/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" void vp9_setup_interp_filters(MACROBLOCKD *xd, INTERPOLATIONFILTERTYPE mcomp_filter_type, VP9_COMMON *cm) { if (mcomp_filter_type == SIXTAP) { xd->subpixel_predict = vp9_sixtap_predict; xd->subpixel_predict8x4 = vp9_sixtap_predict8x4; xd->subpixel_predict8x8 = vp9_sixtap_predict8x8; xd->subpixel_predict16x16 = vp9_sixtap_predict16x16; xd->subpixel_predict_avg = vp9_sixtap_predict_avg; xd->subpixel_predict_avg8x8 = vp9_sixtap_predict_avg8x8; xd->subpixel_predict_avg16x16 = vp9_sixtap_predict_avg16x16; } else if (mcomp_filter_type == EIGHTTAP || mcomp_filter_type == SWITCHABLE) { xd->subpixel_predict = vp9_eighttap_predict; xd->subpixel_predict8x4 = vp9_eighttap_predict8x4; xd->subpixel_predict8x8 = vp9_eighttap_predict8x8; xd->subpixel_predict16x16 = vp9_eighttap_predict16x16; xd->subpixel_predict_avg = vp9_eighttap_predict_avg4x4; xd->subpixel_predict_avg8x8 = vp9_eighttap_predict_avg8x8; xd->subpixel_predict_avg16x16 = vp9_eighttap_predict_avg16x16; } else if (mcomp_filter_type == EIGHTTAP_SHARP) { xd->subpixel_predict = vp9_eighttap_predict_sharp; xd->subpixel_predict8x4 = vp9_eighttap_predict8x4_sharp; xd->subpixel_predict8x8 = vp9_eighttap_predict8x8_sharp; xd->subpixel_predict16x16 = vp9_eighttap_predict16x16_sharp; xd->subpixel_predict_avg = vp9_eighttap_predict_avg4x4_sharp; xd->subpixel_predict_avg8x8 = vp9_eighttap_predict_avg8x8_sharp; xd->subpixel_predict_avg16x16 = vp9_eighttap_predict_avg16x16_sharp_c; } else { xd->subpixel_predict = vp9_bilinear_predict4x4; xd->subpixel_predict8x4 = vp9_bilinear_predict8x4; xd->subpixel_predict8x8 = vp9_bilinear_predict8x8; xd->subpixel_predict16x16 = vp9_bilinear_predict16x16; xd->subpixel_predict_avg = vp9_bilinear_predict_avg4x4; xd->subpixel_predict_avg8x8 = vp9_bilinear_predict_avg8x8; xd->subpixel_predict_avg16x16 = vp9_bilinear_predict_avg16x16; } } void vp9_copy_mem16x16_c(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride) { int r; for (r = 0; r < 16; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; dst[8] = src[8]; dst[9] = src[9]; dst[10] = src[10]; dst[11] = src[11]; dst[12] = src[12]; dst[13] = src[13]; dst[14] = src[14]; dst[15] = src[15]; #else ((uint32_t *)dst)[0] = ((uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((uint32_t *)src)[1]; ((uint32_t *)dst)[2] = ((uint32_t *)src)[2]; ((uint32_t *)dst)[3] = ((uint32_t *)src)[3]; #endif src += src_stride; dst += dst_stride; } } void vp9_avg_mem16x16_c(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride) { int r; for (r = 0; r < 16; r++) { int n; for (n = 0; n < 16; n++) { dst[n] = (dst[n] + src[n] + 1) >> 1; } src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x8_c(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride) { int r; for (r = 0; r < 8; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_avg_mem8x8_c(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride) { int r; for (r = 0; r < 8; r++) { int n; for (n = 0; n < 8; n++) { dst[n] = (dst[n] + src[n] + 1) >> 1; } src += src_stride; dst += dst_stride; } } void vp9_copy_mem8x4_c(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride) { int r; for (r = 0; r < 4; r++) { #if !(CONFIG_FAST_UNALIGNED) dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; #else ((uint32_t *)dst)[0] = ((uint32_t *)src)[0]; ((uint32_t *)dst)[1] = ((uint32_t *)src)[1]; #endif src += src_stride; dst += dst_stride; } } void vp9_build_inter_predictors_b(BLOCKD *d, int pitch, vp9_subpix_fn_t sppf) { int r; unsigned char *ptr_base; unsigned char *ptr; unsigned char *pred_ptr = d->predictor; int_mv mv; ptr_base = *(d->base_pre); mv.as_int = d->bmi.as_mv.first.as_int; if (mv.as_mv.row & 7 || mv.as_mv.col & 7) { ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch); } else { ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); ptr = ptr_base; for (r = 0; r < 4; r++) { #if !