/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_sadmxn.h" #include "vp9/common/vp9_subpelvar.h" #include const uint8_t vp9_mbsplit_offset[4][16] = { { 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} }; static void lower_mv_precision(int_mv *mv, int usehp) { if (!usehp || !vp9_use_nmv_hp(&mv->as_mv)) { if (mv->as_mv.row & 1) mv->as_mv.row += (mv->as_mv.row > 0 ? -1 : 1); if (mv->as_mv.col & 1) mv->as_mv.col += (mv->as_mv.col > 0 ? -1 : 1); } } vp9_prob *vp9_mv_ref_probs(VP9_COMMON *pc, vp9_prob p[4], const int context ) { p[0] = pc->fc.vp9_mode_contexts[context][0]; p[1] = pc->fc.vp9_mode_contexts[context][1]; p[2] = pc->fc.vp9_mode_contexts[context][2]; p[3] = pc->fc.vp9_mode_contexts[context][3]; return p; } #define SP(x) (((x) & 7) << 1) unsigned int vp9_sad3x16_c(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride) { return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, 3, 16); } unsigned int vp9_sad16x3_c(const uint8_t *src_ptr, int src_stride, const uint8_t *ref_ptr, int ref_stride) { return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, 16, 3); } unsigned int vp9_variance2x16_c(const uint8_t *src_ptr, const int source_stride, const uint8_t *ref_ptr, const int recon_stride, unsigned int *sse) { int sum; variance(src_ptr, source_stride, ref_ptr, recon_stride, 2, 16, sse, &sum); return (*sse - (((unsigned int)sum * sum) >> 5)); } unsigned int vp9_variance16x2_c(const uint8_t *src_ptr, const int source_stride, const uint8_t *ref_ptr, const int recon_stride, unsigned int *sse) { int sum; variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 2, sse, &sum); return (*sse - (((unsigned int)sum * sum) >> 5)); } unsigned int vp9_sub_pixel_variance16x2_c(const uint8_t *src_ptr, const int src_pixels_per_line, const int xoffset, const int yoffset, const uint8_t *dst_ptr, const int dst_pixels_per_line, unsigned int *sse) { uint16_t FData3[16 * 3]; // Temp data buffer used in filtering uint8_t temp2[2 * 16]; const int16_t *HFilter, *VFilter; HFilter = vp9_bilinear_filters[xoffset]; VFilter = vp9_bilinear_filters[yoffset]; var_filter_block2d_bil_first_pass(src_ptr, FData3, src_pixels_per_line, 1, 3, 16, HFilter); var_filter_block2d_bil_second_pass(FData3, temp2, 16, 16, 2, 16, VFilter); return vp9_variance16x2_c(temp2, 16, dst_ptr, dst_pixels_per_line, sse); } unsigned int vp9_sub_pixel_variance2x16_c(const uint8_t *src_ptr, const int src_pixels_per_line, const int xoffset, const int yoffset, const uint8_t *dst_ptr, const int dst_pixels_per_line, unsigned int *sse) { uint16_t FData3[2 * 17]; // Temp data buffer used in filtering uint8_t temp2[2 * 16]; const int16_t *HFilter, *VFilter; HFilter = vp9_bilinear_filters[xoffset]; VFilter = vp9_bilinear_filters[yoffset]; var_filter_block2d_bil_first_pass(src_ptr, FData3, src_pixels_per_line, 1, 17, 2, HFilter); var_filter_block2d_bil_second_pass(FData3, temp2, 2, 2, 16, 2, VFilter); return vp9_variance2x16_c(temp2, 2, dst_ptr, dst_pixels_per_line, sse); } /* check a list of motion vectors by sad score using a number rows of pixels * above and a number cols of pixels in the left to select the one with best * score to use as ref motion vector */ void vp9_find_best_ref_mvs(MACROBLOCKD *xd, uint8_t *ref_y_buffer, int ref_y_stride, int_mv *mvlist, int_mv *nearest, int_mv *near) { int i, j; uint8_t *above_src; uint8_t *above_ref; #if !CONFIG_ABOVESPREFMV uint8_t *left_src; uint8_t *left_ref; #endif unsigned int score; unsigned int sse; unsigned int ref_scores[MAX_MV_REF_CANDIDATES] = {0}; int_mv sorted_mvs[MAX_MV_REF_CANDIDATES]; int zero_seen = FALSE; if (ref_y_buffer) { // Default all to 0,0 if nothing else available nearest->as_int = near->as_int = 0; vpx_memset(sorted_mvs, 0, sizeof(sorted_mvs)); above_src = xd->dst.y_buffer - xd->dst.y_stride * 2; above_ref = ref_y_buffer - ref_y_stride * 2; #if CONFIG_ABOVESPREFMV above_src -= 4; above_ref -= 4; #else left_src = xd->dst.y_buffer - 2; left_ref = ref_y_buffer - 2; #endif // Limit