/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "vpx/vpx_encoder.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_pragmas.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_treecoder.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_write_bit_buffer.h" #if defined(SECTIONBITS_OUTPUT) unsigned __int64 Sectionbits[500]; #endif #ifdef ENTROPY_STATS int intra_mode_stats[VP9_KF_BINTRAMODES] [VP9_KF_BINTRAMODES] [VP9_KF_BINTRAMODES]; vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES]; vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES]; vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES]; vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES]; extern unsigned int active_section; #endif #define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8) #define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd))) static int update_bits[255]; static INLINE void write_le16(uint8_t *p, int value) { p[0] = value; p[1] = value >> 8; } static INLINE void write_le32(uint8_t *p, int value) { p[0] = value; p[1] = value >> 8; p[2] = value >> 16; p[3] = value >> 24; } void vp9_encode_unsigned_max(vp9_writer *br, int data, int max) { assert(data <= max); while (max) { vp9_write_bit(br, data & 1); data >>= 1; max >>= 1; } } int recenter_nonneg(int v, int m) { if (v > (m << 1)) return v; else if (v >= m) return ((v - m) << 1); else return ((m - v) << 1) - 1; } static int get_unsigned_bits(unsigned num_values) { int cat = 0; if ((num_values--) <= 1) return 0; while (num_values > 0) { cat++; num_values >>= 1; } return cat; } void encode_uniform(vp9_writer *w, int v, int n) { int l = get_unsigned_bits(n); int m; if (l == 0) return; m = (1 << l) - n; if (v < m) { vp9_write_literal(w, v, l - 1); } else { vp9_write_literal(w, m + ((v - m) >> 1), l - 1); vp9_write_literal(w, (v - m) & 1, 1); } } int count_uniform(int v, int n) { int l = get_unsigned_bits(n); int m; if (l == 0) return 0; m = (1 << l) - n; if (v < m) return l - 1; else return l; } void encode_term_subexp(vp9_writer *w, int word, int k, int num_syms) { int i = 0; int mk = 0; while (1) { int b = (i ? k + i - 1 : k); int a = (1 << b); if (num_syms <= mk + 3 * a) { encode_uniform(w, word - mk, num_syms - mk); break; } else { int t = (word >= mk + a); vp9_write_literal(w, t, 1); if (t) { i = i + 1; mk += a; } else { vp9_write_literal(w, word - mk, b); break; } } } } int count_term_subexp(int word, int k, int num_syms) { int count = 0; int i = 0; int mk = 0; while (1) { int b = (i ? k + i - 1 : k); int a = (1 << b); if (num_syms <= mk + 3 * a) { count += count_uniform(word - mk, num_syms - mk); break; } else { int t = (word >= mk + a); count++; if (t) { i = i + 1; mk += a; } else { count += b; break; } } } return count; } static void compute_update_table() { int i; for (i = 0; i < 255; i++) update_bits[i] = count_term_subexp(i, SUBEXP_PARAM, 255); } static int split_index(int i, int n, int modulus) { int max1 = (n - 1 - modulus / 2) / modulus + 1; if (i % modulus == modulus / 2) i = i / modulus; else i = max1 + i - (i + modulus - modulus / 2) / modulus; return i; } static int remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; int i; if ((m << 1) <= n) i = recenter_nonneg(v, m) - 1; else i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1; i = split_index(i, n - 1, modulus); return i; } static void write_prob_diff_update(vp9_writer *w, vp9_prob newp, vp9_prob oldp) { int delp = remap_prob(newp, oldp); encode_term_subexp(w, delp, SUBEXP_PARAM, 255); } static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) { int delp = remap_prob(newp, oldp); return update_bits[delp] * 256; } static void update_mode( vp9_writer *w, int n, const struct vp9_token tok[/* n */], vp9_tree tree, vp9_prob Pnew [/* n-1 */], vp9_prob Pcur [/* n-1 */], unsigned int bct [/* n-1 */] [2], const unsigned int num_events[/* n */] ) { unsigned int new_b = 0, old_b = 0; int i = 0; vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0); n--; do { new_b += cost_branch(bct[i], Pnew[i]); old_b += cost_branch(bct[i], Pcur[i]); } while (++i < n); if (new_b + (n << 8) < old_b) { int i = 0; vp9_write_bit(w, 1); do { const vp9_prob p = Pnew[i]; vp9_write_literal(w, Pcur[i] = p ? p : 1, 8); } while (++i < n); } else vp9_write_bit(w, 0); } static void update_mbintra_mode_probs(VP9_COMP* const cpi, vp9_writer* const bc) { VP9_COMMON *const cm = &cpi->common; vp9_prob pnew[VP9_YMODES - 1]; unsigned int bct[VP9_YMODES - 1][2]; update_mode(bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree, pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count); update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings, vp9_sb_ymode_tree, pnew, cm->fc.sb_ymode_prob, bct, (unsigned int *)cpi->sb_ymode_count); } void vp9_update_skip_probs(VP9_COMP *cpi) { VP9_COMMON *const pc = &cpi->common; int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k], cpi->skip_true_count[k]); } static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer* const bc) { VP9_COMMON *const pc = &cpi->common; unsigned int branch_ct[32][2]; int i, j; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { vp9_tree_probs_from_distribution( vp9_switchable_interp_tree, pc->fc.switchable_interp_prob[j], branch_ct, cpi->switchable_interp_count[j], 0); for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { if (pc->fc.switchable_interp_prob[j][i] < 1) pc->fc.switchable_interp_prob[j][i] = 1; vp9_write_prob(bc, pc->fc.switchable_interp_prob[j][i]); } } } // This function updates the reference frame prediction stats static void update_refpred_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int i; vp9_prob new_pred_probs[PREDICTION_PROBS]; int old_cost, new_cost; // Set the prediction probability structures to defaults if (cm->frame_type != KEY_FRAME) { // From the prediction counts set the probabilities for each context for (i = 0; i < PREDICTION_PROBS; i++) { const int c0 = cpi->ref_pred_count[i][0]; const int c1 = cpi->ref_pred_count[i][1]; new_pred_probs[i] = get_binary_prob(c0, c1); // Decide whether or not to