(CONFIG_FAST_UNALIGNED) pred_ptr[0] = ptr[0]; pred_ptr[1] = ptr[1]; pred_ptr[2] = ptr[2]; pred_ptr[3] = ptr[3]; #else *(uint32_t *)pred_ptr = *(uint32_t *)ptr; #endif pred_ptr += pitch; ptr += d->pre_stride; } } } /* * Similar to vp9_build_inter_predictors_b(), but instead of storing the * results in d->predictor, we average the contents of d->predictor (which * come from an earlier call to vp9_build_inter_predictors_b()) with the * predictor of the second reference frame / motion vector. */ void vp9_build_2nd_inter_predictors_b(BLOCKD *d, int pitch, vp9_subpix_fn_t sppf) { int r; unsigned char *ptr_base; unsigned char *ptr; unsigned char *pred_ptr = d->predictor; int_mv mv; ptr_base = *(d->base_second_pre); mv.as_int = d->bmi.as_mv.second.as_int; if (mv.as_mv.row & 7 || mv.as_mv.col & 7) { ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); sppf(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch); } else { ptr_base += d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); ptr = ptr_base; for (r = 0; r < 4; r++) { pred_ptr[0] = (pred_ptr[0] + ptr[0] + 1) >> 1; pred_ptr[1] = (pred_ptr[1] + ptr[1] + 1) >> 1; pred_ptr[2] = (pred_ptr[2] + ptr[2] + 1) >> 1; pred_ptr[3] = (pred_ptr[3] + ptr[3] + 1) >> 1; pred_ptr += pitch; ptr += d->pre_stride; } } } void vp9_build_inter_predictors4b(MACROBLOCKD *xd, BLOCKD *d, int pitch) { unsigned char *ptr_base; unsigned char *ptr; unsigned char *pred_ptr = d->predictor; int_mv mv; ptr_base = *(d->base_pre); mv.as_int = d->bmi.as_mv.first.as_int; ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); if (mv.as_mv.row & 7 || mv.as_mv.col & 7) { xd->subpixel_predict8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch); } else { vp9_copy_mem8x8(ptr, d->pre_stride, pred_ptr, pitch); } } /* * Similar to build_inter_predictors_4b(), but instead of storing the * results in d->predictor, we average the contents of d->predictor (which * come from an earlier call to build_inter_predictors_4b()) with the * predictor of the second reference frame / motion vector. */ void vp9_build_2nd_inter_predictors4b(MACROBLOCKD *xd, BLOCKD *d, int pitch) { unsigned char *ptr_base; unsigned char *ptr; unsigned char *pred_ptr = d->predictor; int_mv mv; ptr_base = *(d->base_second_pre); mv.as_int = d->bmi.as_mv.second.as_int; ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); if (mv.as_mv.row & 7 || mv.as_mv.col & 7) { xd->subpixel_predict_avg8x8(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch); } else { vp9_avg_mem8x8(ptr, d->pre_stride, pred_ptr, pitch); } } static void build_inter_predictors2b(MACROBLOCKD *xd, BLOCKD *d, int pitch) { unsigned char *ptr_base; unsigned char *ptr; unsigned char *pred_ptr = d->predictor; int_mv mv; ptr_base = *(d->base_pre); mv.as_int = d->bmi.as_mv.first.as_int; ptr = ptr_base + d->pre + (mv.as_mv.row >> 3) * d->pre_stride + (mv.as_mv.col >> 3); if (mv.as_mv.row & 7 || mv.as_mv.col & 7) { xd->subpixel_predict8x4(ptr, d->pre_stride, (mv.as_mv.col & 7) << 1, (mv.as_mv.row & 7) << 1, pred_ptr, pitch); } else { vp9_copy_mem8x4(ptr, d->pre_stride, pred_ptr, pitch); } } /*encoder only*/ #if CONFIG_PRED_FILTER // Select the thresholded or non-thresholded filter #define USE_THRESH_FILTER 0 #define PRED_FILT_LEN 5 static const int filt_shift = 4; static const int pred_filter[PRED_FILT_LEN] = {1, 2, 10, 2, 1}; // Alternative filter {1, 1, 4, 1, 1} #if !USE_THRESH_FILTER void filter_mb(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride, int width, int height) { int i, j, k; unsigned int temp[32 * 32]; unsigned int *pTmp = temp; unsigned char *pSrc = src - (1 + src_stride) * (PRED_FILT_LEN / 