile_cols; xd->mi_stream = pbi->mi_streams[tile_row * tile_cols + tile_col]; for (i = 0; i < MAX_MB_PLANE; ++i) { xd->above_context[i] = pbi->above_context[i]; } // see note in alloc_tile_storage(). xd->above_seg_context = pbi->above_seg_context; } static void decode_tile(VP9D_COMP *pbi, const TileInfo *const tile, vp9_reader *r) { const int num_threads = pbi->oxcf.max_threads; VP9_COMMON *const cm = &pbi->common; int mi_row, mi_col; MACROBLOCKD *xd = &pbi->mb; if (pbi->do_loopfilter_inline) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; lf_data->frame_buffer = get_frame_new_buffer(cm); lf_data->cm = cm; lf_data->xd = pbi->mb; lf_data->stop = 0; lf_data->y_only = 0; vp9_loop_filter_frame_init(cm, cm->lf.filter_level); } for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { // For a SB there are 2 left contexts, each pertaining to a MB row within vp9_zero(xd->left_context); vp9_zero(xd->left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_modes_sb(cm, xd, tile, mi_row, mi_col, r, BLOCK_64X64, pbi->token_cache); } if (pbi->do_loopfilter_inline) { const int lf_start = mi_row - MI_BLOCK_SIZE; LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; // delay the loopfilter by 1 macroblock row. if (lf_start < 0) continue; // decoding has completed: finish up the loop filter in this thread. if (mi_row + MI_BLOCK_SIZE >= tile->mi_row_end) continue; vp9_worker_sync(&pbi->lf_worker); lf_data->start = lf_start; lf_data->stop = mi_row; if (num_threads > 1) { vp9_worker_launch(&pbi->lf_worker); } else { vp9_worker_execute(&pbi->lf_worker); } } } if (pbi->do_loopfilter_inline) { LFWorkerData *const lf_data = (LFWorkerData*)pbi->lf_worker.data1; vp9_worker_sync(&pbi->lf_worker); lf_data->start = lf_data->stop; lf_data->stop = cm->mi_rows; vp9_worker_execute(&pbi->lf_worker); } } static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int min_log2_tile_cols, max_log2_tile_cols, max_ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns max_ones = max_log2_tile_cols - min_log2_tile_cols; cm->log2_tile_cols = min_log2_tile_cols; while (max_ones-- && vp9_rb_read_bit(rb)) cm->log2_tile_cols++; // rows cm->log2_tile_rows = vp9_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += vp9_rb_read_bit(rb); } // Reads the next tile returning its size and adjusting '*data' accordingly // based on 'is_last'. static size_t get_tile(const uint8_t *const data_end, int is_last, struct vpx_internal_error_info *error_info, const uint8_t **data) { size_t size; if (!is_last) { if (!read_is_valid(*data, 4, data_end)) vpx_internal_error(error_info, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); size = read_be32(*data); *data += 4; } else { size = data_end - *data; } return size; } typedef struct TileBuffer { const uint8_t *data; size_t size; } TileBuffer; static const uint8_t *decode_tiles(VP9D_COMP *pbi, const uint8_t *data) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int aligned_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; TileBuffer tile_buffers[4][1 << 6]; int tile_row, tile_col; const uint8_t *const data_end = pbi->source + pbi->source_sz; const uint8_t *end = NULL; vp9_reader r; assert(tile_rows <= 4); assert(tile_cols <= (1 << 6)); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(pbi->above_context[0], 0, sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 2 * aligned_cols); vpx_memset(pbi->above_seg_context, 0, sizeof(*pbi->above_seg_context) * aligned_cols); // Load tile data into tile_buffers for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const int last_tile = tile_row == tile_rows - 1 && tile_col == tile_cols - 1; const size_t size = get_tile(data_end, last_tile, &cm->error, &data); TileBuffer *const buf = &tile_buffers[tile_row][tile_col]; buf->data = data; buf->size = size; data += size; } } // Decode tiles using data from tile_buffers for (tile_row = 0; tile_row < tile_rows; ++tile_row) { for (tile_col = 0; tile_col < tile_cols; ++tile_col) { const int col = pbi->oxcf.inv_tile_order ? tile_cols - tile_col - 1 : tile_col; const int last_tile = tile_row == tile_rows - 1 && col == tile_cols - 1; const TileBuffer *const buf = &tile_buffers[tile_row][col]; TileInfo tile; vp9_tile_init(&tile, cm, tile_row, col); setup_token_decoder(buf->data, data_end, buf->size, &cm->error, &r); setup_tile_context(pbi, xd, tile_row, col); decode_tile(pbi, &tile, &r); if (last_tile) end = vp9_reader_find_end(&r); } } return end; } static void setup_tile_macroblockd(TileWorkerData *const tile_data) { MACROBLOCKD *xd = &tile_data->xd; struct macroblockd_plane *const pd = xd->plane; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { pd[i].qcoeff = tile_data->qcoeff[i]; pd[i].dqcoeff = tile_data->dqcoeff[i]; pd[i].eobs = tile_data->eobs[i]; vpx_memset(xd->plane[i].dqcoeff, 0, 64 * 64 * sizeof(int16_t)); } } static int tile_worker_hook(void *arg1, void *arg2) { TileWorkerData *const tile_data = (TileWorkerData*)arg1; const TileInfo *const tile = (TileInfo*)arg2; int mi_row, mi_col; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += MI_BLOCK_SIZE) { vp9_zero(tile_data->xd.left_context); vp9_zero(tile_data->xd.left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { decode_modes_sb(tile_data->cm, &tile_data->xd, tile, mi_row, mi_col, &tile_data->bit_reader, BLOCK_64X64, tile_data->token_cache); } } return !tile_data->xd.corrupted; } static const uint8_t *decode_tiles_mt(VP9D_COMP *pbi, const uint8_t *data) { VP9_COMMON *const cm = &pbi->common; const uint8_t *const data_end = pbi->source + pbi->source_sz; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; const int num_workers = MIN(pbi->oxcf.max_threads & ~1, tile_cols); int tile_col = 0; assert(tile_rows == 1); (void)tile_rows; if (num_workers > pbi->num_tile_workers) { int i; CHECK_MEM_ERROR(cm, pbi->tile_workers, vpx_realloc(pbi->tile_workers, num_workers * sizeof(*pbi->tile_workers))); for (i = pbi->num_tile_workers; i < num_workers; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; ++pbi->num_tile_workers; vp9_worker_init(worker); worker->hook = (VP9WorkerHook)tile_worker_hook; CHECK_MEM_ERROR(cm, worker->data1, vpx_memalign(32, sizeof(TileWorkerData))); CHECK_MEM_ERROR(cm, worker->data2, vpx_malloc(sizeof(TileInfo))); if (i < num_workers - 1 && !vp9_worker_reset(worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Tile decoder thread creation failed"); } } } // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(pbi->above_context[0], 0, sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 2 * aligned_mi_cols); vpx_memset(pbi->above_seg_context, 0, sizeof(*pbi->above_seg_context) * aligned_mi_cols); while (tile_col < tile_cols) { int i; for (i = 0; i < num_workers && tile_col < tile_cols; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; TileInfo *const tile = (TileInfo*)worker->data2; const size_t size = get_tile(data_end, tile_col == tile_cols - 1, &cm->error, &data); tile_data->cm = cm; tile_data->xd = pbi->mb; tile_data->xd.corrupted = 0; vp9_tile_init(tile, tile_data->cm, 0, tile_col); setup_token_decoder(data, data_end, size, &cm->error, &tile_data->bit_reader); setup_tile_context(pbi, &tile_data->xd, 0, tile_col); setup_tile_macroblockd(tile_data); worker->had_error = 0; if (i == num_workers - 1 || tile_col == tile_cols - 1) { vp9_worker_execute(worker); } else { vp9_worker_launch(worker); } data += size; ++tile_col; } for (; i > 0; --i) { VP9Worker *const worker = &pbi->tile_workers[i - 1]; pbi->mb.corrupted |= !vp9_worker_sync(worker); } } { const int final_worker = (tile_cols + num_workers - 1) % num_workers; TileWorkerData *const tile_data = (TileWorkerData*)pbi->tile_workers[final_worker].data1; return vp9_reader_find_end(&tile_data->bit_reader); } } static void check_sync_code(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { if (vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_0 || vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_1 || vp9_rb_read_literal(rb, 8) != VP9_SYNC_CODE_2) { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } } static void error_handler(void *data, size_t bit_offset) { VP9_COMMON *const cm = (VP9_COMMON *)data; vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } #define RESERVED \ if (vp9_rb_read_bit(rb)) \ vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, \ "Reserved bit must be unset") static size_t read_uncompressed_header(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; size_t sz; int i; cm->last_frame_type = cm->frame_type; if (vp9_rb_read_literal(rb, 2) != VP9_FRAME_MARKER) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->version = vp9_rb_read_bit(rb); RESERVED; if (vp9_rb_read_bit(rb)) { // show an existing frame directly int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)]; ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->new_fb_idx, frame_to_show); pbi->refresh_frame_flags = 0; cm->lf.filter_level = 0; return 0; } cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb); cm->show_frame = vp9_rb_read_bit(rb); cm->error_resilient_mode = vp9_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { check_sync_code(cm, rb); cm->color_space = vp9_rb_read_literal(rb, 3); // colorspace if (cm->color_space != SRGB) { vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range if (cm->version == 1) { cm->subsampling_x = vp9_rb_read_bit(rb); cm->subsampling_y = vp9_rb_read_bit(rb); vp9_rb_read_bit(rb); // has extra plane } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->version == 1) { cm->subsampling_y = cm->subsampling_x = 0; vp9_rb_read_bit(rb); // has extra plane } else { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "RGB not supported in profile 0"); } } pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) cm->active_ref_idx[i] = cm->new_fb_idx; setup_frame_size(pbi, rb); } else { cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb); cm->reset_frame_context = cm->error_resilient_mode ? 0 : vp9_rb_read_literal(rb, 2); if (cm->intra_only) { check_sync_code(cm, rb); pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES); setup_frame_size(pbi, rb); } else { pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES); for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { const int ref = vp9_rb_read_literal(rb, NUM_REF_FRAMES_LOG2); cm->active_ref_idx[i] = cm->ref_frame_map[ref]; cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb); } setup_frame_size_with_refs(pbi, rb); cm->allow_high_precision_mv = vp9_rb_read_bit(rb); cm->mcomp_filter_type = read_interp_filter_type(rb); for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) vp9_setup_scale_factors(cm, i); } } if (!cm->error_resilient_mode) { cm->refresh_frame_context = vp9_rb_read_bit(rb); cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb); } else { cm->refresh_frame_context = 0; cm->frame_parallel_decoding_mode = 1; } // This flag will be overridden by the call to vp9_setup_past_independence // below, forcing the use of context 0 for those frame types. cm->frame_context_idx = vp9_rb_read_literal(rb, NUM_FRAME_CONTEXTS_LOG2); if (frame_is_intra_only(cm) || cm->error_resilient_mode) vp9_setup_past_independence(cm); setup_loopfilter(&cm->lf, rb); setup_quantization(cm, &pbi->mb, rb); setup_segmentation(&cm->seg, rb); setup_tile_info(cm, rb); sz = vp9_rb_read_literal(rb, 16); if (sz == 0) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Invalid header size"); return sz; } static int read_compressed_header(VP9D_COMP *pbi, const uint8_t *data, size_t partition_size) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; FRAME_CONTEXT *const fc = &cm->fc; vp9_reader r; int k; if (vp9_reader_init(&r, data, partition_size)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); cm->tx_mode = xd->lossless ? ONLY_4X4 : read_tx_mode(&r); if (cm->tx_mode == TX_MODE_SELECT) read_tx_probs(&fc->tx_probs, &r); read_coef_probs(fc, cm->tx_mode, &r); for (k = 0; k < MBSKIP_CONTEXTS; ++k) vp9_diff_update_prob(&r, &fc->mbskip_probs[k]); if (!frame_is_intra_only(cm)) { nmv_context *const nmvc = &fc->nmvc; int i, j; read_inter_mode_probs(fc, &r); if (cm->mcomp_filter_type == SWITCHABLE) read_switchable_interp_probs(fc, &r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_diff_update_prob(&r, &fc->intra_inter_prob[i]); read_comp_pred(cm, &r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) vp9_diff_update_prob(&r, &fc->y_mode_prob[j][i]); for (j = 0; j < PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(&r, &fc->partition_prob[j][i]); read_mv_probs(nmvc, cm->allow_high_precision_mv, &r); } return vp9_reader_has_error(&r); } void vp9_init_dequantizer(VP9_COMMON *cm) { int q; for (q = 0; q < QINDEX_RANGE; q++) { cm->y_dequant[q][0] = vp9_dc_quant(q, cm->y_dc_delta_q); cm->y_dequant[q][1] = vp9_ac_quant(q, 0); cm->uv_dequant[q][0] = vp9_dc_quant(q, cm->uv_dc_delta_q); cm->uv_dequant[q][1] = vp9_ac_quant(q, cm->uv_ac_delta_q); } } #ifdef