/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_scale_rtcd.h" #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp10/common/blockd.h" #include "vp10/common/reconinter.h" #include "vp10/common/reconintra.h" #if CONFIG_OBMC #include "vp10/common/onyxc_int.h" #endif // CONFIG_OBMC // TODO(geza.lore) Update this when the extended coding unit size experiment // have been ported. #define CU_SIZE 64 #if CONFIG_VP9_HIGHBITDEPTH void vp10_highbd_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, const INTERP_FILTER interp_filter, enum mv_precision precision, int x, int y, int bd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); high_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4, bd); } #endif // CONFIG_VP9_HIGHBITDEPTH void vp10_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, const INTERP_FILTER interp_filter, enum mv_precision precision, int x, int y) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = vp10_scale_mv(&mv_q4, x, y, sf); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, sf->x_step_q4, sf->y_step_q4); } void build_inter_predictors(MACROBLOCKD *xd, int plane, #if CONFIG_OBMC int mi_col_offset, int mi_row_offset, #endif // CONFIG_OBMC int block, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; #if CONFIG_OBMC const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset]; #else const MODE_INFO *mi = xd->mi[0]; #endif // CONFIG_OBMC const int is_compound = has_second_ref(&mi->mbmi); const INTERP_FILTER interp_filter = mi->mbmi.interp_filter; int ref; for (ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. // mv_precision precision is MV_PRECISION_Q4. const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); uint8_t *pre; MV32 scaled_mv; int xs, ys, subpel_x, subpel_y; const int is_scaled = vp10_is_scaled(sf); if (is_scaled) { pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); scaled_mv = vp10_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); xs = sf->x_step_q4; ys = sf->y_step_q4; } else { pre = pre_buf->buf + (y * pre_buf->stride + x); scaled_mv.row = mv_q4.row; scaled_mv.col = mv_q4.col; xs = ys = 16; } subpel_x = scaled_mv.col & SUBPEL_MASK; subpel_y = scaled_mv.row & SUBPEL_MASK; pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + (scaled_mv.col >> SUBPEL_BITS); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { high_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, xs, ys, xd->bd); } else { inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, xs, ys); } #else inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, w, h, ref, interp_filter, xs, ys); #endif // CONFIG_VP9_HIGHBITDEPTH } } void vp10_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, int ic, int mi_row, int mi_col) { struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi[0]; const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); const int width = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int height = 4 * num_4x4_blocks_high_lookup[plane_bsize]; uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2]; int ref; const int is_compound = has_second_ref(&mi->mbmi); const INTERP_FILTER interp_filter = mi->mbmi.interp_filter; for (ref = 0; ref < 1 + is_compound; ++ref) { const uint8_t *pre = &pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vp10_highbd_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd->bd); } else { vp10_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); } #else vp10_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, ref, interp_filter, MV_PRECISION_Q3, mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); #endif // CONFIG_VP9_HIGHBITDEPTH } } static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = 4 * num_4x4_blocks_wide_lookup[bsize] >> pd->subsampling_x; const int bh = 4 * num_4x4_blocks_high_lookup[bsize] >> pd->subsampling_y; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) { const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); assert(bsize == BLOCK_8X8); assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, mi_x, mi_y); } else { build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y); } } } void vp10_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) { if (plane == 0) { vp10_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, bsize); } else { vp10_build_interintra_predictors_sbc(xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, plane, bsize); } } #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors_sbuv(xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, MAX_MB_PLANE - 1); #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors(xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } void vp10_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer}; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride}; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &planes[i]; setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void vp10_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf) { if (src != NULL) { int i; uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer}; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride}; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } } #if CONFIG_SUPERTX static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1 }; static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36, 28, 19, 11, 3, 0, 0, 0, 0 }; static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 60, 54, 46, 36, 28, 18, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static void generate_1dmask(int length, uint8_t *mask, int plane) { switch (length) { case 8: memcpy(mask, plane ? mask_8_uv : mask_8, length); break; case 16: memcpy(mask, plane ? mask_16_uv : mask_16, length); break; case 32: memcpy(mask, plane ? mask_32_uv : mask_32, length); break; default: assert(0); } } void vp10_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, uint8_t *dst2, int dst2_stride, const struct macroblockd_plane *pd, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane) { int i, j; uint8_t mask[MAXTXLEN]; int top_w = 4 << b_width_log2_lookup[top_bsize], top_h = 4 << b_height_log2_lookup[top_bsize]; int w = 4 << b_width_log2_lookup[bsize], h = 4 << b_height_log2_lookup[bsize]; int w_offset = (mi_col - mi_col_ori) << 3, h_offset = (mi_row - mi_row_ori) << 3; #if CONFIG_VP9_HIGHBITDEPTH uint16_t *dst16= CONVERT_TO_SHORTPTR(dst); uint16_t *dst216 = CONVERT_TO_SHORTPTR(dst2); int b_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_VP9_HIGHBITDEPTH top_w >>= pd->subsampling_x; top_h >>= pd->subsampling_y; w >>= pd->subsampling_x; h >>= pd->subsampling_y; w_offset >>= pd->subsampling_x; h_offset >>= pd->subsampling_y; switch (partition) { case PARTITION_HORZ: { #if CONFIG_VP9_HIGHBITDEPTH if (b_hdb) { uint16_t *dst_tmp = dst16 + h_offset * dst_stride; uint16_t *dst2_tmp = dst216 + h_offset * dst2_stride; generate_1dmask(h, mask + h_offset, plane && xd->plane[plane].subsampling_y); for (i = h_offset; i < h_offset + h; i++) { for (j = 0; j < top_w; j++) { const int m = mask[i]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = (dst_tmp[j] * m + dst2_tmp[j] * (64 - m) + 32) >> 6; } dst_tmp += dst_stride; dst2_tmp += dst2_stride; } for (; i < top_h; i ++) { memcpy(dst_tmp, dst2_tmp, top_w * sizeof(uint16_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH uint8_t *dst_tmp = dst + h_offset * dst_stride; uint8_t *dst2_tmp = dst2 + h_offset * dst2_stride; generate_1dmask(h, mask + h_offset, plane && xd->plane[plane].subsampling_y); for (i = h_offset; i < h_offset + h; i++) { for (j = 0; j < top_w; j++) { const int m = mask[i]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = (dst_tmp[j] * m + dst2_tmp[j] * (64 - m) + 32) >> 6; } dst_tmp += dst_stride; dst2_tmp += dst2_stride; } for (; i < top_h; i ++) { memcpy(dst_tmp, dst2_tmp, top_w * sizeof(uint8_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } break; case PARTITION_VERT: { #if CONFIG_VP9_HIGHBITDEPTH if (b_hdb) { uint16_t *dst_tmp = dst16; uint16_t *dst2_tmp = dst216; generate_1dmask(w, mask + w_offset, plane && xd->plane[plane].subsampling_x); for (i = 0; i < top_h; i++) { for (j = w_offset; j < w_offset + w; j++) { const int m = mask[j]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = (dst_tmp[j] * m + dst2_tmp[j] * (64 - m) + 32) >> 6; } memcpy(dst_tmp + j, dst2_tmp + j, (top_w - w_offset - w) * sizeof(uint16_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH uint8_t *dst_tmp = dst; uint8_t *dst2_tmp = dst2; generate_1dmask(w, mask + w_offset, plane && xd->plane[plane].subsampling_x); for (i = 0; i < top_h; i++) { for (j = w_offset; j < w_offset + w; j++) { const int m = mask[j]; assert(m >= 0 && m <= 64); if (m == 64) continue; if (m == 0) dst_tmp[j] = dst2_tmp[j]; else dst_tmp[j] = (dst_tmp[j] * m + dst2_tmp[j] * (64 - m) + 32) >> 6; } memcpy(dst_tmp + j, dst2_tmp + j, (top_w - w_offset - w) * sizeof(uint8_t)); dst_tmp += dst_stride; dst2_tmp += dst2_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } break; default: assert(0); } (void) xd; } void vp10_build_inter_predictors_sb_sub8x8(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int block) { // Prediction function used in supertx: // Use the mv at current block (which is less than 8x8) // to get prediction of a block located at (mi_row, mi_col) at size of bsize // bsize can be larger than 8x8. // block (0-3): the sub8x8 location of current block int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; // For sub8x8 uv: // Skip uv prediction in supertx except the first block (block = 0) int max_plane = block ? 