/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "./vp9_rtcd.h" #include "test/acm_random.h" #include "test/buffer.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_scan.h" #include "vpx/vpx_codec.h" #include "vpx/vpx_integer.h" #include "vpx_ports/vpx_timer.h" using libvpx_test::ACMRandom; using libvpx_test::Buffer; namespace { const int number_of_iterations = 100; typedef void (*QuantizeFunc)(const tran_low_t *coeff, intptr_t count, int skip_block, const int16_t *zbin, const int16_t *round, const int16_t *quant, const int16_t *quant_shift, tran_low_t *qcoeff, tran_low_t *dqcoeff, const int16_t *dequant, uint16_t *eob, const int16_t *scan, const int16_t *iscan); typedef std::tr1::tuple QuantizeParam; class VP9QuantizeBase { public: VP9QuantizeBase(vpx_bit_depth_t bit_depth, int max_size) : bit_depth_(bit_depth), max_size_(max_size) { max_value_ = (1 << bit_depth_) - 1; zbin_ptr_ = reinterpret_cast(vpx_memalign(16, 8 * sizeof(*zbin_ptr_))); round_ptr_ = reinterpret_cast(vpx_memalign(16, 8 * sizeof(*round_ptr_))); quant_ptr_ = reinterpret_cast(vpx_memalign(16, 8 * sizeof(*quant_ptr_))); quant_shift_ptr_ = reinterpret_cast( vpx_memalign(16, 8 * sizeof(*quant_shift_ptr_))); dequant_ptr_ = reinterpret_cast( vpx_memalign(16, 8 * sizeof(*dequant_ptr_))); } ~VP9QuantizeBase() { vpx_free(zbin_ptr_); vpx_free(round_ptr_); vpx_free(quant_ptr_); vpx_free(quant_shift_ptr_); vpx_free(dequant_ptr_); zbin_ptr_ = NULL; round_ptr_ = NULL; quant_ptr_ = NULL; quant_shift_ptr_ = NULL; dequant_ptr_ = NULL; libvpx_test::ClearSystemState(); } protected: int16_t *zbin_ptr_; int16_t *round_ptr_; int16_t *quant_ptr_; int16_t *quant_shift_ptr_; int16_t *dequant_ptr_; const vpx_bit_depth_t bit_depth_; int max_value_; const int max_size_; }; class VP9QuantizeTest : public VP9QuantizeBase, public ::testing::TestWithParam { public: VP9QuantizeTest() : VP9QuantizeBase(GET_PARAM(2), GET_PARAM(3)), quantize_op_(GET_PARAM(0)), ref_quantize_op_(GET_PARAM(1)) {} protected: const QuantizeFunc quantize_op_; const QuantizeFunc ref_quantize_op_; }; void GenerateHelperArrays(ACMRandom *rnd, int16_t *zbin, int16_t *round, int16_t *quant, int16_t *quant_shift, int16_t *dequant) { for (int j = 0; j < 2; j++) { // Values determined by deconstructing vp9_init_quantizer(). // zbin may be up to 1143 for 8 and 10 bit Y values, or 1200 for 12 bit Y // values or U/V values of any bit depth. This is because y_delta is not // factored into the vp9_ac_quant() call. zbin[j] = rnd->RandRange(1200); // round may be up to 685 for Y values or 914 for U/V. round[j] = rnd->RandRange(914); // quant ranges from 1 to -32703 quant[j] = static_cast(rnd->RandRange(32704)) - 32703; // quant_shift goes up to 1 << 16. quant_shift[j] = rnd->RandRange(16384); // dequant maxes out at 1828 for all cases. dequant[j] = rnd->RandRange(1828); } for (int j = 2; j < 8; j++) { zbin[j] = zbin[1]; round[j] = round[1]; quant[j] = quant[1]; quant_shift[j] = quant_shift[1]; dequant[j] = dequant[1]; } } TEST_P(VP9QuantizeTest, OperationCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer coeff = Buffer(max_size_, max_size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer qcoeff = Buffer(max_size_, max_size_, 0, 32); ASSERT_TRUE(qcoeff.Init()); Buffer dqcoeff = Buffer(max_size_, max_size_, 0, 32); ASSERT_TRUE(dqcoeff.Init()); Buffer ref_qcoeff = Buffer(max_size_, max_size_, 0); ASSERT_TRUE(ref_qcoeff.Init()); Buffer ref_dqcoeff = Buffer(max_size_, max_size_, 