2); // Horizontal for (i = 0; i < height + PRED_FILT_LEN - 1; i++) { for (j = 0; j < width; j++) { int sum = 0; for (k = 0; k < PRED_FILT_LEN; k++) sum += pSrc[j + k] * pred_filter[k]; pTmp[j] = sum; } pSrc += src_stride; pTmp += width; } // Vertical pTmp = temp; for (i = 0; i < width; i++) { unsigned char *pDst = dst + i; for (j = 0; j < height; j++) { int sum = 0; for (k = 0; k < PRED_FILT_LEN; k++) sum += pTmp[(j + k) * width] * pred_filter[k]; // Round pDst[j * dst_stride] = (sum + ((1 << (filt_shift << 1)) >> 1)) >> (filt_shift << 1); } ++pTmp; } } #else // Based on vp9_post_proc_down_and_across_c (vp9_postproc.c) void filter_mb(unsigned char *src, int src_stride, unsigned char *dst, int dst_stride, int width, int height) { unsigned char *pSrc, *pDst; int row; int col; int i; int v; unsigned char d[8]; /* TODO flimit should be linked to the quantizer value */ int flimit = 7; for (row = 0; row < height; row++) { /* post_proc_down for one row */ pSrc = src; pDst = dst; for (col = 0; col < width; col++) { int kernel = (1 << (filt_shift - 1)); int v = pSrc[col]; for (i = -2; i <= 2; i++) { if (abs(v - pSrc[col + i * src_stride]) > flimit) goto down_skip_convolve; kernel += pred_filter[2 + i] * pSrc[col + i * src_stride]; } v = (kernel >> filt_shift); down_skip_convolve: pDst[col] = v; } /* now post_proc_across */ pSrc = dst; pDst = dst; for (i = 0; i < 8; i++) d[i] = pSrc[i]; for (col = 0; col < width; col++) { int kernel = (1 << (filt_shift - 1)); v = pSrc[col]; d[col & 7] = v; for (i = -2; i <= 2; i++) { if (abs(v - pSrc[col + i]) > flimit) goto across_skip_convolve; kernel += pred_filter[2 + i] * pSrc[col + i]; } d[col & 7] = (kernel >> filt_shift); across_skip_convolve: if (col >= 2) pDst[col - 2] = d[(col - 2) & 7]; } /* handle the last two pixels */ pDst[col - 2] = d[(col - 2) & 7]; pDst[col - 1] = d[(col - 1) & 7]; /* next row */ src += src_stride; dst += dst_stride; } } #endif // !USE_THRESH_FILTER #endif // CONFIG_PRED_FILTER /*encoder only*/ void vp9_build_inter4x4_predictors_mbuv(MACROBLOCKD *xd) { int i, j; BLOCKD *blockd = xd->block; /* build uv mvs */ for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { int yoffset = i * 8 + j * 2; int uoffset = 16 + i * 2 + j; int voffset = 20 + i * 2 + j; int temp; temp = blockd[yoffset ].bmi.as_mv.first.as_mv.row + blockd[yoffset + 1].bmi.as_mv.first.as_mv.row + blockd[yoffset + 4].bmi.as_mv.first.as_mv.row + blockd[yoffset + 5].bmi.as_mv.first.as_mv.row; if (temp < 0) temp -= 4; else temp += 4; xd->block[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = blockd[yoffset ].bmi.as_mv.first.as_mv.col + blockd[yoffset + 1].bmi.as_mv.first.as_mv.col + blockd[yoffset + 4].bmi.as_mv.first.as_mv.col + blockd[yoffset + 5].bmi.as_mv.first.as_mv.col; if (temp < 0) temp -= 4; else temp += 4; blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) & xd->fullpixel_mask; blockd[voffset].bmi.as_mv.first.as_mv.row = blockd[uoffset].bmi.as_mv.first.as_mv.row; blockd[voffset].bmi.as_mv.first.as_mv.col = blockd[uoffset].bmi.as_mv.first.as_mv.col; if (xd->mode_info_context->mbmi.second_ref_frame > 0) { temp = blockd[yoffset ].bmi.as_mv.second.as_mv.row + blockd[yoffset + 1].bmi.as_mv.second.as_mv.row + blockd[yoffset + 4].bmi.as_mv.second.as_mv.row + blockd[yoffset + 5].bmi.as_mv.second.as_mv.row; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = blockd[yoffset ].bmi.as_mv.second.as_mv.col + blockd[yoffset + 1].bmi.as_mv.second.as_mv.col + blockd[yoffset + 4].bmi.as_mv.second.as_mv.col + blockd[yoffset + 5].bmi.as_mv.second.as_mv.col; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) & xd->fullpixel_mask; blockd[voffset].bmi.as_mv.second.as_mv.row = blockd[uoffset].bmi.as_mv.second.as_mv.row; blockd[voffset].bmi.as_mv.second.as_mv.col = blockd[uoffset].bmi.as_mv.second.as_mv.col; } } } for (i = 16; i < 24; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int) build_inter_predictors2b(xd, d0, 8); else { vp9_build_inter_predictors_b(d0, 8, xd->subpixel_predict); vp9_build_inter_predictors_b(d1, 8, xd->subpixel_predict); } if (xd->mode_info_context->mbmi.second_ref_frame > 0) { vp9_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg); vp9_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg); } } } static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. * * This limit kicks in at 19 pixels for the top and left edges, for * the 16 pixels plus 3 taps right of the central pixel when subpel * filtering. The bottom and right edges use 16 pixels plus 2 pixels * left of the central pixel when filtering. */ if (mv->col < (xd->mb_to_left_edge - ((16 + VP9_INTERP_EXTEND) << 3))) mv->col = xd->mb_to_left_edge - (16 << 3); else if (mv->col > xd->mb_to_right_edge + ((15 + VP9_INTERP_EXTEND) << 3)) mv->col = xd->mb_to_right_edge + (16 << 3); if (mv->row < (xd->mb_to_top_edge - ((16 + VP9_INTERP_EXTEND) << 3))) mv->row = xd->mb_to_top_edge - (16 << 3); else if (mv->row > xd->mb_to_bottom_edge + ((15 + VP9_INTERP_EXTEND) << 3)) mv->row = xd->mb_to_bottom_edge + (16 << 3); } /* A version of the above function for chroma block MVs.*/ static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { const int extend = VP9_INTERP_EXTEND; mv->col = (2 * mv->col < (xd->mb_to_left_edge - ((16 + extend) << 3))) ? (xd->mb_to_left_edge - (16 << 3)) >> 1 : mv->col; mv->col = (2 * mv->col > xd->mb_to_right_edge + ((15 + extend) << 3)) ? (xd->mb_to_right_edge + (16 << 3)) >> 1 : mv->col; mv->row = (2 * mv->row < (xd->mb_to_top_edge - ((16 + extend) << 3))) ? (xd->mb_to_top_edge - (16 << 3)) >> 1 : mv->row; mv->row = (2 * mv->row > xd->mb_to_bottom_edge + ((15 + extend) << 3)) ? (xd->mb_to_bottom_edge + (16 << 3)) >> 1 : mv->row; } /*encoder only*/ void vp9_build_1st_inter16x16_predictors_mby(MACROBLOCKD *xd, unsigned char *dst_y, int dst_ystride, int clamp_mvs) { unsigned char *ptr_base = xd->pre.y_buffer; unsigned char *ptr; int pre_stride = xd->block[0].pre_stride; int_mv ymv; ymv.as_int = xd->mode_info_context->mbmi.mv[0].as_int; if (clamp_mvs) clamp_mv_to_umv_border(&ymv.as_mv, xd); ptr = ptr_base + (ymv.as_mv.row >> 3) * pre_stride + (ymv.as_mv.col >> 3); #if CONFIG_PRED_FILTER if (xd->mode_info_context->mbmi.pred_filter_enabled) { if ((ymv.as_mv.row | ymv.as_mv.col) & 7) { // Sub-pel filter needs extended input int len = 15 + (VP9_INTERP_EXTEND << 1); unsigned char Temp[32 * 32]; // Data required by sub-pel filter unsigned char *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1); // Copy extended MB into Temp array, applying the spatial filter filter_mb(ptr - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride, Temp, len, len, len); // Sub-pel interpolation xd->subpixel_predict16x16(pTemp, len, (ymv.as_mv.col & 7) << 1, (ymv.as_mv.row & 7) << 1, dst_y, dst_ystride); } else { // Apply spatial filter to create the prediction directly filter_mb(ptr, pre_stride, dst_y, dst_ystride, 16, 16); } } else #endif if ((ymv.as_mv.row | ymv.as_mv.col) & 7) { xd->subpixel_predict16x16(ptr, pre_stride, (ymv.as_mv.col & 7) << 1, (ymv.as_mv.row & 7) << 1, dst_y, dst_ystride); } else { vp9_copy_mem16x16(ptr, pre_stride, dst_y, dst_ystride); } } void vp9_build_1st_inter16x16_predictors_mbuv(MACROBLOCKD *xd, unsigned char *dst_u, unsigned char *dst_v, int dst_uvstride) { int offset; unsigned char *uptr, *vptr; int pre_stride = xd->block[0].pre_stride; int_mv _o16x16mv; int_mv _16x16mv; _16x16mv.as_int = xd->mode_info_context->mbmi.mv[0].as_int; if (xd->mode_info_context->mbmi.need_to_clamp_mvs) clamp_mv_to_umv_border(&_16x16mv.as_mv, xd); _o16x16mv = _16x16mv; /* calc uv motion vectors */ if (_16x16mv.as_mv.row < 0) _16x16mv.as_mv.row -= 1; else _16x16mv.as_mv.row += 1; if (_16x16mv.as_mv.col < 0) _16x16mv.as_mv.col -= 1; else _16x16mv.as_mv.col += 1; _16x16mv.as_mv.row /= 2; _16x16mv.as_mv.col /= 2; _16x16mv.as_mv.row &= xd->fullpixel_mask; _16x16mv.as_mv.col &= xd->fullpixel_mask; pre_stride >>= 1; offset = (_16x16mv.as_mv.row >> 3) * pre_stride + (_16x16mv.as_mv.col >> 3); uptr = xd->pre.u_buffer + offset; vptr = xd->pre.v_buffer + offset; #if CONFIG_PRED_FILTER if (xd->mode_info_context->mbmi.pred_filter_enabled) { int i; unsigned char *pSrc = uptr; unsigned char *pDst = dst_u; int len = 7 + (VP9_INTERP_EXTEND << 1); unsigned char Temp[32 * 32]; // Data required by the sub-pel filter unsigned char *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1); // U & V for (i = 0; i < 2; i++) { if (_o16x16mv.as_int & 0x000f000f) { // Copy extended MB into Temp array, applying the spatial filter filter_mb(pSrc - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride, Temp, len, len, len); // Sub-pel filter xd->subpixel_predict8x8(pTemp, len, _o16x16mv.as_mv.col & 15, _o16x16mv.as_mv.row & 15, pDst, dst_uvstride); } else { filter_mb(pSrc, pre_stride, pDst, dst_uvstride, 8, 8); } // V pSrc = vptr; pDst = dst_v; } } else #endif if (_o16x16mv.as_int & 0x000f000f) { xd->subpixel_predict8x8(uptr, pre_stride, _o16x16mv.as_mv.col & 15, _o16x16mv.as_mv.row & 15, dst_u, dst_uvstride); xd->subpixel_predict8x8(vptr, pre_stride, _o16x16mv.as_mv.col & 15, _o16x16mv.as_mv.row & 15, dst_v, dst_uvstride); } else { vp9_copy_mem8x8(uptr, pre_stride, dst_u, dst_uvstride); vp9_copy_mem8x8(vptr, pre_stride, dst_v, dst_uvstride); } } void vp9_build_1st_inter16x16_predictors_mb(MACROBLOCKD *xd, unsigned char *dst_y, unsigned char *dst_u, unsigned char *dst_v, int dst_ystride, int dst_uvstride) { vp9_build_1st_inter16x16_predictors_mby(xd, dst_y, dst_ystride, xd->mode_info_context->mbmi.need_to_clamp_mvs); vp9_build_1st_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride); } #if CONFIG_SUPERBLOCKS void vp9_build_inter32x32_predictors_sb(MACROBLOCKD *x, unsigned char *dst_y, unsigned char *dst_u, unsigned char *dst_v, int dst_ystride, int dst_uvstride) { uint8_t *y1 = x->pre.y_buffer, *u1 = x->pre.u_buffer, *v1 = x->pre.v_buffer; uint8_t *y2 = x->second_pre.y_buffer, *u2 = x->second_pre.u_buffer, *v2 = x->second_pre.v_buffer; int edge[4], n; edge[0] = x->mb_to_top_edge; edge[1] = x->mb_to_bottom_edge; edge[2] = x->mb_to_left_edge; edge[3] = x->mb_to_right_edge; for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; x->mb_to_top_edge = edge[0] - ((y_idx * 16) << 3); x->mb_to_bottom_edge = edge[1] + (((1 - y_idx) * 16) << 3); x->mb_to_left_edge = edge[2] - ((x_idx * 16) << 3); x->mb_to_right_edge = edge[3] + (((1 - x_idx) * 16) << 3); x->pre.y_buffer = y1 + y_idx * 16 * x->pre.y_stride + x_idx * 16; x->pre.u_buffer = u1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8; x->pre.v_buffer = v1 + y_idx * 8 * x->pre.uv_stride + x_idx * 8; vp9_build_1st_inter16x16_predictors_mb(x, dst_y + y_idx * 16 * dst_ystride + x_idx * 16, dst_u + y_idx * 8 * dst_uvstride + x_idx * 8, dst_v + y_idx * 8 * dst_uvstride + x_idx * 8, dst_ystride, dst_uvstride); if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2 + y_idx * 16 * x->pre.y_stride + x_idx * 16; x->second_pre.u_buffer = u2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8; x->second_pre.v_buffer = v2 + y_idx * 8 * x->pre.uv_stride + x_idx * 8; vp9_build_2nd_inter16x16_predictors_mb(x, dst_y + y_idx * 16 * dst_ystride + x_idx * 16, dst_u + y_idx * 8 * dst_uvstride + x_idx * 8, dst_v + y_idx * 8 * dst_uvstride + x_idx * 8, dst_ystride, dst_uvstride); } } x->mb_to_top_edge = edge[0]; x->mb_to_bottom_edge = edge[1]; x->mb_to_left_edge = edge[2]; x->mb_to_right_edge = edge[3]; x->pre.y_buffer = y1; x->pre.u_buffer = u1; x->pre.v_buffer = v1; if (x->mode_info_context->mbmi.second_ref_frame > 0) { x->second_pre.y_buffer = y2; x->second_pre.u_buffer = u2; x->second_pre.v_buffer = v2; } #if CONFIG_COMP_INTERINTRA_PRED if (x->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_32x32_predictors_sb( x, dst_y, dst_u, dst_v, dst_ystride, dst_uvstride); } #endif } #endif /* * The following functions should be called after an initial * call to vp9_build_1st_inter16x16_predictors_mb() or _mby()/_mbuv(). * It will run a second sixtap filter on a (different) ref * frame and average the result with the output of the * first sixtap filter. The second reference frame is stored * in x->second_pre (the reference frame index is in * x->mode_info_context->mbmi.second_ref_frame). The second * motion vector is x->mode_info_context->mbmi.second_mv. * * This allows blending prediction from two reference frames * which sometimes leads to better prediction than from a * single reference framer. */ void vp9_build_2nd_inter16x16_predictors_mby(MACROBLOCKD *xd, unsigned char *dst_y, int dst_ystride) { unsigned char *ptr; int_mv _16x16mv; int mv_row; int mv_col; unsigned char *ptr_base = xd->second_pre.y_buffer; int pre_stride = xd->block[0].pre_stride; _16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int; if (xd->mode_info_context->mbmi.need_to_clamp_secondmv) clamp_mv_to_umv_border(&_16x16mv.as_mv, xd); mv_row = _16x16mv.as_mv.row; mv_col = _16x16mv.as_mv.col; ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3); #if CONFIG_PRED_FILTER if (xd->mode_info_context->mbmi.pred_filter_enabled) { if ((mv_row | mv_col) & 7) { // Sub-pel filter needs extended input int len = 15 + (VP9_INTERP_EXTEND << 1); unsigned char Temp[32 * 32]; // Data required by sub-pel filter unsigned char *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1); // Copy extended MB into Temp array, applying the spatial filter filter_mb(ptr - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride, Temp, len, len, len); // Sub-pel filter xd->subpixel_predict_avg16x16(pTemp, len, (mv_col & 7) << 1, (mv_row & 7) << 1, dst_y, dst_ystride); } else { // TODO Needs to AVERAGE with the dst_y // For now, do not apply the prediction filter in these cases! vp9_avg_mem16x16(ptr, pre_stride, dst_y, dst_ystride); } } else #endif // CONFIG_PRED_FILTER { if ((mv_row | mv_col) & 7) { xd->subpixel_predict_avg16x16(ptr, pre_stride, (mv_col & 7) << 1, (mv_row & 7) << 1, dst_y, dst_ystride); } else { vp9_avg_mem16x16(ptr, pre_stride, dst_y, dst_ystride); } } } void vp9_build_2nd_inter16x16_predictors_mbuv(MACROBLOCKD *xd, unsigned char *dst_u, unsigned char *dst_v, int dst_uvstride) { int offset; unsigned char *uptr, *vptr; int_mv _16x16mv; int mv_row; int mv_col; int omv_row, omv_col; int pre_stride = xd->block[0].pre_stride; _16x16mv.as_int = xd->mode_info_context->mbmi.mv[1].as_int; if (xd->mode_info_context->mbmi.need_to_clamp_secondmv) clamp_mv_to_umv_border(&_16x16mv.as_mv, xd); mv_row = _16x16mv.as_mv.row; mv_col = _16x16mv.as_mv.col; /* calc uv motion vectors */ omv_row = mv_row; omv_col = mv_col; mv_row = (mv_row + (mv_row > 0)) >> 1; mv_col = (mv_col + (mv_col > 0)) >> 1; mv_row &= xd->fullpixel_mask; mv_col &= xd->fullpixel_mask; pre_stride >>= 1; offset = (mv_row >> 3) * pre_stride + (mv_col >> 3); uptr = xd->second_pre.u_buffer + offset; vptr = xd->second_pre.v_buffer + offset; #if CONFIG_PRED_FILTER if (xd->mode_info_context->mbmi.pred_filter_enabled) { int i; int len = 7 + (VP9_INTERP_EXTEND << 1); unsigned char Temp[32 * 32]; // Data required by sub-pel filter unsigned char *pTemp = Temp + (VP9_INTERP_EXTEND - 1) * (len + 1); unsigned char *pSrc = uptr; unsigned char *pDst = dst_u; // U & V for (i = 0; i < 2; i++) { if ((omv_row | omv_col) & 15) { // Copy extended MB into Temp array, applying the spatial filter filter_mb(pSrc - (VP9_INTERP_EXTEND - 1) * (pre_stride + 1), pre_stride, Temp, len, len, len); // Sub-pel filter xd->subpixel_predict_avg8x8(pTemp, len, omv_col & 15, omv_row & 15, pDst, dst_uvstride); } else { // TODO Needs to AVERAGE with the dst_[u|v] // For now, do not apply the prediction filter here! vp9_avg_mem8x8(pSrc, pre_stride, pDst, dst_uvstride); } // V pSrc = vptr; pDst = dst_v; } } else #endif // CONFIG_PRED_FILTER if ((omv_row | omv_col) & 15) { xd->subpixel_predict_avg8x8(uptr, pre_stride, omv_col & 15, omv_row & 15, dst_u, dst_uvstride); xd->subpixel_predict_avg8x8(vptr, pre_stride, omv_col & 15, omv_row & 15, dst_v, dst_uvstride); } else { vp9_avg_mem8x8(uptr, pre_stride, dst_u, dst_uvstride); vp9_avg_mem8x8(vptr, pre_stride, dst_v, dst_uvstride); } } void vp9_build_2nd_inter16x16_predictors_mb(MACROBLOCKD *xd, unsigned char *dst_y, unsigned char *dst_u, unsigned char *dst_v, int dst_ystride, int dst_uvstride) { vp9_build_2nd_inter16x16_predictors_mby(xd, dst_y, dst_ystride); vp9_build_2nd_inter16x16_predictors_mbuv(xd, dst_u, dst_v, dst_uvstride); } static void build_inter4x4_predictors_mb(MACROBLOCKD *xd) { int i; MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi; BLOCKD *blockd = xd->block; if (xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4) { blockd[ 0].bmi = xd->mode_info_context->bmi[ 0]; blockd[ 2].bmi = xd->mode_info_context->bmi[ 2]; blockd[ 8].bmi = xd->mode_info_context->bmi[ 8]; blockd[10].bmi = xd->mode_info_context->bmi[10]; if (mbmi->need_to_clamp_mvs) { clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.first.as_mv, xd); clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.first.as_mv, xd); clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.first.as_mv, xd); clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.first.as_mv, xd); if (mbmi->second_ref_frame > 0) { clamp_mv_to_umv_border(&blockd[ 0].bmi.as_mv.second.as_mv, xd); clamp_mv_to_umv_border(&blockd[ 2].bmi.as_mv.second.as_mv, xd); clamp_mv_to_umv_border(&blockd[ 8].bmi.as_mv.second.as_mv, xd); clamp_mv_to_umv_border(&blockd[10].bmi.as_mv.second.as_mv, xd); } } vp9_build_inter_predictors4b(xd, &blockd[ 0], 16); vp9_build_inter_predictors4b(xd, &blockd[ 2], 16); vp9_build_inter_predictors4b(xd, &blockd[ 8], 16); vp9_build_inter_predictors4b(xd, &blockd[10], 16); if (mbmi->second_ref_frame > 0) { vp9_build_2nd_inter_predictors4b(xd, &blockd[ 0], 16); vp9_build_2nd_inter_predictors4b(xd, &blockd[ 2], 16); vp9_build_2nd_inter_predictors4b(xd, &blockd[ 8], 16); vp9_build_2nd_inter_predictors4b(xd, &blockd[10], 16); } } else { for (i = 0; i < 16; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; blockd[i + 0].bmi = xd->mode_info_context->bmi[i + 0]; blockd[i + 1].bmi = xd->mode_info_context->bmi[i + 1]; if (mbmi->need_to_clamp_mvs) { clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.first.as_mv, xd); clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.first.as_mv, xd); if (mbmi->second_ref_frame > 0) { clamp_mv_to_umv_border(&blockd[i + 0].bmi.as_mv.second.as_mv, xd); clamp_mv_to_umv_border(&blockd[i + 1].bmi.as_mv.second.as_mv, xd); } } if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int) build_inter_predictors2b(xd, d0, 16); else { vp9_build_inter_predictors_b(d0, 16, xd->subpixel_predict); vp9_build_inter_predictors_b(d1, 16, xd->subpixel_predict); } if (mbmi->second_ref_frame > 0) { vp9_build_2nd_inter_predictors_b(d0, 16, xd->subpixel_predict_avg); vp9_build_2nd_inter_predictors_b(d1, 16, xd->subpixel_predict_avg); } } } for (i = 16; i < 24; i += 