search to the predicted best few candidates for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { int_mv this_mv; int offset = 0; int row_offset, col_offset; this_mv.as_int = mvlist[i].as_int; // If we see a 0,0 vector for a second time we have reached the end of // the list of valid candidate vectors. if (!this_mv.as_int && zero_seen) break; zero_seen = zero_seen || !this_mv.as_int; #if !CONFIG_ABOVESPREFMV clamp_mv(&this_mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN + 24, xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, xd->mb_to_top_edge - LEFT_TOP_MARGIN + 24, xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); #else clamp_mv(&this_mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN + 32, xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, xd->mb_to_top_edge - LEFT_TOP_MARGIN + 24, xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); #endif row_offset = this_mv.as_mv.row >> 3; col_offset = this_mv.as_mv.col >> 3; offset = ref_y_stride * row_offset + col_offset; score = 0; if (xd->up_available) { vp9_sub_pixel_variance16x2(above_ref + offset, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), above_src, xd->dst.y_stride, &sse); score += sse; if (xd->mode_info_context->mbmi.sb_type >= BLOCK_SIZE_SB32X32) { vp9_sub_pixel_variance16x2(above_ref + offset + 16, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), above_src + 16, xd->dst.y_stride, &sse); score += sse; } if (xd->mode_info_context->mbmi.sb_type >= BLOCK_SIZE_SB64X64) { vp9_sub_pixel_variance16x2(above_ref + offset + 32, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), above_src + 32, xd->dst.y_stride, &sse); score += sse; vp9_sub_pixel_variance16x2(above_ref + offset + 48, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), above_src + 48, xd->dst.y_stride, &sse); score += sse; } } #if !CONFIG_ABOVESPREFMV if (xd->left_available) { vp9_sub_pixel_variance2x16_c(left_ref + offset, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), left_src, xd->dst.y_stride, &sse); score += sse; if (xd->mode_info_context->mbmi.sb_type >= BLOCK_SIZE_SB32X32) { vp9_sub_pixel_variance2x16_c(left_ref + offset + ref_y_stride * 16, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), left_src + xd->dst.y_stride * 16, xd->dst.y_stride, &sse); score += sse; } if (xd->mode_info_context->mbmi.sb_type >= BLOCK_SIZE_SB64X64) { vp9_sub_pixel_variance2x16_c(left_ref + offset + ref_y_stride * 32, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), left_src + xd->dst.y_stride * 32, xd->dst.y_stride, &sse); score += sse; vp9_sub_pixel_variance2x16_c(left_ref + offset + ref_y_stride * 48, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), left_src + xd->dst.y_stride * 48, xd->dst.y_stride, &sse); score += sse; } } #endif // Add the entry to our list and then resort the list on score. ref_scores[i] = score; sorted_mvs[i].as_int = this_mv.as_int; j = i; while (j > 0) { if (ref_scores[j] < ref_scores[j-1]) { ref_scores[j] = ref_scores[j-1]; sorted_mvs[j].as_int = sorted_mvs[j-1].as_int; ref_scores[j-1] = score; sorted_mvs[j-1].as_int = this_mv.as_int; j--; } else { break; } } } } else { vpx_memcpy(sorted_mvs, mvlist, sizeof(sorted_mvs)); } // Make sure all the candidates are properly clamped etc for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { lower_mv_precision(&sorted_mvs[i], xd->allow_high_precision_mv); clamp_mv2(&sorted_mvs[i], xd); } // Nearest may be a 0,0 or non zero vector and now matches the chosen // "best reference". This has advantages when it is used as part of a // compound predictor as it means a non zero vector can be paired using // this mode with a 0 vector. The Near vector is still forced to be a // non zero candidate if one is avaialble. nearest->as_int = sorted_mvs[0].as_int; if ( sorted_mvs[1].as_int ) { near->as_int = sorted_mvs[1].as_int; } else { near->as_int = sorted_mvs[2].as_int; } // Copy back the re-ordered mv list vpx_memcpy(mvlist, sorted_mvs, sizeof(sorted_mvs)); }