/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_mvref_common.h" #define MVREF_NEIGHBOURS 8 static int mv_ref_blocks[BLOCK_SIZE_TYPES][MVREF_NEIGHBOURS][2] = { // SB4X4 {{0, -1}, {-1, 0}, {-1, -1}, {0, -2}, {-2, 0}, {-1, -2}, {-2, -1}, {-2, -2}}, // SB4X8 {{0, -1}, {-1, 0}, {-1, -1}, {0, -2}, {-2, 0}, {-1, -2}, {-2, -1}, {-2, -2}}, // SB8X4 {{0, -1}, {-1, 0}, {-1, -1}, {0, -2}, {-2, 0}, {-1, -2}, {-2, -1}, {-2, -2}}, // SB8X8 {{0, -1}, {-1, 0}, {-1, -1}, {0, -2}, {-2, 0}, {-1, -2}, {-2, -1}, {-2, -2}}, // SB8X16 {{-1, 0}, {0, -1}, {-1, 1}, {-1, -1}, {-2, 0}, {0, -2}, {-1, -2}, {-2, -1}}, // SB16X8 {{0, -1}, {-1, 0}, {1, -1}, {-1, -1}, {0, -2}, {-2, 0}, {-2, -1}, {-1, -2}}, // SB16X16 {{0, -1}, {-1, 0}, {1, -1}, {-1, 1}, {-1, -1}, {0, -3}, {-3, 0}, {-3, -3}}, // SB16X32 {{-1, 0}, {0, -1}, {-1, 2}, {-1, -1}, {1, -1}, {-3, 0}, {0, -3}, {-3, -3}}, // SB32X16 {{0, -1}, {-1, 0}, {2, -1}, {-1, -1}, {-1, 1}, {0, -3}, {-3, 0}, {-3, -3}}, // SB32X32 {{1, -1}, {-1, 1}, {2, -1}, {-1, 2}, {-1, -1}, {0, -3}, {-3, 0}, {-3, -3}}, // SB32X64 {{-1, 0}, {0, -1}, {-1, 4}, {2, -1}, {-1, -1}, {-3, 0}, {0, -3}, {-1, 2}}, // SB64X32 {{0, -1}, {-1, 0}, {4, -1}, {-1, 2}, {-1, -1}, {0, -3}, {-3, 0}, {2, -1}}, // SB64X64 {{3, -1}, {-1, 3}, {4, -1}, {-1, 4}, {-1, -1}, {0, -1}, {-1, 0}, {6, -1}} }; // clamp_mv_ref #define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units static void clamp_mv_ref(const MACROBLOCKD *xd, int_mv *mv) { mv->as_mv.col = clamp(mv->as_mv.col, xd->mb_to_left_edge - MV_BORDER, xd->mb_to_right_edge + MV_BORDER); mv->as_mv.row = clamp(mv->as_mv.row, xd->mb_to_top_edge - MV_BORDER, xd->mb_to_bottom_edge + MV_BORDER); } // Gets a candidate reference motion vector from the given mode info // structure if one exists that matches the given reference frame. static int get_matching_candidate(const MODE_INFO *candidate_mi, MV_REFERENCE_FRAME ref_frame, int_mv *c_mv, int block_idx) { if (ref_frame == candidate_mi->mbmi.ref_frame[0]) { if (block_idx >= 0 && candidate_mi->mbmi.sb_type < BLOCK_SIZE_SB8X8) c_mv->as_int = candidate_mi->bmi[block_idx].as_mv[0].as_int; else c_mv->as_int = candidate_mi->mbmi.mv[0].as_int; } else if (ref_frame == candidate_mi->mbmi.ref_frame[1]) { if (block_idx >= 0 && candidate_mi->mbmi.sb_type < BLOCK_SIZE_SB8X8) c_mv->as_int = candidate_mi->bmi[block_idx].as_mv[1].as_int; else c_mv->as_int = candidate_mi->mbmi.mv[1].as_int; } else { return 0; } return 1; } // Gets candidate reference motion vector(s) from the given mode info // structure if they exists and do NOT match the given reference frame. static void get_non_matching_candidates(const MODE_INFO *candidate_mi, MV_REFERENCE_FRAME ref_frame, MV_REFERENCE_FRAME *c_ref_frame, int_mv *c_mv, MV_REFERENCE_FRAME *c2_ref_frame, int_mv *c2_mv) { c_mv->as_int = 0; c2_mv->as_int = 0; *c_ref_frame = INTRA_FRAME; *c2_ref_frame = INTRA_FRAME; // If first candidate not valid neither will be. if (candidate_mi->mbmi.ref_frame[0] > INTRA_FRAME) { // First candidate if (candidate_mi->mbmi.ref_frame[0] != ref_frame) { *c_ref_frame = candidate_mi->mbmi.ref_frame[0]; c_mv->as_int = candidate_mi->mbmi.mv[0].as_int; } // Second candidate if ((candidate_mi->mbmi.ref_frame[1] > INTRA_FRAME) && (candidate_mi->mbmi.ref_frame[1] != ref_frame) && (candidate_mi->mbmi.mv[1].as_int != candidate_mi->mbmi.mv[0].as_int)) { *c2_ref_frame = candidate_mi->mbmi.ref_frame[1]; c2_mv->as_int = candidate_mi->mbmi.mv[1].as_int; } } } // Performs mv sign inversion if indicated by the reference frame combination. static void scale_mv(MACROBLOCKD *xd, MV_REFERENCE_FRAME this_ref_frame, MV_REFERENCE_FRAME candidate_ref_frame, int_mv *candidate_mv, int *ref_sign_bias) { // Sign inversion where appropriate. if (ref_sign_bias[candidate_ref_frame] != ref_sign_bias[this_ref_frame]) { candidate_mv->as_mv.row = -candidate_mv->as_mv.row; candidate_mv->as_mv.col = -candidate_mv->as_mv.col; } } // Add a candidate mv. // Discard if it has already been seen. static void add_candidate_mv(int_mv *mv_list, int *mv_scores, int *candidate_count, int_mv candidate_mv, int weight) { if (*candidate_count == 0) { mv_list[0].as_int = candidate_mv.as_int; mv_scores[0] = weight; *candidate_count += 1; } else if ((*candidate_count == 1) && (candidate_mv.as_int != mv_list[0].as_int)) { mv_list[1].as_int = candidate_mv.as_int; mv_scores[1] = weight; *candidate_count += 1; } } // This function searches the neighbourhood of a given MB/SB // to try and find candidate reference vectors. // void vp9_find_mv_refs_idx(VP9_COMMON *cm, MACROBLOCKD *xd, MODE_INFO *here, MODE_INFO *lf_here, MV_REFERENCE_FRAME ref_frame, int_mv *mv_ref_list, int *ref_sign_bias, int block_idx) { int i; MODE_INFO *candidate_mi; MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi; int_mv c_refmv; int_mv c2_refmv; MV_REFERENCE_FRAME c_ref_frame; MV_REFERENCE_FRAME c2_ref_frame; int candidate_scores[MAX_MV_REF_CANDIDATES]; int refmv_count = 0; int split_count = 0; int (*mv_ref_search)[2]; const int mi_col = get_mi_col(xd); int intra_count = 0; int zero_count = 0; int newmv_count = 0; int x_idx = 0, y_idx = 0; // Blank the reference vector lists and other local structures. vpx_memset(mv_ref_list, 0, sizeof(int_mv) * MAX_MV_REF_CANDIDATES); vpx_memset(candidate_scores, 0, sizeof(candidate_scores)); if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) { int pixels_wide = 4 * b_width_log2(mbmi->sb_type); int pixels_high = 4 * b_height_log2(mbmi->sb_type); int pixels_square = 0; if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); if ( pixels_wide < pixels_high ) pixels_square = pixels_wide; else pixels_square = pixels_high; if (pixels_square == 64) { mv_ref_search = mv_ref_blocks[BLOCK_SIZE_SB64X64]; } else if (pixels_square == 32) { mv_ref_search = mv_ref_blocks[BLOCK_SIZE_SB32X32]; } else if (pixels_square == 16) { mv_ref_search = mv_ref_blocks[BLOCK_SIZE_MB16X16]; } else { mv_ref_search = mv_ref_blocks[BLOCK_SIZE_SB8X8]; if (mbmi->sb_type < BLOCK_SIZE_SB8X8) { x_idx = block_idx & 1; y_idx = block_idx >> 1; } } } else { mv_ref_search = mv_ref_blocks[mbmi->sb_type]; if (mbmi->sb_type < BLOCK_SIZE_SB8X8) { x_idx = block_idx & 1; y_idx = block_idx >> 1; } } // We first scan for candidate vectors that match the current reference frame // Look at nearest neigbours for (i = 0; i < 2; ++i) { const int mi_search_col = mi_col + mv_ref_search[i][0]; if ((mi_search_col >= cm->cur_tile_mi_col_start) && (mi_search_col < cm->cur_tile_mi_col_end) && ((mv_ref_search[i][1] << 6) >= xd->mb_to_top_edge)) { int b; candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); if (block_idx >= 0) { if (mv_ref_search[i][0]) b = 1 + y_idx * 2; else b = 2 + x_idx; } else { b = -1; } if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv, b)) { add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c_refmv, 16); } split_count += (candidate_mi->mbmi.sb_type < BLOCK_SIZE_SB8X8 && candidate_mi->mbmi.ref_frame[0] != INTRA_FRAME); // Count number of neihgbours coded intra and zeromv intra_count += (candidate_mi->mbmi.mode < NEARESTMV); zero_count += (candidate_mi->mbmi.mode == ZEROMV); newmv_count += (candidate_mi->mbmi.mode >= NEWMV); } } // More distant neigbours for (i = 2; (i < MVREF_NEIGHBOURS) && (refmv_count < MAX_MV_REF_CANDIDATES); ++i) { const int mi_search_col = mi_col + mv_ref_search[i][0]; if ((mi_search_col >= cm->cur_tile_mi_col_start) && (mi_search_col < cm->cur_tile_mi_col_end) && ((mv_ref_search[i][1] << 6) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv, -1)) { add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c_refmv, 16); } } } // Look in the last frame if it exists if (lf_here && (refmv_count < MAX_MV_REF_CANDIDATES)) { candidate_mi = lf_here; if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv, -1)) { add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c_refmv, 16); } } // If we have not found enough candidates consider ones where the // reference frame does not match. Break out when we have // MAX_MV_REF_CANDIDATES candidates. // Look first at spatial neighbours for (i = 0; (i < MVREF_NEIGHBOURS) && (refmv_count < MAX_MV_REF_CANDIDATES); ++i) { const int mi_search_col = mi_col + mv_ref_search[i][0]; if ((mi_search_col >= cm->cur_tile_mi_col_start) && (mi_search_col < cm->cur_tile_mi_col_end) && ((mv_ref_search[i][1] << 6) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); get_non_matching_candidates(candidate_mi, ref_frame, &c_ref_frame, &c_refmv, &c2_ref_frame, &c2_refmv); if (c_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias); add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c_refmv, 1); } if (c2_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias); add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c2_refmv, 1); } } } // Look at the last frame if it exists if (lf_here && (refmv_count < MAX_MV_REF_CANDIDATES)) { candidate_mi = lf_here; get_non_matching_candidates(candidate_mi, ref_frame, &c_ref_frame, &c_refmv, &c2_ref_frame, &c2_refmv); if (c_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias); add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c_refmv, 1); } if (c2_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias); add_candidate_mv(mv_ref_list, candidate_scores, &refmv_count, c2_refmv, 1); } } if (!intra_count) { if (!newmv_count) { // 0 = both zero mv // 1 = one zero mv + one a predicted mv // 2 = two predicted mvs mbmi->mb_mode_context[ref_frame] = 2 - zero_count; } else { // 3 = one predicted/zero and one new mv // 4 = two new mvs mbmi->mb_mode_context[ref_frame] = 2 + newmv_count; } } else { // 5 = one intra neighbour + x // 6 = two intra neighbours mbmi->mb_mode_context[ref_frame] = 4 + intra_count; } // Clamp vectors for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { clamp_mv_ref(xd, &mv_ref_list[i]); } }