0); ASSERT_TRUE(ref_dqcoeff.Init()); uint16_t eob, ref_eob; for (int i = 0; i < number_of_iterations; ++i) { const int skip_block = i == 0; TX_SIZE sz; if (max_size_ == 16) { sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16 } else { sz = TX_32X32; } const TX_TYPE tx_type = (TX_TYPE)((i >> 2) % 3); const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; const int count = (4 << sz) * (4 << sz); // 16, 64, 256 coeff.Set(&rnd, 0, max_value_); GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_); ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, scan_order->scan, scan_order->iscan); ASM_REGISTER_STATE_CHECK( quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, scan_order->scan, scan_order->iscan)); EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff)); EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff)); EXPECT_EQ(eob, ref_eob); if (HasFailure()) { printf("Failure on iteration %d.\n", i); qcoeff.PrintDifference(ref_qcoeff); dqcoeff.PrintDifference(ref_dqcoeff); return; } } } TEST_P(VP9QuantizeTest, EOBCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer coeff = Buffer(max_size_, max_size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer qcoeff = Buffer(max_size_, max_size_, 0, 32); ASSERT_TRUE(qcoeff.Init()); Buffer dqcoeff = Buffer(max_size_, max_size_, 0, 32); ASSERT_TRUE(dqcoeff.Init()); Buffer ref_qcoeff = Buffer(max_size_, max_size_, 0); ASSERT_TRUE(ref_qcoeff.Init()); Buffer ref_dqcoeff = Buffer(max_size_, max_size_, 0); ASSERT_TRUE(ref_dqcoeff.Init()); uint16_t eob, ref_eob; for (int i = 0; i < number_of_iterations; ++i) { int skip_block = i == 0; TX_SIZE sz; if (max_size_ == 16) { sz = (TX_SIZE)(i % 3); // TX_4X4, TX_8X8 TX_16X16 } else { sz = TX_32X32; } TX_TYPE tx_type = (TX_TYPE)((i >> 2) % 3); const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; int count = (4 << sz) * (4 << sz); // 16, 64, 256 // Two random entries coeff.Set(0); coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_); coeff.TopLeftPixel()[rnd(count)] = rnd.RandRange(max_value_); GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_); ref_quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, ref_qcoeff.TopLeftPixel(), ref_dqcoeff.TopLeftPixel(), dequant_ptr_, &ref_eob, scan_order->scan, scan_order->iscan); ASM_REGISTER_STATE_CHECK( quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, scan_order->scan, scan_order->iscan)); EXPECT_TRUE(qcoeff.CheckValues(ref_qcoeff)); EXPECT_TRUE(dqcoeff.CheckValues(ref_dqcoeff)); EXPECT_EQ(eob, ref_eob); if (HasFailure()) { printf("Failure on iteration %d.\n", i); qcoeff.PrintDifference(ref_qcoeff); dqcoeff.PrintDifference(ref_dqcoeff); return; } } } TEST_P(VP9QuantizeTest, DISABLED_Speed) { ACMRandom rnd(ACMRandom::DeterministicSeed()); Buffer coeff = Buffer(max_size_, max_size_, 0, 16); ASSERT_TRUE(coeff.Init()); Buffer qcoeff = Buffer(max_size_, max_size_, 0, 32); ASSERT_TRUE(qcoeff.Init()); Buffer dqcoeff = Buffer(max_size_, max_size_, 0, 32); ASSERT_TRUE(dqcoeff.Init()); uint16_t eob; int starting_sz, ending_sz; if (max_size_ == 16) { // TX_4X4, TX_8X8 TX_16X16 starting_sz = 0; ending_sz = 2; } else { // TX_32X32 starting_sz = 3; ending_sz = 3; } for (TX_SIZE sz = starting_sz; sz <= ending_sz; ++sz) { // skip_block, zbin > coeff, zbin < coeff. for (int i = 0; i < 3; ++i) { const int skip_block = i == 0; // TX_TYPE defines the scan order. That is not relevant to the speed test. // Pick the first one. const TX_TYPE