2) { BLOCKD *d0 = &blockd[i]; BLOCKD *d1 = &blockd[i + 1]; if (d0->bmi.as_mv.first.as_int == d1->bmi.as_mv.first.as_int) build_inter_predictors2b(xd, d0, 8); else { vp9_build_inter_predictors_b(d0, 8, xd->subpixel_predict); vp9_build_inter_predictors_b(d1, 8, xd->subpixel_predict); } if (mbmi->second_ref_frame > 0) { vp9_build_2nd_inter_predictors_b(d0, 8, xd->subpixel_predict_avg); vp9_build_2nd_inter_predictors_b(d1, 8, xd->subpixel_predict_avg); } } } static void build_4x4uvmvs(MACROBLOCKD *xd) { int i, j; BLOCKD *blockd = xd->block; for (i = 0; i < 2; i++) { for (j = 0; j < 2; j++) { int yoffset = i * 8 + j * 2; int uoffset = 16 + i * 2 + j; int voffset = 20 + i * 2 + j; int temp; temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.row + xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.row + xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.row + xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.row; if (temp < 0) temp -= 4; else temp += 4; blockd[uoffset].bmi.as_mv.first.as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.first.as_mv.col + xd->mode_info_context->bmi[yoffset + 1].as_mv.first.as_mv.col + xd->mode_info_context->bmi[yoffset + 4].as_mv.first.as_mv.col + xd->mode_info_context->bmi[yoffset + 5].as_mv.first.as_mv.col; if (temp < 0) temp -= 4; else temp += 4; blockd[uoffset].bmi.as_mv.first.as_mv.col = (temp / 8) & xd->fullpixel_mask; // if (x->mode_info_context->mbmi.need_to_clamp_mvs) clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd); // if (x->mode_info_context->mbmi.need_to_clamp_mvs) clamp_uvmv_to_umv_border(&blockd[uoffset].bmi.as_mv.first.as_mv, xd); blockd[voffset].bmi.as_mv.first.as_mv.row = blockd[uoffset].bmi.as_mv.first.as_mv.row; blockd[voffset].bmi.as_mv.first.as_mv.col = blockd[uoffset].bmi.as_mv.first.as_mv.col; if (xd->mode_info_context->mbmi.second_ref_frame > 0) { temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.row + xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.row + xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.row + xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.row; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv.second.as_mv.row = (temp / 8) & xd->fullpixel_mask; temp = xd->mode_info_context->bmi[yoffset + 0].as_mv.second.as_mv.col + xd->mode_info_context->bmi[yoffset + 1].as_mv.second.as_mv.col + xd->mode_info_context->bmi[yoffset + 4].as_mv.second.as_mv.col + xd->mode_info_context->bmi[yoffset + 5].as_mv.second.as_mv.col; if (temp < 0) { temp -= 4; } else { temp += 4; } blockd[uoffset].bmi.as_mv.second.as_mv.col = (temp / 8) & xd->fullpixel_mask; // if (mbmi->need_to_clamp_mvs) clamp_uvmv_to_umv_border( &blockd[uoffset].bmi.as_mv.second.as_mv, xd); // if (mbmi->need_to_clamp_mvs) clamp_uvmv_to_umv_border( &blockd[uoffset].bmi.as_mv.second.as_mv, xd); blockd[voffset].bmi.as_mv.second.as_mv.row = blockd[uoffset].bmi.as_mv.second.as_mv.row; blockd[voffset].bmi.as_mv.second.as_mv.col = blockd[uoffset].bmi.as_mv.second.as_mv.col; } } } } void vp9_build_inter_predictors_mb(MACROBLOCKD *xd) { if (xd->mode_info_context->mbmi.mode != SPLITMV) { vp9_build_1st_inter16x16_predictors_mb(xd, xd->predictor, &xd->predictor[256], &xd->predictor[320], 16, 8); if (xd->mode_info_context->mbmi.second_ref_frame > 0) { /* 256 = offset of U plane in Y+U+V buffer; * 320 = offset of V plane in Y+U+V buffer. * (256=16x16, 320=16x16+8x8). */ vp9_build_2nd_inter16x16_predictors_mb(xd, xd->predictor, &xd->predictor[256], &xd->predictor[320], 16, 8); } #if CONFIG_COMP_INTERINTRA_PRED else if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_16x16_predictors_mb(xd, xd->predictor, &xd->predictor[256], &xd->predictor[320], 16, 8); } #endif } else { build_4x4uvmvs(xd); build_inter4x4_predictors_mb(xd); } }