/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp8_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "encodemb.h" #include "encodemv.h" #include "vp8/common/common.h" #include "onyx_int.h" #include "vp8/common/extend.h" #include "vp8/common/entropymode.h" #include "vp8/common/quant_common.h" #include "segmentation.h" #include "vp8/common/setupintrarecon.h" #include "encodeintra.h" #include "vp8/common/reconinter.h" #include "rdopt.h" #include "pickinter.h" #include "vp8/common/findnearmv.h" #include #include #include "vp8/common/invtrans.h" #include "vpx_ports/vpx_timer.h" #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING #include "bitstream.h" #endif #include "encodeframe.h" extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); extern void vp8_calc_ref_frame_costs(int *ref_frame_cost, int prob_intra, int prob_last, int prob_garf); extern void vp8_convert_rfct_to_prob(VP8_COMP *const cpi); extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); extern void vp8_auto_select_speed(VP8_COMP *cpi); extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, MB_ROW_COMP *mbr_ei, int count); static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x); #ifdef MODE_STATS unsigned int inter_y_modes[10] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned int inter_uv_modes[4] = { 0, 0, 0, 0 }; unsigned int inter_b_modes[15] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; unsigned int y_modes[5] = { 0, 0, 0, 0, 0 }; unsigned int uv_modes[4] = { 0, 0, 0, 0 }; unsigned int b_modes[14] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #endif /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp8_activity_masking(). */ #define VP8_ACTIVITY_AVG_MIN (64) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const unsigned char VP8_VAR_OFFS[16] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; /* Original activity measure from Tim T's code. */ static unsigned int tt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x) { unsigned int act; unsigned int sse; (void)cpi; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ act = vpx_variance16x16(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0, &sse); act = act << 4; /* If the region is flat, lower the activity some more. */ if (act < 8 << 12) act = act < 5 << 12 ? act : 5 << 12; return act; } /* Stub for alternative experimental activity measures. */ static unsigned int alt_activity_measure(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred) { return vp8_encode_intra(cpi, x, use_dc_pred); } /* Measure the activity of the current macroblock * What we measure here is TBD so abstracted to this function */ #define ALT_ACT_MEASURE 1 static unsigned int mb_activity_measure(VP8_COMP *cpi, MACROBLOCK *x, int mb_row, int mb_col) { unsigned int mb_activity; if (ALT_ACT_MEASURE) { int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); /* Or use and alternative. */ mb_activity = alt_activity_measure(cpi, x, use_dc_pred); } else { /* Original activity measure from Tim T's code. */ mb_activity = tt_activity_measure(cpi, x); } if (mb_activity < VP8_ACTIVITY_AVG_MIN) mb_activity = VP8_ACTIVITY_AVG_MIN; return mb_activity; } /* Calculate an "average" mb activity value for the frame */ #define ACT_MEDIAN 0 static void calc_av_activity(VP8_COMP *cpi, int64_t activity_sum) { #if ACT_MEDIAN /* Find median: Simple n^2 algorithm for experimentation */ { unsigned int median; unsigned int i, j; unsigned int *sortlist; unsigned int tmp; /* Create a list to sort to */ CHECK_MEM_ERROR(sortlist, vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); /* Copy map to sort list */ memcpy(sortlist, cpi->mb_activity_map, sizeof(unsigned int) * cpi->common.MBs); /* Ripple each value down to its correct position */ for (i = 1; i < cpi->common.MBs; ++i) { for (j = i; j > 0; j--) { if (sortlist[j] < sortlist[j - 1]) { /* Swap values */ tmp = sortlist[j - 1]; sortlist[j - 1] = sortlist[j]; sortlist[j] = tmp; } else break; } } /* Even number MBs so estimate median as mean of two either side. */ median = (1 + sortlist[cpi->common.MBs >> 1] + sortlist[(cpi->common.MBs >> 1) + 1]) >> 1; cpi->activity_avg = median; vpx_free(sortlist); } #else /* Simple mean for now */ cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs); #endif