NDEBUG #define debug_check_frame_counts(cm) (void)0 #else // !NDEBUG // Counts should only be incremented when frame_parallel_decoding_mode and // error_resilient_mode are disabled. static void debug_check_frame_counts(const VP9_COMMON *const cm) { FRAME_COUNTS zero_counts; vp9_zero(zero_counts); assert(cm->frame_parallel_decoding_mode || cm->error_resilient_mode); assert(!memcmp(cm->counts.y_mode, zero_counts.y_mode, sizeof(cm->counts.y_mode))); assert(!memcmp(cm->counts.uv_mode, zero_counts.uv_mode, sizeof(cm->counts.uv_mode))); assert(!memcmp(cm->counts.partition, zero_counts.partition, sizeof(cm->counts.partition))); assert(!memcmp(cm->counts.coef, zero_counts.coef, sizeof(cm->counts.coef))); assert(!memcmp(cm->counts.eob_branch, zero_counts.eob_branch, sizeof(cm->counts.eob_branch))); assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp, sizeof(cm->counts.switchable_interp))); assert(!memcmp(cm->counts.inter_mode, zero_counts.inter_mode, sizeof(cm->counts.inter_mode))); assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter, sizeof(cm->counts.intra_inter))); assert(!memcmp(cm->counts.comp_inter, zero_counts.comp_inter, sizeof(cm->counts.comp_inter))); assert(!memcmp(cm->counts.single_ref, zero_counts.single_ref, sizeof(cm->counts.single_ref))); assert(!memcmp(cm->counts.comp_ref, zero_counts.comp_ref, sizeof(cm->counts.comp_ref))); assert(!memcmp(&cm->counts.tx, &zero_counts.tx, sizeof(cm->counts.tx))); assert(!memcmp(cm->counts.mbskip, zero_counts.mbskip, sizeof(cm->counts.mbskip))); assert(!memcmp(&cm->counts.mv, &zero_counts.mv, sizeof(cm->counts.mv))); } #endif // NDEBUG int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) { int i; VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data = pbi->source; const uint8_t *const data_end = pbi->source + pbi->source_sz; struct vp9_read_bit_buffer rb = { data, data_end, 0, cm, error_handler }; const size_t first_partition_size = read_uncompressed_header(pbi, &rb); const int keyframe = cm->frame_type == KEY_FRAME; const int tile_rows = 1 << cm->log2_tile_rows; const int tile_cols = 1 << cm->log2_tile_cols; YV12_BUFFER_CONFIG *const new_fb = get_frame_new_buffer(cm); if (!first_partition_size) { // showing a frame directly *p_data_end = data + 1; return 0; } if (!pbi->decoded_key_frame && !keyframe) return -1; data += vp9_rb_bytes_read(&rb); if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); pbi->do_loopfilter_inline = (cm->log2_tile_rows | cm->log2_tile_cols) == 0 && cm->lf.filter_level; if (pbi->do_loopfilter_inline && pbi->lf_worker.data1 == NULL) { CHECK_MEM_ERROR(cm, pbi->lf_worker.data1, vpx_malloc(sizeof(LFWorkerData))); pbi->lf_worker.hook = (VP9WorkerHook)vp9_loop_filter_worker; if (pbi->oxcf.max_threads > 1 && !vp9_worker_reset(&pbi->lf_worker)) { vpx_internal_error(&cm->error, VPX_CODEC_ERROR, "Loop filter thread creation failed"); } } alloc_tile_storage(pbi, tile_rows, tile_cols); xd->mode_info_stride = cm->mode_info_stride; set_prev_mi(cm); setup_plane_dequants(cm, xd, cm->base_qindex); setup_block_dptrs(xd, cm->subsampling_x, cm->subsampling_y); cm->fc = cm->frame_contexts[cm->frame_context_idx]; vp9_zero(cm->counts); for (i = 0; i < MAX_MB_PLANE; ++i) vpx_memset(xd->plane[i].dqcoeff, 0, 64 * 64 * sizeof(int16_t)); xd->corrupted = 0; new_fb->corrupted = read_compressed_header(pbi, data, first_partition_size); // TODO(jzern): remove frame_parallel_decoding_mode restriction for // single-frame tile decoding. if (pbi->oxcf.max_threads > 1 && tile_rows == 1 && tile_cols > 1 && cm->frame_parallel_decoding_mode) { *p_data_end = decode_tiles_mt(pbi, data + first_partition_size); } else { *p_data_end = decode_tiles(pbi, data + first_partition_size); } cm->last_width = cm->width; cm->last_height = cm->height; new_fb->corrupted |= xd->corrupted; if (!pbi->decoded_key_frame) { if (keyframe && !new_fb->corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } if (!cm->error_resilient_mode && !cm->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(cm); if (!frame_is_intra_only(cm)) { vp9_adapt_mode_probs(cm); vp9_adapt_mv_probs(cm, cm->allow_high_precision_mv); } } else { debug_check_frame_counts(cm); } if (cm->refresh_frame_context) cm->frame_contexts[cm->frame_context_idx] = cm->fc; return 0; }