update the reference frame probs. // Returned costs are in 1/256 bit units. old_cost = c0 * vp9_cost_zero(cm->ref_pred_probs[i]) + c1 * vp9_cost_one(cm->ref_pred_probs[i]); new_cost = c0 * vp9_cost_zero(new_pred_probs[i]) + c1 * vp9_cost_one(new_pred_probs[i]); // Cost saving must be >= 8 bits (2048 in these units) if ((old_cost - new_cost) >= 2048) { cpi->ref_pred_probs_update[i] = 1; cm->ref_pred_probs[i] = new_pred_probs[i]; } else cpi->ref_pred_probs_update[i] = 0; } } } // This function is called to update the mode probability context used to encode // inter modes. It assumes the branch counts table has already been populated // prior to the actual packing of the bitstream (in rd stage or dummy pack) // // The branch counts table is re-populated during the actual pack stage and in // the decoder to facilitate backwards update of the context. static void update_inter_mode_probs(VP9_COMMON *cm, int mode_context[INTER_MODE_CONTEXTS][4]) { int i, j; unsigned int (*mv_ref_ct)[4][2] = cm->fc.mv_ref_ct; vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts, sizeof(cm->fc.vp9_mode_contexts)); for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { int new_prob, old_cost, new_cost; // Work out cost of coding branches with the old and optimal probability old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]); new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]); new_cost = cost_branch256(mv_ref_ct[i][j], new_prob); // If cost saving is >= 14 bits then update the mode probability. // This is the approximate net cost of updating one probability given // that the no update case ismuch more common than the update case. if (new_cost <= (old_cost - (14 << 8))) { mode_context[i][j] = new_prob; } } } } static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m); } static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m); } static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m); } static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m); } static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m); } static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_kf_bmode_tree, p, vp9_kf_bmode_encodings + m); } static int prob_update_savings(const unsigned int *ct, const vp9_prob oldp, const vp9_prob newp, const vp9_prob upd) { const int old_b = cost_branch256(ct, oldp); const int new_b = cost_branch256(ct, newp); const int update_b = 2048 + vp9_cost_upd256; return old_b - new_b - update_b; } static int prob_diff_update_savings_search(const unsigned int *ct, const vp9_prob oldp, vp9_prob *bestp, const vp9_prob upd) { const int old_b = cost_branch256(ct, oldp); int new_b, update_b, savings, bestsavings, step; vp9_prob newp, bestnewp; bestsavings = 0; bestnewp = oldp; step = (*bestp > oldp ? -1 : 1); for (newp = *bestp; newp != oldp; newp += step) { new_b = cost_branch256(ct, newp); update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256; savings = old_b - new_b - update_b; if (savings > bestsavings) { bestsavings = savings; bestnewp = newp; } } *bestp = bestnewp; return bestsavings; } static int prob_diff_update_savings_search_model(const unsigned int *ct, const vp9_prob *oldp, vp9_prob *bestp, const vp9_prob upd, int b, int r) { int i, old_b, new_b, update_b, savings, bestsavings, step; int newp; vp9_prob bestnewp, newplist[ENTROPY_NODES], oldplist[ENTROPY_NODES]; vp9_model_to_full_probs(oldp, oldplist); vpx_memcpy(newplist, oldp, sizeof(vp9_prob) * UNCONSTRAINED_NODES); for (i = UNCONSTRAINED_NODES, old_b = 0; i < ENTROPY_NODES; ++i) old_b += cost_branch256(ct + 2 * i, oldplist[i]); old_b += cost_branch256(ct + 2 * PIVOT_NODE, oldplist[PIVOT_NODE]); bestsavings = 0; bestnewp = oldp[PIVOT_NODE]; step = (*bestp > oldp[PIVOT_NODE] ? -1 : 1); newp = *bestp; for (; newp != oldp[PIVOT_NODE]; newp += step) { if (newp < 1 || newp > 255) continue; newplist[PIVOT_NODE] = newp; vp9_model_to_full_probs(newplist, newplist); for (i = UNCONSTRAINED_NODES, new_b = 0; i < ENTROPY_NODES; ++i) new_b += cost_branch256(ct + 2 * i, newplist[i]); new_b += cost_branch256(ct + 2 * PIVOT_NODE, newplist[PIVOT_NODE]); update_b = prob_diff_update_cost(newp, oldp[PIVOT_NODE]) + vp9_cost_upd256; savings = old_b - new_b - update_b; if (savings > bestsavings) { bestsavings = savings; bestnewp = newp; } } *bestp = bestnewp; return bestsavings; } static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd, unsigned int *ct) { vp9_prob newp; int savings; newp = get_binary_prob(ct[0], ct[1]); savings = prob_update_savings(ct, *oldp, newp, upd); if (savings > 0) { vp9_write(bc, 1, upd); vp9_write_prob(bc, newp); *oldp = newp; } else { vp9_write(bc, 0, upd); } } static void pack_mb_tokens(vp9_writer* const bc, TOKENEXTRA **tp, const TOKENEXTRA *const stop) { TOKENEXTRA *p = *tp; while (p < stop) { const int t = p->token; const struct vp9_token *const a = vp9_coef_encodings + t; const vp9_extra_bit *const b = vp9_extra_bits + t; int i = 0; const vp9_prob *pp; int v = a->value; int n = a->len; int ncount = n; vp9_prob probs[ENTROPY_NODES]; if (t == EOSB_TOKEN) { ++p; break; } if (t >= TWO_TOKEN) { vp9_model_to_full_probs(p->context_tree, probs); pp = probs; } else { pp = p->context_tree; } assert(pp != 0); /* skip one or two nodes */ if (p->skip_eob_node) { n -= p->skip_eob_node; i = 2 * p->skip_eob_node; ncount -= p->skip_eob_node; } do { const int bb = (v >> --n) & 1; vp9_write(bc, bb, pp[i >> 1]); i = vp9_coef_tree[i + bb]; ncount--; } while (n && ncount); if (b->base_val) { const int e = p->extra, l = b->len; if (l) { const unsigned char *pb = b->prob; int v = e >> 1; int n = l; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; vp9_write(bc, bb, pb[i >> 1]); i = b->tree[i + bb]; } while (n); } vp9_write_bit(bc, e & 1); } ++p; } *tp = p; } static void write_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m <= SPLITMV); #endif write_token(bc, vp9_mv_ref_tree, p, vp9_mv_ref_encoding_array - NEARESTMV + m); } static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m < SPLITMV); #endif write_token(bc, vp9_sb_mv_ref_tree, p, vp9_sb_mv_ref_encoding_array - NEARESTMV + m); } static void write_sub_mv_ref(vp9_writer *bc, B_PREDICTION_MODE m, const vp9_prob *p) { #if CONFIG_DEBUG assert(LEFT4X4 <= m && m <= NEW4X4); #endif write_token(bc, vp9_sub_mv_ref_tree, p, vp9_sub_mv_ref_encoding_array - LEFT4X4 + m); } // This function writes the current macro block's segnment id to the bitstream // It should only be called if a segment map update is indicated. static void write_mb_segid(vp9_writer *bc, const MB_MODE_INFO *mi, const MACROBLOCKD *xd) { if (xd->segmentation_enabled && xd->update_mb_segmentation_map) treed_write(bc, vp9_segment_tree, xd->mb_segment_tree_probs, mi->segment_id, 3); } // This function encodes the reference frame static void encode_ref_frame(vp9_writer *const bc, VP9_COMMON *const cm, MACROBLOCKD *xd, int segment_id, MV_REFERENCE_FRAME rf) { int seg_ref_active; int seg_ref_count = 0; seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) + vp9_check_segref(xd, segment_id, LAST_FRAME) + vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + vp9_check_segref(xd, segment_id, ALTREF_FRAME); } // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (!seg_ref_active || (seg_ref_count > 1)) { // Values used in prediction model coding unsigned char prediction_flag; vp9_prob pred_prob; MV_REFERENCE_FRAME pred_rf; // Get the context probability the prediction flag pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); // Get the predicted value. pred_rf = vp9_get_pred_ref(cm, xd); // Did the chosen reference frame match its predicted value. prediction_flag = (xd->mode_info_context->mbmi.ref_frame == pred_rf); vp9_set_pred_flag(xd, PRED_REF, prediction_flag); vp9_write(bc, prediction_flag, pred_prob); // If not predicted correctly then code value explicitly if (!prediction_flag) { vp9_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_rf], sizeof(mod_refprobs)); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if (seg_ref_active) { mod_refprobs[INTRA_FRAME] *= vp9_check_segref(xd, segment_id, INTRA_FRAME); mod_refprobs[LAST_FRAME] *= vp9_check_segref(xd, segment_id, LAST_FRAME); mod_refprobs[GOLDEN_FRAME] *= (vp9_check_segref(xd, segment_id, GOLDEN_FRAME) * vp9_check_segref(xd, segment_id, ALTREF_FRAME)); } if (mod_refprobs[0]) { vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]); } // Inter coded if (rf != INTRA_FRAME) { if (mod_refprobs[1]) { vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]); } if (rf != LAST_FRAME) { if (mod_refprobs[2]) { vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]); } } } } } // if using the prediction mdoel we have nothing further to do because // the reference frame is fully coded by the segment } // Update the probabilities used to encode reference frame data static void update_ref_probs(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter); cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter); cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]); // Compute a modified set of probabilities to use when prediction of the // reference frame fails vp9_compute_mod_refprobs(cm); } static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, int mi_row, int mi_col) { VP9_COMMON *const pc = &cpi->common; const nmv_context *nmvc = &pc->fc.nmvc; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mis = pc->mode_info_stride; MB_MODE_INFO *const mi = &m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame; const MB_PREDICTION_MODE mode = mi->mode; const int segment_id = mi->segment_id; int skip_coeff; xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi); x->partition_info = x->pi + (m - pc->mi); #ifdef ENTROPY_STATS active_section = 9; #endif if (cpi->mb.e_mbd.update_mb_segmentation_map) { // Is temporal coding of the segment map enabled if (pc->temporal_update) { unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID); vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID); // Code the segment id prediction flag for this mb vp9_write(bc, prediction_flag, pred_prob); // If the mb segment id wasn't predicted code explicitly if (!prediction_flag) write_mb_segid(bc, mi, &cpi->mb.e_mbd); } else { // Normal unpredicted coding write_mb_segid(bc, mi, &cpi->mb.e_mbd); } } if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { skip_coeff = 1; } else { skip_coeff = m->mbmi.mb_skip_coeff; vp9_write(bc, skip_coeff, vp9_get_pred_prob(pc, xd, PRED_MBSKIP)); } // Encode the reference frame. encode_ref_frame(bc, pc, xd, segment_id, rf); if (rf == INTRA_FRAME) { #ifdef ENTROPY_STATS active_section = 6; #endif if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob); if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) { int idx, idy; int bw = 1 << b_width_log2(mi->sb_type); int bh = 1 << b_height_log2(mi->sb_type); for (idy = 0; idy < 2; idy += bh) for (idx = 0; idx < 2; idx += bw) write_sb_ymode(bc, m->bmi[idy * 2 + idx].as_mode.first, pc->fc.sb_ymode_prob); } write_uv_mode(bc, mi->uv_mode, pc->fc.uv_mode_prob[mode]); } else { vp9_prob mv_ref_p[VP9_MVREFS - 1]; vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]); #ifdef ENTROPY_STATS active_section = 3; #endif // If segment skip is not enabled code the mode. if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { if (mi->sb_type >= BLOCK_SIZE_SB8X8) write_sb_mv_ref(bc, mode, mv_ref_p); vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]); } if (is_inter_mode(mode)) { if (cpi->common.mcomp_filter_type == SWITCHABLE) { write_token(bc, vp9_switchable_interp_tree, vp9_get_pred_probs(&cpi->common, xd, PRED_SWITCHABLE_INTERP), vp9_switchable_interp_encodings + vp9_switchable_interp_map[mi->interp_filter]); } else { assert(mi->interp_filter == cpi->common.mcomp_filter_type); } } // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { vp9_write(bc, mi->second_ref_frame > INTRA_FRAME, vp9_get_pred_prob(pc, xd, PRED_COMP)); } switch (mode) { /* new, split require MVs */ case NEWMV: #ifdef ENTROPY_STATS active_section = 5; #endif vp9_encode_mv(bc, &mi->mv[0].as_mv, &mi->best_mv.as_mv, nmvc, xd->allow_high_precision_mv); if (mi->second_ref_frame > 0) vp9_encode_mv(bc, &mi->mv[1].as_mv, &mi->best_second_mv.as_mv, nmvc, xd->allow_high_precision_mv); break; case SPLITMV: { int j; B_PREDICTION_MODE blockmode; int_mv blockmv; int k = -1; /* first block in subset j */ int mv_contz; int_mv leftmv, abovemv; int bwl = b_width_log2(mi->sb_type), bw = 1 << bwl; int bhl = b_height_log2(mi->sb_type), bh = 1 << bhl; int idx, idy; for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { j = idy * 2 + idx; blockmode = cpi->mb.partition_info->bmi[j].mode; blockmv = cpi->mb.partition_info->bmi[j].mv; k = j; leftmv.as_int = left_block_mv(xd, m, k); abovemv.as_int = above_block_mv(m, k, mis); mv_contz = vp9_mv_cont(&leftmv, &abovemv); write_sub_mv_ref(bc, blockmode, cpi->common.fc.sub_mv_ref_prob[mv_contz]); cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++; if (blockmode == NEW4X4) { #ifdef ENTROPY_STATS active_section = 11; #endif vp9_encode_mv(bc, &blockmv.as_mv, &mi->best_mv.as_mv, nmvc, xd->allow_high_precision_mv); if (mi->second_ref_frame > 0) vp9_encode_mv(bc, &cpi->mb.partition_info->bmi[j].second_mv.as_mv, &mi->best_second_mv.as_mv, nmvc, xd->allow_high_precision_mv); } } } #ifdef MODE_STATS ++count_mb_seg[mi->partitioning]; #endif break; } default: break; } } if (mi->sb_type >= BLOCK_SIZE_SB8X8 && pc->txfm_mode == TX_MODE_SELECT && !(rf != INTRA_FRAME && (skip_coeff || vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) { TX_SIZE sz = mi->txfm_size; // FIXME(rbultje) code ternary symbol once all experiments are merged vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]); if (mi->sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) { vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]); if (mi->sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8) vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]); } } } static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, int mi_row, int mi_col) { const VP9_COMMON *const c = &cpi->common; const MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int ym = m->mbmi.mode; const int mis = c->mode_info_stride; const int segment_id = m->mbmi.segment_id; int skip_coeff; if (xd->update_mb_segmentation_map) write_mb_segid(bc, &m->mbmi, xd); if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { skip_coeff = 1; } else { skip_coeff = m->mbmi.mb_skip_coeff; vp9_write(bc, skip_coeff, vp9_get_pred_prob(c, xd, PRED_MBSKIP)); } if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { const B_PREDICTION_MODE A = above_block_mode(m, 0, mis); const B_PREDICTION_MODE L = xd->left_available ? left_block_mode(m, 0) : DC_PRED; write_kf_bmode(bc, ym, c->kf_bmode_prob[A][L]); } if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) { int idx, idy; int bw = 1 << b_width_log2(m->mbmi.sb_type); int bh = 1 << b_height_log2(m->mbmi.sb_type); for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { int i = idy * 2 + idx; const B_PREDICTION_MODE A = above_block_mode(m, i, mis); const B_PREDICTION_MODE L = (xd->left_available || idx) ? left_block_mode(m, i) : DC_PRED; write_kf_bmode(bc, m->bmi[i].as_mode.first, c->kf_bmode_prob[A][L]); } } } write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]); if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 && c->txfm_mode == TX_MODE_SELECT) { TX_SIZE sz = m->mbmi.txfm_size; // FIXME(rbultje) code ternary symbol once all experiments are merged vp9_write(bc, sz != TX_4X4, c->prob_tx[0]); if (m->mbmi.sb_type >= BLOCK_SIZE_MB16X16 && sz != TX_4X4) { vp9_write(bc, sz != TX_8X8, c->prob_tx[1]); if (m->mbmi.sb_type >= BLOCK_SIZE_SB32X32 && sz != TX_8X8) vp9_write(bc, sz != TX_16X16, c->prob_tx[2]); } } } static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) if (xd->ab_index > 0) return; xd->mode_info_context = m; set_mi_row_col(&cpi->common, xd, mi_row, 1 << mi_height_log2(m->mbmi.sb_type), mi_col, 1 << mi_width_log2(m->mbmi.sb_type)); if (cm->frame_type == KEY_FRAME) { write_mb_modes_kf(cpi, m, bc, mi_row, mi_col); #ifdef ENTROPY_STATS active_section = 8; #endif } else { pack_inter_mode_mvs(cpi, m, bc, mi_row, mi_col); #ifdef ENTROPY_STATS active_section = 1; #endif } assert(*tok < tok_end); pack_mb_tokens(bc, tok, tok_end); } static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; const int mis = cm->mode_info_stride; int bwl, bhl; int bsl = b_width_log2(bsize); int bs = (1 << bsl) / 4; // mode_info step for subsize int n; PARTITION_TYPE partition; BLOCK_SIZE_TYPE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; bwl = b_width_log2(m->mbmi.sb_type); bhl = b_height_log2(m->mbmi.sb_type); // parse the partition type if ((bwl == bsl) && (bhl == bsl)) partition = PARTITION_NONE; else if ((bwl == bsl) && (bhl < bsl)) partition = PARTITION_HORZ; else if ((bwl < bsl) && (bhl == bsl)) partition = PARTITION_VERT; else if ((bwl < bsl) && (bhl < bsl)) partition = PARTITION_SPLIT; else assert(0); if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index > 0) return; if (bsize >= BLOCK_SIZE_SB8X8) { int pl; xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK); xd->above_seg_context = cm->above_seg_context + mi_col; pl = partition_plane_context(xd, bsize); // encode the partition information write_token(bc, vp9_partition_tree, cm->fc.partition_prob[pl], vp9_partition_encodings + partition); } subsize = get_subsize(bsize, partition); *(get_sb_index(xd, subsize)) = 0; switch (partition) { case PARTITION_NONE: write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); break; case PARTITION_HORZ: write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); *(get_sb_index(xd, subsize)) = 1; if ((mi_row + bs) < cm->mi_rows) write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col); break; case PARTITION_VERT: write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); *(get_sb_index(xd, subsize)) = 1; if ((mi_col + bs) < cm->mi_cols) write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs); break; case PARTITION_SPLIT: for (n = 0; n < 4; n++) { int j = n >> 1, i = n & 0x01; *(get_sb_index(xd, subsize)) = n; write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end, mi_row + j * bs, mi_col + i * bs, subsize); } break; default: assert(0); } // update partition context if (bsize >= BLOCK_SIZE_SB8X8 && (bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) { set_partition_seg_context(cm, xd, mi_row, mi_col); update_partition_context(xd, subsize, bsize); } } static void write_modes(VP9_COMP *cpi, vp9_writer* const bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end) { VP9_COMMON *const c = &cpi->common; const int mis = c->mode_info_stride; MODE_INFO *m, *m_ptr = c->mi; int mi_row, mi_col; m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis; vpx_memset(c->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * mi_cols_aligned_to_sb(c)); for (mi_row = c->cur_tile_mi_row_start; mi_row < c->cur_tile_mi_row_end; mi_row += 8, m_ptr += 8 * mis) { m = m_ptr; vpx_memset(c->left_seg_context, 0, sizeof(c->left_seg_context)); for (mi_col = c->cur_tile_mi_col_start; mi_col < c->cur_tile_mi_col_end; mi_col += 64 / MI_SIZE, m += 64 / MI_SIZE) write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col, BLOCK_SIZE_SB64X64); } } /* This function is used for debugging probability trees. */ static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) { /* print coef probability tree */ int i, j, k, l, m; FILE *f = fopen("enc_tree_probs.txt", "a"); fprintf(f, "{\n"); for (i = 0; i < block_types; i++) { fprintf(f, " {\n"); for (j = 0; j < REF_TYPES; ++j) { fprintf(f, " {\n"); for (k = 0; k < COEF_BANDS; k++) { fprintf(f, " {\n"); for (l = 0; l < PREV_COEF_CONTEXTS; l++) { fprintf(f, " {"); for (m = 0; m < ENTROPY_NODES; m++) { fprintf(f, "%3u, ", (unsigned int)(coef_probs[i][j][k][l][m])); } } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, "}\n"); fclose(f); } static void build_tree_distribution(vp9_coeff_probs *coef_probs, vp9_coeff_count *coef_counts, unsigned int (*eob_branch_ct)[REF_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS], #ifdef ENTROPY_STATS VP9_COMP *cpi, vp9_coeff_accum *context_counters, #endif vp9_coeff_stats *coef_branch_ct, int block_types) { int i, j, k, l; #ifdef ENTROPY_STATS int t = 0; #endif for (i = 0; i < block_types; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { if (l >= 3 && k == 0) continue; vp9_tree_probs_from_distribution(vp9_coef_tree, coef_probs[i][j][k][l], coef_branch_ct[i][j][k][l], coef_counts[i][j][k][l], 0); coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; coef_probs[i][j][k][l][0] = get_binary_prob(coef_branch_ct[i][j][k][l][0][0], coef_branch_ct[i][j][k][l][0][1]); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) { for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) context_counters[i][j][k][l][t] += coef_counts[i][j][k][l][t]; context_counters[i][j][k][l][MAX_ENTROPY_TOKENS] += eob_branch_ct[i][j][k][l]; } #endif } } } } } static void build_coeff_contexts(VP9_COMP *cpi) { build_tree_distribution(cpi->frame_coef_probs_4x4, cpi->coef_counts_4x4, cpi->common.fc.eob_branch_counts[TX_4X4], #ifdef ENTROPY_STATS cpi, context_counters_4x4, #endif cpi->frame_branch_ct_4x4, BLOCK_TYPES); build_tree_distribution(cpi->frame_coef_probs_8x8, cpi->coef_counts_8x8, cpi->common.fc.eob_branch_counts[TX_8X8], #ifdef ENTROPY_STATS cpi, context_counters_8x8, #endif cpi->frame_branch_ct_8x8, BLOCK_TYPES); build_tree_distribution(cpi->frame_coef_probs_16x16, cpi->coef_counts_16x16, cpi->common.fc.eob_branch_counts[TX_16X16], #ifdef ENTROPY_STATS cpi, context_counters_16x16, #endif cpi->frame_branch_ct_16x16, BLOCK_TYPES); build_tree_distribution(cpi->frame_coef_probs_32x32, cpi->coef_counts_32x32, cpi->common.fc.eob_branch_counts[TX_32X32], #ifdef ENTROPY_STATS cpi, context_counters_32x32, #endif cpi->frame_branch_ct_32x32, BLOCK_TYPES); } static void update_coef_probs_common( vp9_writer* const bc, VP9_COMP *cpi, #ifdef ENTROPY_STATS vp9_coeff_stats *tree_update_hist, #endif vp9_coeff_probs *new_frame_coef_probs, vp9_coeff_probs_model *old_frame_coef_probs, vp9_coeff_stats *frame_branch_ct, TX_SIZE tx_size) { int i, j, k, l, t; int update[2] = {0, 0}; int savings; const int entropy_nodes_update = UNCONSTRAINED_NODES; // vp9_prob bestupd = find_coef_update_prob(cpi); const int tstart = 0; /* dry run to see if there is any udpate at all needed */ savings = 0; for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { // int prev_coef_savings[ENTROPY_NODES] = {0}; for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { for (t = tstart; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t]; const vp9_prob upd = vp9_coef_update_prob[t]; int s; // = prev_coef_savings[t]; int u = 0; if (l >= 3 && k == 0) continue; if (t == PIVOT_NODE) s = prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); update[u]++; } } } } } // printf("Update %d %d, savings %d\n", update[0], update[1], savings); /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp9_write_bit(bc, 0); return; } vp9_write_bit(bc, 1); for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { // int prev_coef_savings[ENTROPY_NODES] = {0}; for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { // calc probs and branch cts for this frame only for (t = tstart; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; const vp9_prob upd = vp9_coef_update_prob[t]; int s; // = prev_coef_savings[t]; int u = 0; if (l >= 3 && k == 0) continue; if (t == PIVOT_NODE) s = prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vp9_write(bc, u, upd); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) ++tree_update_hist[i][j][k][l][t][u]; #endif if (u) { /* send/use new probability */ write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } } static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { vp9_clear_system_state(); // Build the cofficient contexts based on counts collected in encode loop build_coeff_contexts(cpi); update_coef_probs_common(bc, cpi, #ifdef ENTROPY_STATS tree_update_hist_4x4, #endif cpi->frame_coef_probs_4x4, cpi->common.fc.coef_probs_4x4, cpi->frame_branch_ct_4x4, TX_4X4); /* do not do this if not even allowed */ if (cpi->common.txfm_mode != ONLY_4X4) { update_coef_probs_common(bc, cpi, #ifdef ENTROPY_STATS tree_update_hist_8x8, #endif cpi->frame_coef_probs_8x8, cpi->common.fc.coef_probs_8x8, cpi->frame_branch_ct_8x8, TX_8X8); } if (cpi->common.txfm_mode > ALLOW_8X8) { update_coef_probs_common(bc, cpi, #ifdef ENTROPY_STATS tree_update_hist_16x16, #endif cpi->frame_coef_probs_16x16, cpi->common.fc.coef_probs_16x16, cpi->frame_branch_ct_16x16, TX_16X16); } if (cpi->common.txfm_mode > ALLOW_16X16) { update_coef_probs_common(bc, cpi, #ifdef ENTROPY_STATS tree_update_hist_32x32, #endif cpi->frame_coef_probs_32x32, cpi->common.fc.coef_probs_32x32, cpi->frame_branch_ct_32x32, TX_32X32); } } static void decide_kf_ymode_entropy(VP9_COMP *cpi) { int mode_cost[MB_MODE_COUNT]; int bestcost = INT_MAX; int bestindex = 0; int i, j; for (i = 0; i < 8; i++) { int cost = 0; vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree); for (j = 0; j < VP9_YMODES; j++) cost += mode_cost[j] * cpi->ymode_count[j]; vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i], vp9_sb_ymode_tree); for (j = 0; j < VP9_I32X32_MODES; j++) cost += mode_cost[j] * cpi->sb_ymode_count[j]; if (cost < bestcost) { bestindex = i; bestcost = cost; } } cpi->common.kf_ymode_probs_index = bestindex; } static void segment_reference_frames(VP9_COMP *cpi) { VP9_COMMON *oci = &cpi->common; MODE_INFO *mi = oci->mi; int ref[MAX_MB_SEGMENTS] = {0}; int i, j; int mb_index = 0; MACROBLOCKD *const xd = &cpi->mb.e_mbd; for (i = 0; i < oci->mb_rows; i++) { for (j = 0; j < oci->mb_cols; j++, mb_index++) ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame); mb_index++; } for (i = 0; i < MAX_MB_SEGMENTS; i++) { vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME); vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]); } } static void encode_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_writer *w) { int i; // Encode the loop filter level and type vp9_write_literal(w, pc->filter_level, 6); vp9_write_literal(w, pc->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled). vp9_write_bit(w, xd->mode_ref_lf_delta_enabled); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated vp9_write_bit(w, xd->mode_ref_lf_delta_update); if (xd->mode_ref_lf_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { const int delta = xd->ref_lf_deltas[i]; // Frame level data if (delta != xd->last_ref_lf_deltas[i]) { xd->last_ref_lf_deltas[i] = delta; vp9_write_bit(w, 1); if (delta > 0) { vp9_write_literal(w, delta & 0x3F, 6); vp9_write_bit(w, 0); // sign } else { assert(delta < 0); vp9_write_literal(w, (-delta) & 0x3F, 6); vp9_write_bit(w, 1); // sign } } else { vp9_write_bit(w, 0); } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = xd->mode_lf_deltas[i]; if (delta != xd->last_mode_lf_deltas[i]) { xd->last_mode_lf_deltas[i] = delta; vp9_write_bit(w, 1); if (delta > 0) { vp9_write_literal(w, delta & 0x3F, 6); vp9_write_bit(w, 0); // sign } else { assert(delta < 0); vp9_write_literal(w, (-delta) & 0x3F, 6); vp9_write_bit(w, 1); // sign } } else { vp9_write_bit(w, 0); } } } } } static void put_delta_q(vp9_writer *bc, int delta_q) { if (delta_q != 0) { vp9_write_bit(bc, 1); vp9_write_literal(bc, abs(delta_q), 4); vp9_write_bit(bc, delta_q < 0); } else { vp9_write_bit(bc, 0); } } static void encode_quantization(VP9_COMMON *pc, vp9_writer *w) { vp9_write_literal(w, pc->base_qindex, QINDEX_BITS); put_delta_q(w, pc->y_dc_delta_q); put_delta_q(w, pc->uv_dc_delta_q); put_delta_q(w, pc->uv_ac_delta_q); } static void encode_segmentation(VP9_COMP *cpi, vp9_writer *w) { int i, j; VP9_COMMON *const pc = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; vp9_write_bit(w, xd->segmentation_enabled); if (!xd->segmentation_enabled) return; // Segmentation map vp9_write_bit(w, xd->update_mb_segmentation_map); #if CONFIG_IMPLICIT_SEGMENTATION vp9_write_bit(w, xd->allow_implicit_segment_update); #endif if (xd->update_mb_segmentation_map) { // Select the coding strategy (temporal or spatial) vp9_choose_segmap_coding_method(cpi); // Write out probabilities used to decode unpredicted macro-block segments for (i = 0; i < MB_SEG_TREE_PROBS; i++) { const int prob = xd->mb_segment_tree_probs[i]; if (prob != MAX_PROB) { vp9_write_bit(w, 1); vp9_write_prob(w, prob); } else { vp9_write_bit(w, 0); } } // Write out the chosen coding method. vp9_write_bit(w, pc->temporal_update); if (pc->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) { const int prob = pc->segment_pred_probs[i]; if (prob != MAX_PROB) { vp9_write_bit(w, 1); vp9_write_prob(w, prob); } else { vp9_write_bit(w, 0); } } } } // Segmentation data vp9_write_bit(w, xd->update_mb_segmentation_data); // segment_reference_frames(cpi); if (xd->update_mb_segmentation_data) { vp9_write_bit(w, xd->mb_segment_abs_delta); for (i = 0; i < MAX_MB_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { const int data = vp9_get_segdata(xd, i, j); const int data_max = vp9_seg_feature_data_max(j); if (vp9_segfeature_active(xd, i, j)) { vp9_write_bit(w, 1); if (vp9_is_segfeature_signed(j)) { if (data < 0) { vp9_encode_unsigned_max(w, -data, data_max); vp9_write_bit(w, 1); } else { vp9_encode_unsigned_max(w, data, data_max); vp9_write_bit(w, 0); } } else { vp9_encode_unsigned_max(w, data, data_max); } } else { vp9_write_bit(w, 0); } } } } } void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) { int i; VP9_COMMON *const pc = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; vp9_writer header_bc, residual_bc; int extra_bytes_packed = 0; uint8_t *cx_data = dest; cx_data += HEADER_SIZE_IN_BYTES; #if defined(SECTIONBITS_OUTPUT) Sectionbits[active_section = 1] += HEADER_SIZE_IN_BYTES * 8 * 256; #endif compute_update_table(); if (pc->frame_type == KEY_FRAME) { // Start / synch code cx_data[0] = 0x49; cx_data[1] = 0x83; cx_data[2] = 0x42; extra_bytes_packed += 3; cx_data += 3; } if (pc->width != pc->display_width || pc->height != pc->display_height) { write_le16(cx_data, pc->display_width); write_le16(cx_data + 2, pc->display_height); extra_bytes_packed += 4; cx_data += 4; } write_le16(cx_data, pc->width); write_le16(cx_data + 2, pc->height); extra_bytes_packed += 4; cx_data += 4; vp9_start_encode(&header_bc, cx_data); encode_loopfilter(pc, xd, &header_bc); encode_quantization(pc, &header_bc); // When there is a key frame all reference buffers are updated using the new key frame if (pc->frame_type != KEY_FRAME) { int refresh_mask; // Should the GF or ARF be updated using the transmitted frame or buffer #if CONFIG_MULTIPLE_ARF if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { #else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { #endif /* Preserve the previously existing golden frame and update the frame in * the alt ref slot instead. This is highly specific to the use of * alt-ref as a forward reference, and this needs to be generalized as * other uses are implemented (like RTC/temporal scaling) * * gld_fb_idx and alt_fb_idx need to be swapped for future frames, but * that happens in vp9_onyx_if.c:update_reference_frames() so that it can * be done outside of the recode loop. */ refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->alt_fb_idx); } else { int arf_idx = cpi->alt_fb_idx; #if CONFIG_MULTIPLE_ARF // Determine which ARF buffer to use to encode this ARF frame. if (cpi->multi_arf_enabled) { int sn = cpi->sequence_number; arf_idx = (cpi->frame_coding_order[sn] < 0) ? cpi->arf_buffer_idx[sn + 1] : cpi->arf_buffer_idx[sn]; } #endif refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | (cpi->refresh_alt_ref_frame << arf_idx); } vp9_write_literal(&header_bc, refresh_mask, NUM_REF_FRAMES); vp9_write_literal(&header_bc, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2); vp9_write_literal(&header_bc, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2); vp9_write_literal(&header_bc, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2); // Indicate the sign bias for each reference frame buffer. for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[LAST_FRAME + i]); // Signal whether to allow high MV precision vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0); if (pc->mcomp_filter_type == SWITCHABLE) { /* Check to see if only one of the filters is actually used */ int count[VP9_SWITCHABLE_FILTERS]; int i, j, c = 0; for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) count[i] += cpi->switchable_interp_count[j][i]; c += (count[i] > 0); } if (c == 1) { /* Only one filter is used. So set the filter at frame level */ for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { if (count[i]) { pc->mcomp_filter_type = vp9_switchable_interp[i]; break; } } } } // Signal the type of subpel filter to use vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE)); if (pc->mcomp_filter_type != SWITCHABLE) vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2); } vp9_write_literal(&header_bc, pc->frame_context_idx, NUM_FRAME_CONTEXTS_LG2); #ifdef ENTROPY_STATS if (pc->frame_type == INTER_FRAME) active_section = 0; else active_section = 7; #endif encode_segmentation(cpi, &header_bc); // Encode the common prediction model status flag probability updates for // the reference frame update_refpred_stats(cpi); if (pc->frame_type != KEY_FRAME) { for (i = 0; i < PREDICTION_PROBS; i++) { if (cpi->ref_pred_probs_update[i]) { vp9_write_bit(&header_bc, 1); vp9_write_prob(&header_bc, pc->ref_pred_probs[i]); } else { vp9_write_bit(&header_bc, 0); } } } if (cpi->mb.e_mbd.lossless) { pc->txfm_mode = ONLY_4X4; } else { if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] + cpi->txfm_count_16x16p[TX_4X4] + cpi->txfm_count_8x8p[TX_4X4], cpi->txfm_count_32x32p[TX_4X4] + cpi->txfm_count_32x32p[TX_8X8] + cpi->txfm_count_32x32p[TX_16X16] + cpi->txfm_count_32x32p[TX_32X32] + cpi->txfm_count_16x16p[TX_4X4] + cpi->txfm_count_16x16p[TX_8X8] + cpi->txfm_count_16x16p[TX_16X16] + cpi->txfm_count_8x8p[TX_4X4] + cpi->txfm_count_8x8p[TX_8X8]); pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] + cpi->txfm_count_16x16p[TX_8X8], cpi->txfm_count_32x32p[TX_8X8] + cpi->txfm_count_32x32p[TX_16X16] + cpi->txfm_count_32x32p[TX_32X32] + cpi->txfm_count_16x16p[TX_8X8] + cpi->txfm_count_16x16p[TX_16X16]); pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16], cpi->txfm_count_32x32p[TX_16X16] + cpi->txfm_count_32x32p[TX_32X32]); } else { pc->prob_tx[0] = 128; pc->prob_tx[1] = 128; pc->prob_tx[2] = 128; } vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2); if (pc->txfm_mode > ALLOW_16X16) { vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT); } if (pc->txfm_mode == TX_MODE_SELECT) { vp9_write_prob(&header_bc, pc->prob_tx[0]); vp9_write_prob(&header_bc, pc->prob_tx[1]); vp9_write_prob(&header_bc, pc->prob_tx[2]); } } // If appropriate update the inter mode probability context and code the // changes in the bitstream. if (pc->frame_type != KEY_FRAME) { int i, j; int new_context[INTER_MODE_CONTEXTS][4]; if (!cpi->dummy_packing) { update_inter_mode_probs(pc, new_context); } else { // In dummy pack assume context unchanged. vpx_memcpy(new_context, pc->fc.vp9_mode_contexts, sizeof(pc->fc.vp9_mode_contexts)); } for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) { vp9_write(&header_bc, 1, 252); vp9_write_prob(&header_bc, new_context[i][j]); // Only update the persistent copy if this is the "real pack" if (!cpi->dummy_packing) { pc->fc.vp9_mode_contexts[i][j] = new_context[i][j]; } } else { vp9_write(&header_bc, 0, 252); } } } } vp9_clear_system_state(); // __asm emms; vp9_copy(cpi->common.fc.pre_coef_probs_4x4, cpi->common.fc.coef_probs_4x4); vp9_copy(cpi->common.fc.pre_coef_probs_8x8, cpi->common.fc.coef_probs_8x8); vp9_copy(cpi->common.fc.pre_coef_probs_16x16, cpi->common.fc.coef_probs_16x16); vp9_copy(cpi->common.fc.pre_coef_probs_32x32, cpi->common.fc.coef_probs_32x32); vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob); vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob); vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob); vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob); vp9_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob); vp9_copy(cpi->common.fc.pre_partition_prob, cpi->common.fc.partition_prob); cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc; vp9_zero(cpi->sub_mv_ref_count); vp9_zero(cpi->common.fc.mv_ref_ct); update_coef_probs(cpi, &header_bc); #ifdef