if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) { cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; } /* Experimental code: return fixed value normalized for several clips */ if (ALT_ACT_MEASURE) cpi->activity_avg = 100000; } #define USE_ACT_INDEX 0 #define OUTPUT_NORM_ACT_STATS 0 #if USE_ACT_INDEX /* Calculate and activity index for each mb */ static void calc_activity_index(VP8_COMP *cpi, MACROBLOCK *x) { VP8_COMMON *const cm = &cpi->common; int mb_row, mb_col; int64_t act; int64_t a; int64_t b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n%12d\n", cpi->activity_avg); #endif /* Reset pointers to start of activity map */ x->mb_activity_ptr = cpi->mb_activity_map; /* Calculate normalized mb activity number. */ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { /* for each macroblock col in image */ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { /* Read activity from the map */ act = *(x->mb_activity_ptr); /* Calculate a normalized activity number */ a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (b >= a) *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; else *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_activity_ptr)); #endif /* Increment activity map pointers */ x->mb_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } #endif /* Loop through all MBs. Note activity of each, average activity and * calculate a normalized activity for each */ static void build_activity_map(VP8_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *xd = &x->e_mbd; VP8_COMMON *const cm = &cpi->common; #if ALT_ACT_MEASURE YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; int recon_yoffset; int recon_y_stride = new_yv12->y_stride; #endif int mb_row, mb_col; unsigned int mb_activity; int64_t activity_sum = 0; /* for each macroblock row in image */ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { #if ALT_ACT_MEASURE /* reset above block coeffs */ xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); #endif /* for each macroblock col in image */ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { #if ALT_ACT_MEASURE xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->left_available = (mb_col != 0); recon_yoffset += 16; #endif /* Copy current mb to a buffer */ vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); /* measure activity */ mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col); /* Keep frame sum */ activity_sum += mb_activity; /* Store MB level activity details. */ *x->mb_activity_ptr = mb_activity; /* Increment activity map pointer */ x->mb_activity_ptr++; /* adjust to the next column of source macroblocks */ x->src.y_buffer += 16; } /* adjust to the next row of mbs */ x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; #if ALT_ACT_MEASURE /* extend the recon for intra prediction */ vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); #endif } /* Calculate an "average" MB activity */ calc_av_activity(cpi, activity_sum); #if USE_ACT_INDEX /* Calculate an activity index number of each mb */ calc_activity_index(cpi, x); #endif } /* Macroblock activity masking */ void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); /* Apply the masking to the RD multiplier. */ a = act + (2 * cpi->activity_avg); b = (2 * act) + cpi->activity_avg; x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #endif /* Activity based Zbin adjustment */ adjust_act_zbin(cpi, x); } static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *segment_counts, int *totalrate) { int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int map_index = (mb_row * cpi->common.mb_cols); #if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) const int num_part = (1 << cm->multi_token_partition); TOKENEXTRA *tp_start = cpi->tok; vp8_writer *w; #endif #if CONFIG_MULTITHREAD const int nsync = cpi->mt_sync_range; const int rightmost_col = cm->mb_cols + nsync; volatile const int *last_row_current_mb_col; volatile int *current_mb_col = &cpi->mt_current_mb_col[mb_row]; if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) { last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; } else { last_row_current_mb_col = &rightmost_col; } #endif #if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) if (num_part > 1) w = &cpi->bc[1 + (mb_row % num_part)]; else w = &cpi->bc[1]; #endif /* reset above block coeffs */ xd->above_context = cm->above_context; xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); cpi->tplist[mb_row].start = *tp; /* printf("Main mb_row = %d\n", mb_row); */ /* Distance of Mb to the top & bottom edges, specified in 1/8th pel * units as they are always compared to values that are in 1/8th pel */ xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; /* Set up limit values for vertical motion vector components * to prevent them extending beyond the UMV borders */ x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); /* Set the mb activity pointer to the start of the row. */ x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; /* for each macroblock col in image */ for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) { #if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING) *tp = cpi->tok; #endif /* Distance of Mb to the left & right edges, specified in * 1/8th pel units as they are always compared to values * that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; /* Set up limit values for horizontal motion vector components * to prevent them extending beyond the UMV borders */ x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; /* Copy current mb to a buffer */ vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded != 0) { *current_mb_col = mb_col - 1; /* set previous MB done */ if ((mb_col & (nsync - 1)) == 0) { while (mb_col > (*last_row_current_mb_col - nsync)) { x86_pause_hint(); thread_sleep(0); } } } #endif if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); /* Is segmentation enabled */ /* MB level adjustment to quantizer */ if (xd->segmentation_enabled) { /* Code to set segment id in xd->mbmi.segment_id for current MB * (with range checking) */ if (cpi->segmentation_map[map_index + mb_col] <= 3) { xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index + mb_col]; } else { xd->mode_info_context->mbmi.segment_id = 0; } vp8cx_mb_init_quantizer(cpi, x, 1); } else { /* Set to Segment 0 by default */ xd->mode_info_context->mbmi.segment_id = 0; } x->active_ptr = cpi->active_map + map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macroblock(cpi, x, tp); #ifdef MODE_STATS y_modes[xd->mbmi.mode]++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock( cpi, x, tp, recon_yoffset, recon_uvoffset, mb_row, mb_col); #ifdef MODE_STATS inter_y_modes[xd->mbmi.mode]++; if (xd->mbmi.mode == SPLITMV) { int b; for (b = 0; b < xd->mbmi.partition_count; ++b) { inter_b_modes[x->partition->bmi[b].mode]++; } } #endif // Keep track of how many (consecutive) times a block is coded // as ZEROMV_LASTREF, for base layer frames. // Reset to 0 if its coded as anything else. if (cpi->current_layer == 0) { if (xd->mode_info_context->mbmi.mode == ZEROMV && xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) { // Increment, check for wrap-around. if (cpi->consec_zero_last[map_index + mb_col] < 255) { cpi->consec_zero_last[map_index + mb_col] += 1; } if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) { cpi->consec_zero_last_mvbias[map_index + mb_col] += 1; } } else { cpi->consec_zero_last[map_index + mb_col] = 0; cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; } if (x->zero_last_dot_suppress) { cpi->consec_zero_last_mvbias[map_index + mb_col] = 0; } } /* Special case code for cyclic refresh * If cyclic update enabled then copy xd->mbmi.segment_id; (which * may have been updated based on mode during * vp8cx_encode_inter_macroblock()) back into the global * segmentation map */ if ((cpi->current_layer == 0) && (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled)) { cpi->segmentation_map[map_index + mb_col] = xd->mode_info_context->mbmi.segment_id; /* If the block has been refreshed mark it as clean (the * magnitude of the -ve influences how long it will be before * we consider another refresh): * Else if it was coded (last frame 0,0) and has not already * been refreshed then mark it as a candidate for cleanup * next time (marked 0) else mark it as dirty (1). */ if (xd->mode_info_context->mbmi.segment_id) { cpi->cyclic_refresh_map[map_index + mb_col] = -1; } else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) { cpi->cyclic_refresh_map[map_index + mb_col] = 0; } } else { cpi->cyclic_refresh_map[map_index + mb_col] = 1; } } } cpi->tplist[mb_row].stop = *tp; #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING /* pack tokens for this MB */ { int tok_count = *tp - tp_start; vp8_pack_tokens(w, tp_start, tok_count); } #endif /* Increment pointer into gf usage flags structure. */ x->gf_active_ptr++; /* Increment the activity mask pointers. */ x->mb_activity_ptr++; /* adjust to the next column of macroblocks */ x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; /* Keep track of segment usage */ segment_counts[xd->mode_info_context->mbmi.segment_id]++; /* skip to next mb */ xd->mode_info_context++; x->partition_info++; xd->above_context++; } /* extend the recon for intra prediction */ vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded != 0) *current_mb_col = rightmost_col; #endif /* this is to account for the border */ xd->mode_info_context++; x->partition_info++; } static void init_encode_frame_mb_context(VP8_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; VP8_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; /* GF active flags data structure */ x->gf_active_ptr = (signed char *)cpi->gf_active_flags; /* Activity map pointer */ x->mb_activity_ptr = cpi->mb_activity_map; x->act_zbin_adj = 0; x->partition_info = x->pi; xd->mode_info_context = cm->mi; xd->mode_info_stride = cm->mode_info_stride; xd->frame_type = cm->frame_type; /* reset intra mode contexts */ if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm); /* Copy data over into macro block data structures. */ x->src = *cpi->Source; xd->pre = cm->yv12_fb[cm->lst_fb_idx]; xd->dst = cm->yv12_fb[cm->new_fb_idx]; /* set up frame for intra coded blocks */ vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); vp8_build_block_offsets(x); xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_context->mbmi.uv_mode = DC_PRED; xd->left_context = &cm->left_context; x->mvc = cm->fc.mvc; memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); /* Special case treatment when GF and ARF are not sensible options * for reference */ if (cpi->ref_frame_flags == VP8_LAST_FRAME) { vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 255, 128); } else if ((cpi->oxcf.number_of_layers > 1) && (cpi->ref_frame_flags == VP8_GOLD_FRAME)) { vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 255); } else if ((cpi->oxcf.number_of_layers > 1) && (cpi->ref_frame_flags == VP8_ALTR_FRAME)) { vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, 1, 1); } else { vp8_calc_ref_frame_costs(x->ref_frame_cost, cpi->prob_intra_coded, cpi->prob_last_coded, cpi->prob_gf_coded); } xd->fullpixel_mask = 0xffffffff; if (cm->full_pixel) xd->fullpixel_mask = 0xfffffff8; vp8_zero(x->coef_counts); vp8_zero(x->ymode_count); vp8_zero(x->uv_mode_count) x->prediction_error = 0; x->intra_error = 0; vp8_zero(x->count_mb_ref_frame_usage); } #if CONFIG_MULTITHREAD static void sum_coef_counts(MACROBLOCK *x, MACROBLOCK *x_thread) { int i = 0; do { int j = 0; do { int k = 0; do { /* at every context */ /* calc probs and branch cts for this frame only */ int t = 0; /* token/prob index */ do { x->coef_counts[i][j][k][t] += x_thread->coef_counts[i][j][k][t]; } while (++t < ENTROPY_NODES); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } #endif // CONFIG_MULTITHREAD void vp8_encode_frame(VP8_COMP *cpi) { int mb_row; MACROBLOCK *const x = &cpi->mb; VP8_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; TOKENEXTRA *tp = cpi->tok; int segment_counts[MAX_MB_SEGMENTS]; int totalrate; #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING BOOL_CODER *bc = &cpi->bc[1]; /* bc[0] is for control partition */ const int num_part = (1 << cm->multi_token_partition); #endif memset(segment_counts, 0, sizeof(segment_counts)); totalrate = 0; if (cpi->compressor_speed == 2) { if (cpi->oxcf.cpu_used < 0) { cpi->Speed = -(cpi->oxcf.cpu_used); } else { vp8_auto_select_speed(cpi); } } /* Functions setup for all frame types so we can use MC in AltRef */ if (!cm->use_bilinear_mc_filter) { xd->subpixel_predict = vp8_sixtap_predict4x4; xd->subpixel_predict8x4 = vp8_sixtap_predict8x4; xd->subpixel_predict8x8 = vp8_sixtap_predict8x8; xd->subpixel_predict16x16 = vp8_sixtap_predict16x16; } else { xd->subpixel_predict = vp8_bilinear_predict4x4; xd->subpixel_predict8x4 = vp8_bilinear_predict8x4; xd->subpixel_predict8x8 = vp8_bilinear_predict8x8; xd->subpixel_predict16x16 = vp8_bilinear_predict16x16; } cpi->mb.skip_true_count = 0; cpi->tok_count = 0; #if 0 /* Experimental code */ cpi->frame_distortion = 0; cpi->last_mb_distortion = 0; #endif xd->mode_info_context = cm->mi; vp8_zero(cpi->mb.MVcount); vp8cx_frame_init_quantizer(cpi); vp8_initialize_rd_consts(cpi, x, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); vp8cx_initialize_me_consts(cpi, cm->base_qindex); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { /* Initialize encode frame context. */ init_encode_frame_mb_context(cpi); /* Build a frame level activity map */ build_activity_map(cpi); } /* re-init encode frame context. */ init_encode_frame_mb_context(cpi); #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING { int i; for (i = 0; i < num_part; ++i) { vp8_start_encode(&bc[i], cpi->partition_d[i + 1], cpi->partition_d_end[i + 1]); bc[i].error = &cm->error; } } #endif { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded) { int i; vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, cpi->encoding_thread_count); for (i = 0; i < cm->mb_rows; ++i) cpi->mt_current_mb_col[i] = -1; for (i = 0; i < cpi->encoding_thread_count; ++i) { sem_post(&cpi->h_event_start_encoding[i]); } for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { vp8_zero(cm->left_context) #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING tp = cpi->tok; #else tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); #endif encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); /* adjust to the next row of mbs */ x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; if (mb_row == cm->mb_rows - 1) { sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */ } } sem_wait( &cpi->h_event_end_encoding); /* wait for other threads to finish */ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { cpi->tok_count += (unsigned int)(cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start); } if (xd->segmentation_enabled) { int j; if (xd->segmentation_enabled) { for (i = 0; i < cpi->encoding_thread_count; ++i) { for (j = 0; j < 4; ++j) { segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; } } } } for (i = 0; i < cpi->encoding_thread_count; ++i) { int mode_count; int c_idx; totalrate += cpi->mb_row_ei[i].totalrate; cpi->mb.skip_true_count += cpi->mb_row_ei[i].mb.skip_true_count; for (mode_count = 0; mode_count < VP8_YMODES; ++mode_count) { cpi->mb.ymode_count[mode_count] += cpi->mb_row_ei[i].mb.ymode_count[mode_count]; } for (mode_count = 0; mode_count < VP8_UV_MODES; ++mode_count) { cpi->mb.uv_mode_count[mode_count] += cpi->mb_row_ei[i].mb.uv_mode_count[mode_count]; } for (c_idx = 0; c_idx < MVvals; ++c_idx) { cpi->mb.MVcount[0][c_idx] += cpi->mb_row_ei[i].mb.MVcount[0][c_idx]; cpi->mb.MVcount[1][c_idx] += cpi->mb_row_ei[i].mb.MVcount[1][c_idx]; } cpi->mb.prediction_error += cpi->mb_row_ei[i].mb.prediction_error; cpi->mb.intra_error += cpi->mb_row_ei[i].mb.intra_error; for (c_idx = 0; c_idx < MAX_REF_FRAMES; ++c_idx) { cpi->mb.count_mb_ref_frame_usage[c_idx] += cpi->mb_row_ei[i].mb.count_mb_ref_frame_usage[c_idx]; } for (c_idx = 0; c_idx < MAX_ERROR_BINS; ++c_idx) { cpi->mb.error_bins[c_idx] += cpi->mb_row_ei[i].mb.error_bins[c_idx]; } /* add up counts for each thread */ sum_coef_counts(x, &cpi->mb_row_ei[i].mb); } } else #endif // CONFIG_MULTITHREAD { /* for each macroblock row in image */ for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) { vp8_zero(cm->left_context) #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING tp = cpi->tok; #endif encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); /* adjust to the next row of mbs */ x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } cpi->tok_count = (unsigned int)(tp - cpi->tok); } #if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING { int i; for (i = 0; i < num_part; ++i) { vp8_stop_encode(&bc[i]); cpi->partition_sz[i + 1] = bc[i].pos; } } #endif vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); } // Work out the segment probabilities if segmentation is enabled // and needs to be updated if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { int tot_count; int i; /* Set to defaults */ memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3]; if (tot_count) { xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; tot_count = segment_counts[0] + segment_counts[1]; if (tot_count > 0) { xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; } tot_count = segment_counts[2] + segment_counts[3]; if (tot_count > 0) { xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; } /* Zero probabilities not allowed */ for (i = 0; i < MB_FEATURE_TREE_PROBS; ++i) { if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1; } } } /* projected_frame_size in units of BYTES */ cpi->projected_frame_size = totalrate >> 8; /* Make a note of the percentage MBs coded Intra. */ if (cm->frame_type == KEY_FRAME) { cpi->this_frame_percent_intra = 100; } else { int tot_modes; tot_modes = cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] + cpi->mb.count_mb_ref_frame_usage[LAST_FRAME] + cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME] + cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME]; if (tot_modes) { cpi->this_frame_percent_intra = cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; } } #if !CONFIG_REALTIME_ONLY /* Adjust the projected reference frame usage probability numbers to * reflect what we have just seen. This may be useful when we make * multiple iterations of the recode loop rather than continuing to use * values from the previous frame. */ if ((cm->frame_type != KEY_FRAME) && ((cpi->oxcf.number_of_layers > 1) || (!cm->refresh_alt_ref_frame && !cm->refresh_golden_frame))) { vp8_convert_rfct_to_prob(cpi); } #endif } void vp8_setup_block_ptrs(MACROBLOCK *x) { int r, c; int i; for (r = 0; r < 4; ++r) { for (c = 0; c < 4; ++c) { x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4; } } for (r = 0; r < 2; ++r) { for (c = 0; c < 2; ++c) { x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; } } for (r = 0; r < 2; ++r) { for (c = 0; c < 2; ++c) { x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; } } x->block[24].src_diff = x->src_diff + 384; for (i = 0; i < 25; ++i) { x->block[i].coeff = x->coeff + i * 16; } } void vp8_build_block_offsets(MACROBLOCK *x) { int block = 0; int br, bc; vp8_build_block_doffsets(&x->e_mbd); /* y blocks */ x->thismb_ptr = &x->thismb[0]; for (br = 0; br < 4; ++br) { for (bc = 0; bc < 4; ++bc) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->thismb_ptr; this_block->src_stride = 16; this_block->src = 4 * br * 16 + 4 * bc; ++block; } } /* u blocks */ for (br = 0; br < 2; ++br) { for (bc = 0; bc < 2; ++bc) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.u_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } /* v blocks */ for (br = 0; br < 2; ++br) { for (bc = 0; bc < 2; ++bc) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.v_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } } static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = &x->e_mbd; const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; #ifdef MODE_STATS const int is_key = cpi->common.frame_type == KEY_FRAME; ++(is_key ? uv_modes : inter_uv_modes)[uvm]; if (m == B_PRED) { unsigned int *const bct = is_key ? b_modes : inter_b_modes; int b = 0; do { ++bct[xd->block[b].bmi.mode]; } while (++b < 16); } #else (void)cpi; #endif ++x->ymode_count[m]; ++x->uv_mode_count[uvm]; } /* Experimental stub function to create a per MB zbin adjustment based on * some previously calculated measure of MB activity. */ static void adjust_act_zbin(VP8_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->act_zbin_adj = *(x->mb_activity_ptr); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); /* Apply the masking to the RD multiplier. */ a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (act > cpi->activity_avg) { x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1; } else { x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b); } #endif } int vp8cx_encode_intra_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) { MACROBLOCKD *xd = &x->e_mbd; int rate; if (cpi->sf.RD && cpi->compressor_speed != 2) { vp8_rd_pick_intra_mode(x, &rate); } else { vp8_pick_intra_mode(x, &rate); } if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { adjust_act_zbin(cpi, x); vp8_update_zbin_extra(cpi, x); } if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) { vp8_encode_intra4x4mby(x); } else { vp8_encode_intra16x16mby(x); } vp8_encode_intra16x16mbuv(x); sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, x, t); if (xd->mode_info_context->mbmi.mode != B_PRED) vp8_inverse_transform_mby(xd); vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); return rate; } #ifdef SPEEDSTATS extern int cnt_pm; #endif extern void vp8_fix_contexts(MACROBLOCKD *x); int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset, int mb_row, int mb_col) { MACROBLOCKD *const xd = &x->e_mbd; int intra_error = 0; int rate; int distortion; x->skip = 0; if (xd->segmentation_enabled) { x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id]; } else { x->encode_breakout = cpi->oxcf.encode_breakout; } #if CONFIG_TEMPORAL_DENOISING /* Reset the best sse mode/mv for each macroblock. */ x->best_reference_frame = INTRA_FRAME; x->best_zeromv_reference_frame = INTRA_FRAME; x->best_sse_inter_mode = 0; x->best_sse_mv.as_int = 0; x->need_to_clamp_best_mvs = 0; #endif if (cpi->sf.RD) { int zbin_mode_boost_enabled = x->zbin_mode_boost_enabled; /* Are we using the fast quantizer for the mode selection? */ if (cpi->sf.use_fastquant_for_pick) { x->quantize_b = vp8_fast_quantize_b; /* the fast quantizer does not use zbin_extra, so * do not recalculate */ x->zbin_mode_boost_enabled = 0; } vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error, mb_row, mb_col); /* switch back to the regular quantizer for the encode */ if (cpi->sf.improved_quant) { x->quantize_b = vp8_regular_quantize_b; } /* restore cpi->zbin_mode_boost_enabled */ x->zbin_mode_boost_enabled = zbin_mode_boost_enabled; } else { vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error, mb_row, mb_col); } x->prediction_error += distortion; x->intra_error += intra_error; if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { /* Adjust the zbin based on this MB rate. */ adjust_act_zbin(cpi, x); } #if 0 /* Experimental RD code */ cpi->frame_distortion += distortion; cpi->last_mb_distortion = distortion; #endif /* MB level adjutment to quantizer setup */ if (xd->segmentation_enabled) { /* If cyclic update enabled */ if (cpi->current_layer == 0 && cpi->cyclic_refresh_mode_enabled) { /* Clear segment_id back to 0 if not coded (last frame 0,0) */ if ((xd->mode_info_context->mbmi.segment_id == 1) && ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV))) { xd->mode_info_context->mbmi.segment_id = 0; /* segment_id changed, so update */ vp8cx_mb_init_quantizer(cpi, x, 1); } } } { /* Experimental code. * Special case for gf and arf zeromv modes, for 1 temporal layer. * Increase zbin size to supress noise. */ x->zbin_mode_boost = 0; if (x->zbin_mode_boost_enabled) { if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) { if (xd->mode_info_context->mbmi.mode == ZEROMV) { if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME && cpi->oxcf.number_of_layers == 1) { x->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; } else { x->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { x->zbin_mode_boost = 0; } else { x->zbin_mode_boost = MV_ZBIN_BOOST; } } } /* The fast quantizer doesn't use zbin_extra, only do so with * the regular quantizer. */ if (cpi->sf.improved_quant) vp8_update_zbin_extra(cpi, x); } x->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame]++; if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8_encode_intra16x16mbuv(x); if (xd->mode_info_context->mbmi.mode == B_PRED) { vp8_encode_intra4x4mby(x); } else { vp8_encode_intra16x16mby(x); } sum_intra_stats(cpi, x); } else { int ref_fb_idx; if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) { ref_fb_idx = cpi->common.lst_fb_idx; } else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) { ref_fb_idx = cpi->common.gld_fb_idx; } else { ref_fb_idx = cpi->common.alt_fb_idx; } xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (!x->skip) { vp8_encode_inter16x16(x); } else { vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } } if (!x->skip) { vp8_tokenize_mb(cpi, x, t); if (xd->mode_info_context->mbmi.mode != B_PRED) { vp8_inverse_transform_mby(xd); } vp8_dequant_idct_add_uv_block(xd->qcoeff + 16 * 16, xd->dequant_uv, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else { /* always set mb_skip_coeff as it is needed by the loopfilter */ xd->mode_info_context->mbmi.mb_skip_coeff = 1; if (cpi->common.mb_no_coeff_skip) { x->skip_true_count++; vp8_fix_contexts(xd); } else { vp8_stuff_mb(cpi, x, t); } } return rate; }