tx_type = DCT_DCT; const scan_order *scan_order = &vp9_scan_orders[sz][tx_type]; const int count = (4 << sz) * (4 << sz); // 16, 64, 256 GenerateHelperArrays(&rnd, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, dequant_ptr_); if (i == 0) { // zbin values are unused when skip_block == 1. zbin_ptr_[0] = zbin_ptr_[1] = 0; coeff.Set(0); } else if (i == 1) { // When |coeff values| are less than zbin the results are 0. zbin_ptr_[0] = zbin_ptr_[1] = 100; coeff.Set(&rnd, -99, 99); } else if (i == 2) { zbin_ptr_[0] = zbin_ptr_[1] = 50; coeff.Set(&rnd, -500, 500); } vpx_usec_timer timer; vpx_usec_timer_start(&timer); for (int j = 0; j < 100000000 / count; ++j) { quantize_op_(coeff.TopLeftPixel(), count, skip_block, zbin_ptr_, round_ptr_, quant_ptr_, quant_shift_ptr_, qcoeff.TopLeftPixel(), dqcoeff.TopLeftPixel(), dequant_ptr_, &eob, scan_order->scan, scan_order->iscan); } vpx_usec_timer_mark(&timer); const int elapsed_time = static_cast(vpx_usec_timer_elapsed(&timer)); if (i == 0) printf("Skip block.\n"); if (i == 1) printf("Bypass calculations.\n"); if (i == 2) printf("Full calculations.\n"); printf("Quantize %dx%d time: %5d ms\n", 4 << sz, 4 << sz, elapsed_time / 1000); } printf("\n"); } } using std::tr1::make_tuple; #if HAVE_SSE2 #if CONFIG_VP9_HIGHBITDEPTH // TODO(johannkoenig): Fix vpx_quantize_b_sse2 in highbitdepth builds. // make_tuple(&vpx_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8), INSTANTIATE_TEST_CASE_P( SSE2, VP9QuantizeTest, ::testing::Values( make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_8, 16), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_10, 16), make_tuple(&vpx_highbd_quantize_b_sse2, &vpx_highbd_quantize_b_c, VPX_BITS_12, 16), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_8, 32), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_10, 32), make_tuple(&vpx_highbd_quantize_b_32x32_sse2, &vpx_highbd_quantize_b_32x32_c, VPX_BITS_12, 32))); #else INSTANTIATE_TEST_CASE_P(SSE2, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_sse2, &vpx_quantize_b_c, VPX_BITS_8, 16))); #endif // CONFIG_VP9_HIGHBITDEPTH #endif // HAVE_SSE2 // TODO(johannkoenig): SSSE3 optimizations do not yet pass these tests. #if HAVE_SSSE3 && ARCH_X86_64 INSTANTIATE_TEST_CASE_P( DISABLED_SSSE3, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_ssse3, &vpx_quantize_b_c, VPX_BITS_8, 16), make_tuple(&vpx_quantize_b_32x32_ssse3, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32))); #endif // HAVE_SSSE3 && ARCH_X86_64 // TODO(johannkoenig): AVX optimizations do not yet pass the 32x32 test or // highbitdepth configurations. #if HAVE_AVX && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(AVX, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_avx, &vpx_quantize_b_c, VPX_BITS_8, 16))); INSTANTIATE_TEST_CASE_P(DISABLED_AVX, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_32x32_avx, &vpx_quantize_b_32x32_c, VPX_BITS_8, 32))); #endif // HAVE_AVX && ARCH_X86_64 && !CONFIG_VP9_HIGHBITDEPTH // TODO(webm:1448): dqcoeff is not handled correctly in HBD builds. #if HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P(NEON, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_neon, &vpx_quantize_b_c, VPX_BITS_8, 16))); #endif // HAVE_NEON && !CONFIG_VP9_HIGHBITDEPTH // Only useful to compare "Speed" test results. INSTANTIATE_TEST_CASE_P(DISABLED_C, VP9QuantizeTest, ::testing::Values(make_tuple(&vpx_quantize_b_c, &vpx_quantize_b_c, VPX_BITS_8, 16))); } // namespace