1 : MAX_MB_PLANE; for (plane = 0; plane < max_plane; plane++) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; build_inter_predictors(xd, plane, #if CONFIG_OBMC 0, 0, #endif // CONFIG_OBMC block, bw, bh, 0, 0, bw, bh, mi_x, mi_y); } #if CONFIG_EXT_INTER if (is_interintra_pred(&xd->mi[0]->mbmi)) vp10_build_interintra_predictors(xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride, bsize); #endif // CONFIG_EXT_INTER } #endif // CONFIG_SUPERTX #if CONFIG_OBMC // obmc_mask_N[is_neighbor_predictor][overlap_position] static const uint8_t obmc_mask_1[2][1] = { { 55}, { 9} }; static const uint8_t obmc_mask_2[2][2] = { { 45, 62}, { 19, 2} }; static const uint8_t obmc_mask_4[2][4] = { { 39, 50, 59, 64}, { 25, 14, 5, 0} }; static const uint8_t obmc_mask_8[2][8] = { { 36, 42, 48, 53, 57, 61, 63, 64}, { 28, 22, 16, 11, 7, 3, 1, 0} }; static const uint8_t obmc_mask_16[2][16] = { { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 63, 64, 64, 64}, { 30, 27, 24, 21, 18, 15, 12, 10, 8, 6, 4, 3, 1, 0, 0, 0} }; static const uint8_t obmc_mask_32[2][32] = { { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 60, 61, 62, 62, 63, 63, 64, 64, 64, 64, 64}, { 31, 29, 28, 26, 24, 23, 21, 20, 19, 17, 16, 14, 13, 12, 11, 9, 8, 7, 6, 5, 4, 4, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0} }; void setup_obmc_mask(int length, const uint8_t *mask[2]) { switch (length) { case 1: mask[0] = obmc_mask_1[0]; mask[1] = obmc_mask_1[1]; break; case 2: mask[0] = obmc_mask_2[0]; mask[1] = obmc_mask_2[1]; break; case 4: mask[0] = obmc_mask_4[0]; mask[1] = obmc_mask_4[1]; break; case 8: mask[0] = obmc_mask_8[0]; mask[1] = obmc_mask_8[1]; break; case 16: mask[0] = obmc_mask_16[0]; mask[1] = obmc_mask_16[1]; break; case 32: mask[0] = obmc_mask_32[0]; mask[1] = obmc_mask_32[1]; break; default: mask[0] = obmc_mask_32[0]; mask[1] = obmc_mask_32[1]; assert(0); break; } } // This function combines motion compensated predictions that is generated by // top/left neighboring blocks' inter predictors with the regular inter // prediction. We assume the original prediction (bmc) is stored in // xd->plane[].dst.buf void vp10_build_obmc_inter_prediction(VP10_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, int use_tmp_dst_buf, uint8_t *final_buf[MAX_MB_PLANE], int final_stride[MAX_MB_PLANE], uint8_t *tmp_buf1[MAX_MB_PLANE], int tmp_stride1[MAX_MB_PLANE], uint8_t *tmp_buf2[MAX_MB_PLANE], int tmp_stride2[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int plane, i, mi_step; #if CONFIG_VP9_HIGHBITDEPTH int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_VP9_HIGHBITDEPTH if (use_tmp_dst_buf) { for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int bw = (xd->n8_w * 8) >> pd->subsampling_x; int bh = (xd->n8_h * 8) >> pd->subsampling_y; int row; #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) { uint16_t *final_buf16 = CONVERT_TO_SHORTPTR(final_buf[plane]); uint16_t *bmc_buf16 = CONVERT_TO_SHORTPTR(pd->dst.buf); for (row = 0; row < bh; ++row) memcpy(final_buf16 + row * final_stride[plane], bmc_buf16 + row * pd->dst.stride, bw * sizeof(uint16_t)); } else { #endif for (row = 0; row < bh; ++row) memcpy(final_buf[plane] + row * final_stride[plane], pd->dst.buf + row * pd->dst.stride, bw); #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } // handle above row for (i = 0; mi_row > 0 && i < VPXMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; int overlap; MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *above_mbmi = &above_mi->mbmi; mi_step = VPXMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]); if (!is_inter_block(above_mbmi)) continue; overlap = (above_mbmi->skip) ? num_4x4_blocks_high_lookup[bsize] << 1 : VPXMIN(num_4x4_blocks_high_lookup[bsize], num_4x4_blocks_high_lookup[above_mbmi->sb_type]) << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int bw = (mi_step * 8) >> pd->subsampling_x; int bh = overlap >> pd->subsampling_y; int row, col; int dst_stride = use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride; uint8_t *dst = use_tmp_dst_buf ? &final_buf[plane][(i * 8) >> pd->subsampling_x] : &pd->dst.buf[(i * 8) >> pd->subsampling_x]; int tmp_stride = tmp_stride1[plane]; uint8_t *tmp = &tmp_buf1[plane][(i * 8) >> pd->subsampling_x]; const uint8_t *mask[2]; setup_obmc_mask(bh, mask); #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst16[col] = (mask[0][row] * dst16[col] + mask[1][row] * tmp16[col] + 32) >> 6; dst16 += dst_stride; tmp16 += tmp_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst[col] = (mask[0][row] * dst[col] + mask[1][row] * tmp[col] + 32) >> 6; dst += dst_stride; tmp += tmp_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } // each mi in the above row if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start) || (mi_col - 1) >= tile->mi_col_end) return; // handle left column for (i = 0; i < VPXMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; int overlap; MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *left_mbmi = &left_mi->mbmi; mi_step = VPXMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]); if (!is_inter_block(left_mbmi)) continue; overlap = (left_mbmi->skip) ? num_4x4_blocks_wide_lookup[bsize] << 1 : VPXMIN(num_4x4_blocks_wide_lookup[bsize], num_4x4_blocks_wide_lookup[left_mbmi->sb_type]) << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int bw = overlap >> pd->subsampling_x; int bh = (mi_step * 8) >> pd->subsampling_y; int row, col; int dst_stride = use_tmp_dst_buf ? final_stride[plane] : pd->dst.stride; uint8_t *dst = use_tmp_dst_buf ? &final_buf[plane][(i * 8 * dst_stride) >> pd->subsampling_y] : &pd->dst.buf[(i * 8 * dst_stride) >> pd->subsampling_y]; int tmp_stride = tmp_stride2[plane]; uint8_t *tmp = &tmp_buf2[plane] [(i * 8 * tmp_stride) >> pd->subsampling_y]; const uint8_t *mask[2]; setup_obmc_mask(bw, mask); #if CONFIG_VP9_HIGHBITDEPTH if (is_hbd) { uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst16[col] = (mask[0][row] * dst16[col] + mask[1][row] * tmp16[col] + 32) >> 6; dst16 += dst_stride; tmp16 += tmp_stride; } } else { #endif // CONFIG_VP9_HIGHBITDEPTH for (row = 0; row < bh; ++row) { for (col = 0; col < bw; ++col) dst[col] = (mask[0][col] * dst[col] + mask[1][col] * tmp[col] + 32) >> 6; dst += dst_stride; tmp += tmp_stride; } #if CONFIG_VP9_HIGHBITDEPTH } #endif // CONFIG_VP9_HIGHBITDEPTH } } // each mi in the left column } #endif // CONFIG_OBMC #if CONFIG_EXT_INTER static void combine_interintra(PREDICTION_MODE mode, BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, uint8_t *interpred, int interstride, uint8_t *intrapred, int intrastride) { static const int scale_bits = 8; static const int scale_max = 256; static const int scale_round = 127; static const int weights1d[64] = { 128, 125, 122, 119, 116, 114, 111, 109, 107, 105, 103, 101, 99, 97, 96, 94, 93, 91, 90, 89, 88, 86, 85, 84, 83, 82, 81, 81, 80, 79, 78, 78, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, }; const int bw = 4 << b_width_log2_lookup[plane_bsize]; const int bh = 4 << b_height_log2_lookup[plane_bsize]; int size = VPXMAX(bw, bh); int size_scale = (size >= 64 ? 1 : size == 32 ? 2 : size == 16 ? 4 : size == 8 ? 8 : 16); int i, j; switch (mode) { case V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[i * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[j * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D63_PRED: case D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] * 3 + weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D207_PRED: case D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[j * size_scale] * 3 + weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] + weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case TM_PRED: case DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = (interpred[i * interstride + j] + intrapred[i * intrastride + j]) >> 1; } } break; } } #if CONFIG_VP9_HIGHBITDEPTH static void combine_interintra_highbd(PREDICTION_MODE mode, BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, uint8_t *interpred8, int interstride, uint8_t *intrapred8, int intrastride, int bd) { static const int scale_bits = 8; static const int scale_max = 256; static const int scale_round = 127; static const int weights1d[64] = { 128, 125, 122, 119, 116, 114, 111, 109, 107, 105, 103, 101, 99, 97, 96, 94, 93, 91, 90, 89, 88, 86, 85, 84, 83, 82, 81, 81, 80, 79, 78, 78, 77, 76, 76, 75, 75, 74, 74, 73, 73, 72, 72, 71, 71, 71, 70, 70, 70, 70, 69, 69, 69, 69, 68, 68, 68, 68, 68, 67, 67, 67, 67, 67, }; const int bw = 4 << b_width_log2_lookup[plane_bsize]; const int bh = 4 << b_height_log2_lookup[plane_bsize]; int size = VPXMAX(bw, bh); int size_scale = (size >= 64 ? 1 : size == 32 ? 2 : size == 16 ? 4 : size == 8 ? 