/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "recon.h" #include "reconintra.h" #include "vpx_mem/vpx_mem.h" /* For skip_recon_mb(), add vp8_build_intra_predictors_mby_s(MACROBLOCKD *x) and * vp8_build_intra_predictors_mbuv_s(MACROBLOCKD *x). */ void vp8_recon_intra_mbuv(const vp8_recon_rtcd_vtable_t *rtcd, MACROBLOCKD *x) { int i; for (i = 16; i < 24; i += 2) { BLOCKD *b = &x->block[i]; RECON_INVOKE(rtcd, recon2)(b->predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride); } } void vp8_build_intra_predictors_mby(MACROBLOCKD *x) { unsigned char *yabove_row = x->dst.y_buffer - x->dst.y_stride; unsigned char yleft_col[16]; unsigned char ytop_left = yabove_row[-1]; unsigned char *ypred_ptr = x->predictor; int r, c, i; for (i = 0; i < 16; i++) { yleft_col[i] = x->dst.y_buffer [i* x->dst.y_stride -1]; } /* for Y */ switch (x->mode_info_context->mbmi.mode) { case DC_PRED: { int expected_dc; int i; int shift; int average = 0; if (x->up_available || x->left_available) { if (x->up_available) { for (i = 0; i < 16; i++) { average += yabove_row[i]; } } if (x->left_available) { for (i = 0; i < 16; i++) { average += yleft_col[i]; } } shift = 3 + x->up_available + x->left_available; expected_dc = (average + (1 << (shift - 1))) >> shift; } else { expected_dc = 128; } vpx_memset(ypred_ptr, expected_dc, 256); } break; case V_PRED: { for (r = 0; r < 16; r++) { ((int *)ypred_ptr)[0] = ((int *)yabove_row)[0]; ((int *)ypred_ptr)[1] = ((int *)yabove_row)[1]; ((int *)ypred_ptr)[2] = ((int *)yabove_row)[2]; ((int *)ypred_ptr)[3] = ((int *)yabove_row)[3]; ypred_ptr += 16; } } break; case H_PRED: { for (r = 0; r < 16; r++) { vpx_memset(ypred_ptr, yleft_col[r], 16); ypred_ptr += 16; } } break; case TM_PRED: { for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { int pred = yleft_col[r] + yabove_row[ c] - ytop_left; if (pred < 0) pred = 0; if (pred > 255) pred = 255; ypred_ptr[c] = pred; } ypred_ptr += 16; } } break; #if CONIFG_I8X8 case I8X8_PRED: #endif case B_PRED: case NEARESTMV: case NEARMV: case ZEROMV: case NEWMV: case SPLITMV: case MB_MODE_COUNT: break; } } void vp8_build_intra_predictors_mby_s(MACROBLOCKD *x) { unsigned char *yabove_row = x->dst.y_buffer - x->dst.y_stride; unsigned char yleft_col[16]; unsigned char ytop_left = yabove_row[-1]; unsigned char *ypred_ptr = x->predictor; int r, c, i; int y_stride = x->dst.y_stride; ypred_ptr = x->dst.y_buffer; /*x->predictor;*/ for (i = 0; i < 16; i++) { yleft_col[i] = x->dst.y_buffer [i* x->dst.y_stride -1]; } /* for Y */ switch (x->mode_info_context->mbmi.mode) { case DC_PRED: { int expected_dc; int i; int shift; int average = 0; if (x->up_available || x->left_available) { if (x->up_available) { for (i = 0; i < 16; i++) { average += yabove_row[i]; } } if (x->left_available) { for (i = 0; i < 16; i++) { average += yleft_col[i]; } } shift = 3 + x->up_available + x->left_available; expected_dc = (average + (1 << (shift - 1))) >> shift; } else { expected_dc = 128; } /*vpx_memset(ypred_ptr, expected_dc, 256);*/ for (r = 0; r < 16; r++) { vpx_memset(ypred_ptr, expected_dc, 16); ypred_ptr += y_stride; /*16;*/ } } break; case V_PRED: { for (r = 0; r < 16; r++) { ((int *)ypred_ptr)[0] = ((int *)yabove_row)[0]; ((int *)ypred_ptr)[1] = ((int *)yabove_row)[1]; ((int *)ypred_ptr)[2] = ((int *)yabove_row)[2]; ((int *)ypred_ptr)[3] = ((int *)yabove_row)[3]; ypred_ptr += y_stride; /*16;*/ } } break; case H_PRED: { for (r = 0; r < 16; r++) { vpx_memset(ypred_ptr, yleft_col[r], 16); ypred_ptr += y_stride; /*16;*/ } } break; case TM_PRED: { for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { int pred = yleft_col[r] + yabove_row[ c] - ytop_left; if (pred < 0) pred = 0; if (pred > 255) pred = 255; ypred_ptr[c] = pred; } ypred_ptr += y_stride; /*16;*/ } } break; case B_PRED: case NEARESTMV: case NEARMV: case ZEROMV: case NEWMV: case SPLITMV: case MB_MODE_COUNT: break; } } void vp8_build_intra_predictors_mbuv(MACROBLOCKD *x) { unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride; unsigned char uleft_col[16]; unsigned char utop_left = uabove_row[-1]; unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride; unsigned char vleft_col[20]; unsigned char vtop_left = vabove_row[-1]; unsigned char *upred_ptr = &x->predictor[256]; unsigned char *vpred_ptr = &x->predictor[320]; int i, j; for (i = 0; i < 8; i++) { uleft_col[i] = x->dst.u_buffer [i* x->dst.uv_stride -1]; vleft_col[i] = x->dst.v_buffer [i* x->dst.uv_stride -1]; } switch (x->mode_info_context->mbmi.uv_mode) { case DC_PRED: { int expected_udc; int expected_vdc; int i; int shift; int Uaverage = 0; int Vaverage = 0; if (x->up_available) { for (i = 0; i < 8; i++) { Uaverage += uabove_row[i]; Vaverage += vabove_row[i]; } } if (x->left_available) { for (i = 0; i < 8; i++) { Uaverage += uleft_col[i]; Vaverage += vleft_col[i]; } } if (!x->up_available && !x->left_available) { expected_udc = 128; expected_vdc = 128; } else { shift = 2 + x->up_available + x->left_available; expected_udc = (Uaverage + (1 << (shift - 1))) >> shift; expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift; } vpx_memset(upred_ptr, expected_udc, 64); vpx_memset(vpred_ptr, expected_vdc, 64); } break; case V_PRED: { int i; for (i = 0; i < 8; i++) { vpx_memcpy(upred_ptr, uabove_row, 8); vpx_memcpy(vpred_ptr, vabove_row, 8); upred_ptr += 8; vpred_ptr += 8; } } break; case H_PRED: { int i; for (i = 0; i < 8; i++) { vpx_memset(upred_ptr, uleft_col[i], 8); vpx_memset(vpred_ptr, vleft_col[i], 8); upred_ptr += 8; vpred_ptr += 8; } } break; case TM_PRED: { int i; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { int predu = uleft_col[i] + uabove_row[j] - utop_left; int predv = vleft_col[i] + vabove_row[j] - vtop_left; if (predu < 0) predu = 0; if (predu > 255) predu = 255; if (predv < 0) predv = 0; if (predv > 255) predv = 255; upred_ptr[j] = predu; vpred_ptr[j] = predv; } upred_ptr += 8; vpred_ptr += 8; } } break; case B_PRED: case NEARESTMV: case NEARMV: case ZEROMV: case NEWMV: case SPLITMV: case MB_MODE_COUNT: break; } } void vp8_build_intra_predictors_mbuv_s(MACROBLOCKD *x) { unsigned char *uabove_row = x->dst.u_buffer - x->dst.uv_stride; unsigned char uleft_col[16]; unsigned char utop_left = uabove_row[-1]; unsigned char *vabove_row = x->dst.v_buffer - x->dst.uv_stride; unsigned char vleft_col[20]; unsigned char vtop_left = vabove_row[-1]; unsigned char *upred_ptr = x->dst.u_buffer; /*&x->predictor[256];*/ unsigned char *vpred_ptr = x->dst.v_buffer; /*&x->predictor[320];*/ int uv_stride = x->dst.uv_stride; int i, j; for (i = 0; i < 8; i++) { uleft_col[i] = x->dst.u_buffer [i* x->dst.uv_stride -1]; vleft_col[i] = x->dst.v_buffer [i* x->dst.uv_stride -1]; } switch (x->mode_info_context->mbmi.uv_mode) { case DC_PRED: { int expected_udc; int expected_vdc; int i; int shift; int Uaverage = 0; int Vaverage = 0; if (x->up_available) { for (i = 0; i < 8; i++) { Uaverage += uabove_row[i]; Vaverage += vabove_row[i]; } } if (x->left_available) { for (i = 0; i < 8; i++) { Uaverage += uleft_col[i]; Vaverage += vleft_col[i]; } } if (!x->up_available && !x->left_available) { expected_udc = 128; expected_vdc = 128; } else { shift = 2 + x->up_available + x->left_available; expected_udc = (Uaverage + (1 << (shift - 1))) >> shift; expected_vdc = (Vaverage + (1 << (shift - 1))) >> shift; } /*vpx_memset(upred_ptr,expected_udc,64);*/ /*vpx_memset(vpred_ptr,expected_vdc,64);*/ for (i = 0; i < 8; i++) { vpx_memset(upred_ptr, expected_udc, 8); vpx_memset(vpred_ptr, expected_vdc, 8); upred_ptr += uv_stride; /*8;*/ vpred_ptr += uv_stride; /*8;*/ } } break; case V_PRED: { int i; for (i = 0; i < 8; i++) { vpx_memcpy(upred_ptr, uabove_row, 8); vpx_memcpy(vpred_ptr, vabove_row, 8); upred_ptr += uv_stride; /*8;*/ vpred_ptr += uv_stride; /*8;*/ } } break; case H_PRED: { int i; for (i = 0; i < 8; i++) { vpx_memset(upred_ptr, uleft_col[i], 8); vpx_memset(vpred_ptr, vleft_col[i], 8); upred_ptr += uv_stride; /*8;*/ vpred_ptr += uv_stride; /*8;*/ } } break; case TM_PRED: { int i; for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { int predu = uleft_col[i] + uabove_row[j] - utop_left; int predv = vleft_col[i] + vabove_row[j] - vtop_left; if (predu < 0) predu = 0; if (predu > 255) predu = 255; if (predv < 0) predv = 0; if (predv > 255) predv = 255; upred_ptr[j] = predu; vpred_ptr[j] = predv; } upred_ptr += uv_stride; /*8;*/ vpred_ptr += uv_stride; /*8;*/ } } break; case B_PRED: case NEARESTMV: case NEARMV: case ZEROMV: case NEWMV: case SPLITMV: case MB_MODE_COUNT: break; } } #if CONFIG_I8X8 void vp8_intra8x8_predict(BLOCKD *x, int mode, unsigned char *predictor) { unsigned char *yabove_row = *(x->base_dst) + x->dst - x->dst_stride; unsigned char yleft_col[8]; unsigned char ytop_left = yabove_row[-1]; int r, c, i; for (i = 0; i < 8; i++) { yleft_col[i] = (*(x->base_dst))[x->dst - 1 + i * x->dst_stride]; } switch (mode) { case DC_PRED: { int expected_dc = 0; for (i = 0; i < 8; i++) { expected_dc += yabove_row[i]; expected_dc += yleft_col[i]; } expected_dc = (expected_dc + 8) >> 4; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { predictor[c] = expected_dc; } predictor += 16; } } break; case V_PRED: { for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { predictor[c] = yabove_row[c]; } predictor += 16; } } break; case H_PRED: { for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { predictor[c] = yleft_col[r]; } predictor += 16; } } break; case TM_PRED: { /* prediction similar to true_motion prediction */ for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { int pred = yabove_row[c] - ytop_left + yleft_col[r]; if (pred < 0) pred = 0; if (pred > 255) pred = 255; predictor[c] = pred; } predictor += 16; } } break; } } void vp8_intra_uv4x4_predict(BLOCKD *x, int mode, unsigned char *predictor) { unsigned char *above_row = *(x->base_dst) + x->dst - x->dst_stride; unsigned char left_col[4]; unsigned char top_left = above_row[-1]; int r, c, i; for (i = 0; i < 4; i++) { left_col[i] = (*(x->base_dst))[x->dst - 1 + i * x->dst_stride]; } switch (mode) { case DC_PRED: { int expected_dc = 0; for (i = 0; i < 4; i++) { expected_dc += above_row[i]; expected_dc += left_col[i]; } expected_dc = (expected_dc + 4) >> 3; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { predictor[c] = expected_dc; } predictor += 8; } } break; case V_PRED: { for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { predictor[c] = above_row[c]; } predictor += 8; } } break; case H_PRED: { for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { predictor[c] = left_col[r]; } predictor += 8; } } break; case TM_PRED: { /* prediction similar to true_motion prediction */ for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { int pred = above_row[c] - top_left + left_col[r]; if (pred < 0) pred = 0; if (pred > 255) pred = 255; predictor[c] = pred; } predictor += 8; } } break; } } /* TODO: try different ways of use Y-UV mode correlation Current code assumes that a uv 4x4 block use same mode as corresponding Y 8x8 area */ #endif