ENTROPY_STATS active_section = 2; #endif vp9_update_skip_probs(cpi); for (i = 0; i < MBSKIP_CONTEXTS; ++i) { vp9_write_prob(&header_bc, pc->mbskip_pred_probs[i]); } if (pc->frame_type == KEY_FRAME) { if (!pc->kf_ymode_probs_update) { vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3); } } else { // Update the probabilities used to encode reference frame data update_ref_probs(cpi); #ifdef ENTROPY_STATS active_section = 1; #endif if (pc->mcomp_filter_type == SWITCHABLE) update_switchable_interp_probs(cpi, &header_bc); vp9_write_prob(&header_bc, pc->prob_intra_coded); vp9_write_prob(&header_bc, pc->prob_last_coded); vp9_write_prob(&header_bc, pc->prob_gf_coded); { const int comp_pred_mode = cpi->common.comp_pred_mode; const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY); const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION); vp9_write_bit(&header_bc, use_compound_pred); if (use_compound_pred) { vp9_write_bit(&header_bc, use_hybrid_pred); if (use_hybrid_pred) { for (i = 0; i < COMP_PRED_CONTEXTS; i++) { pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i], cpi->comp_pred_count[i]); vp9_write_prob(&header_bc, pc->prob_comppred[i]); } } } } update_mbintra_mode_probs(cpi, &header_bc); for (i = 0; i < NUM_PARTITION_CONTEXTS; ++i) { vp9_prob Pnew[PARTITION_TYPES - 1]; unsigned int bct[PARTITION_TYPES - 1][2]; update_mode(&header_bc, PARTITION_TYPES, vp9_partition_encodings, vp9_partition_tree, Pnew, pc->fc.partition_prob[i], bct, (unsigned int *)cpi->partition_count[i]); } vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc); } /* tiling */ { int min_log2_tiles, delta_log2_tiles, n_tile_bits, n; vp9_get_tile_n_bits(pc, &min_log2_tiles, &delta_log2_tiles); n_tile_bits = pc->log2_tile_columns - min_log2_tiles; for (n = 0; n < delta_log2_tiles; n++) { if (n_tile_bits--) { vp9_write_bit(&header_bc, 1); } else { vp9_write_bit(&header_bc, 0); break; } } vp9_write_bit(&header_bc, pc->log2_tile_rows != 0); if (pc->log2_tile_rows != 0) vp9_write_bit(&header_bc, pc->log2_tile_rows != 1); } vp9_stop_encode(&header_bc); /* update frame tag */ { const int first_partition_length_in_bytes = header_bc.pos; int scaling = (pc->width != pc->display_width || pc->height != pc->display_height); struct vp9_write_bit_buffer wb = {dest, 0}; assert(first_partition_length_in_bytes <= 0xffff); vp9_wb_write_bit(&wb, pc->frame_type); vp9_wb_write_literal(&wb, pc->version, 3); vp9_wb_write_bit(&wb, pc->show_frame); vp9_wb_write_bit(&wb, scaling); vp9_wb_write_bit(&wb, pc->subsampling_x); vp9_wb_write_bit(&wb, pc->subsampling_y); vp9_wb_write_bit(&wb, pc->clr_type); vp9_wb_write_bit(&wb, pc->error_resilient_mode); if (!pc->error_resilient_mode) { vp9_wb_write_bit(&wb, pc->refresh_frame_context); vp9_wb_write_bit(&wb, pc->frame_parallel_decoding_mode); } vp9_wb_write_literal(&wb, first_partition_length_in_bytes, 16); } *size = HEADER_SIZE_IN_BYTES + extra_bytes_packed + header_bc.pos; if (pc->frame_type == KEY_FRAME) { decide_kf_ymode_entropy(cpi); } else { /* This is not required if the counts in cpi are consistent with the * final packing pass */ // if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount); } { int tile_row, tile_col, total_size = 0; unsigned char *data_ptr = cx_data + header_bc.pos; TOKENEXTRA *tok[1 << 6], *tok_end; tok[0] = cpi->tok; for (tile_col = 1; tile_col < pc->tile_columns; tile_col++) tok[tile_col] = tok[tile_col - 1] + cpi->tok_count[tile_col - 1]; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); tok_end = cpi->tok + cpi->tok_count[0]; for (tile_col = 0; tile_col < pc->tile_columns; tile_col++, tok_end += cpi->tok_count[tile_col]) { vp9_get_tile_col_offsets(pc, tile_col); if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) vp9_start_encode(&residual_bc, data_ptr + total_size + 4); else vp9_start_encode(&residual_bc, data_ptr + total_size); write_modes(cpi, &residual_bc, &tok[tile_col], tok_end); vp9_stop_encode(&residual_bc); if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) { // size of this tile write_le32(data_ptr + total_size, residual_bc.pos); total_size += 4; } total_size += residual_bc.pos; } } assert((unsigned int)(tok[0] - cpi->tok) == cpi->tok_count[0]); for (tile_col = 1; tile_col < pc->tile_columns; tile_col++) assert((unsigned int)(tok[tile_col] - tok[tile_col - 1]) == cpi->tok_count[tile_col]); *size += total_size; } } #ifdef ENTROPY_STATS static void print_tree_update_for_type(FILE *f, vp9_coeff_stats *tree_update_hist, int block_types, const char *header) { int i, j, k, l, m; fprintf(f, "const vp9_coeff_prob %s = {\n", header); for (i = 0; i < block_types; i++) { fprintf(f, " { \n"); for (j = 0; j < REF_TYPES; j++) { fprintf(f, " { \n"); for (k = 0; k < COEF_BANDS; k++) { fprintf(f, " {\n"); for (l = 0; l < PREV_COEF_CONTEXTS; l++) { fprintf(f, " {"); for (m = 0; m < ENTROPY_NODES; m++) { fprintf(f, "%3d, ", get_binary_prob(tree_update_hist[i][j][k][l][m][0], tree_update_hist[i][j][k][l][m][1])); } fprintf(f, "},\n"); } fprintf(f, "},\n"); } fprintf(f, " },\n"); } fprintf(f, " },\n"); } fprintf(f, "};\n"); } void print_tree_update_probs() { FILE *f = fopen("coefupdprob.h", "w"); fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES, "vp9_coef_update_probs_4x4[BLOCK_TYPES]"); print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES, "vp9_coef_update_probs_8x8[BLOCK_TYPES]"); print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES, "vp9_coef_update_probs_16x16[BLOCK_TYPES]"); print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES, "vp9_coef_update_probs_32x32[BLOCK_TYPES]"); fclose(f); f = fopen("treeupdate.bin", "wb"); fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f); fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f); fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f); fwrite(tree_update_hist_32x32, sizeof(tree_update_hist_32x32), 1, f); fclose(f); } #endif