8 : 16); int i, j; uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); (void) bd; switch (mode) { case V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[i * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[j * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D63_PRED: case D117_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] * 3 + weights1d[j * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D207_PRED: case D153_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[j * size_scale] * 3 + weights1d[i * size_scale]) >> 2; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D135_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case D45_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = (weights1d[i * size_scale] + weights1d[j * size_scale]) >> 1; comppred[i * compstride + j] = ((scale_max - scale) * interpred[i * interstride + j] + scale * intrapred[i * intrastride + j] + scale_round) >> scale_bits; } } break; case TM_PRED: case DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = (interpred[i * interstride + j] + intrapred[i * intrastride + j]) >> 1; } } break; } } #endif // CONFIG_VP9_HIGHBITDEPTH // Break down rectangular intra prediction for joint spatio-temporal prediction // into two square intra predictions. static void build_intra_predictors_for_interintra( MACROBLOCKD *xd, uint8_t *ref, int ref_stride, uint8_t *dst, int dst_stride, PREDICTION_MODE mode, BLOCK_SIZE bsize, int plane) { BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bwl = b_width_log2_lookup[plane_bsize]; const int bhl = b_height_log2_lookup[plane_bsize]; TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; if (bwl == bhl) { vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); } else if (bwl < bhl) { uint8_t *src_2 = ref + (4 << bwl)*ref_stride; uint8_t *dst_2 = dst + (4 << bwl)*dst_stride; vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, src_2, ref_stride, dst_2, dst_stride, 0, 1 << bwl, plane); } else { uint8_t *src_2 = ref + (4 << bhl); uint8_t *dst_2 = dst + (4 << bhl); vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, ref, ref_stride, dst, dst_stride, 0, 0, plane); vp10_predict_intra_block(xd, bwl, bhl, max_tx_size, mode, src_2, ref_stride, dst_2, dst_stride, 1 << bhl, 0, plane); } } void vp10_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, int ystride, BLOCK_SIZE bsize) { const int bw = 4 << b_width_log2_lookup[bsize]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, intrapredictor[CU_SIZE * CU_SIZE]); build_intra_predictors_for_interintra( xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, CONVERT_TO_BYTEPTR(intrapredictor), bw, xd->mi[0]->mbmi.interintra_mode, bsize, 0); combine_interintra_highbd(xd->mi[0]->mbmi.interintra_mode, bsize, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ypred, ystride, CONVERT_TO_BYTEPTR(intrapredictor), bw, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { uint8_t intrapredictor[CU_SIZE * CU_SIZE]; build_intra_predictors_for_interintra( xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, intrapredictor, bw, xd->mi[0]->mbmi.interintra_mode, bsize, 0); combine_interintra(xd->mi[0]->mbmi.interintra_mode, bsize, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ypred, ystride, intrapredictor, bw); } } void vp10_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, int ustride, int plane, BLOCK_SIZE bsize) { const BLOCK_SIZE uvbsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bw = 4 << b_width_log2_lookup[uvbsize]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, uintrapredictor[CU_SIZE * CU_SIZE]); build_intra_predictors_for_interintra( xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, CONVERT_TO_BYTEPTR(uintrapredictor), bw, xd->mi[0]->mbmi.interintra_uv_mode, bsize, plane); combine_interintra_highbd(xd->mi[0]->mbmi.interintra_uv_mode, uvbsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, upred, ustride, CONVERT_TO_BYTEPTR(uintrapredictor), bw, xd->bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH { uint8_t uintrapredictor[CU_SIZE * CU_SIZE]; build_intra_predictors_for_interintra( xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, uintrapredictor, bw, xd->mi[0]->mbmi.interintra_uv_mode, bsize, 1); combine_interintra(xd->mi[0]->mbmi.interintra_uv_mode, uvbsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, upred, ustride, uintrapredictor, bw); } } void vp10_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BLOCK_SIZE bsize) { vp10_build_interintra_predictors_sbc(xd, upred, ustride, 1, bsize); vp10_build_interintra_predictors_sbc(xd, vpred, vstride, 2, bsize); } void vp10_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BLOCK_SIZE bsize) { vp10_build_interintra_predictors_sby(xd, ypred, ystride, bsize); vp10_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, bsize); } #endif // CONFIG_EXT_INTER