/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vp9/encoder/vp9_encodeframe.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/common/vp9_common.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_encodeintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_tokenize.h" #include "./vp9_rtcd.h" #include #include #include #include "vpx_ports/vpx_timer.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_mvref_common.h" #define DBG_PRNT_SEGMAP 0 // #define ENC_DEBUG #ifdef ENC_DEBUG int enc_debug = 0; #endif void vp9_select_interp_filter_type(VP9_COMP *cpi); static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize); static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x); /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp9_activity_masking(). */ #define VP9_ACTIVITY_AVG_MIN (64) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const uint8_t VP9_VAR_OFFS[16] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; // Original activity measure from Tim T's code. static unsigned int tt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x) { unsigned int act; unsigned int sse; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride, VP9_VAR_OFFS, 0, &sse); act <<= 4; /* If the region is flat, lower the activity some more. */ if (act < 8 << 12) act = act < 5 << 12 ? act : 5 << 12; return act; } // Stub for alternative experimental activity measures. static unsigned int alt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x, int use_dc_pred) { return vp9_encode_intra(cpi, x, use_dc_pred); } DECLARE_ALIGNED(16, static const uint8_t, vp9_64x64_zeros[64*64]) = { 0 }; // Measure the activity of the current macroblock // What we measure here is TBD so abstracted to this function #define ALT_ACT_MEASURE 1 static unsigned int mb_activity_measure(VP9_COMP *cpi, MACROBLOCK *x, int mb_row, int mb_col) { unsigned int mb_activity; if (ALT_ACT_MEASURE) { int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); // Or use and alternative. mb_activity = alt_activity_measure(cpi, x, use_dc_pred); } else { // Original activity measure from Tim T's code. mb_activity = tt_activity_measure(cpi, x); } if (mb_activity < VP9_ACTIVITY_AVG_MIN) mb_activity = VP9_ACTIVITY_AVG_MIN; return mb_activity; } // Calculate an "average" mb activity value for the frame #define ACT_MEDIAN 0 static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) { #if ACT_MEDIAN // Find median: Simple n^2 algorithm for experimentation { unsigned int median; unsigned int i, j; unsigned int *sortlist; unsigned int tmp; // Create a list to sort to CHECK_MEM_ERROR(sortlist, vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); // Copy map to sort list vpx_memcpy(sortlist, cpi->mb_activity_map, sizeof(unsigned int) * cpi->common.MBs); // Ripple each value down to its correct position for (i = 1; i < cpi->common.MBs; i ++) { for (j = i; j > 0; j --) { if (sortlist[j] < sortlist[j - 1]) { // Swap values tmp = sortlist[j - 1]; sortlist[j - 1] = sortlist[j]; sortlist[j] = tmp; } else break; } } // Even number MBs so estimate median as mean of two either side. median = (1 + sortlist[cpi->common.MBs >> 1] + sortlist[(cpi->common.MBs >> 1) + 1]) >> 1; cpi->activity_avg = median; vpx_free(sortlist); } #else // Simple mean for now cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs); #endif if (cpi->activity_avg < VP9_ACTIVITY_AVG_MIN) cpi->activity_avg = VP9_ACTIVITY_AVG_MIN; // Experimental code: return fixed value normalized for several clips if (ALT_ACT_MEASURE) cpi->activity_avg = 100000; } #define USE_ACT_INDEX 0 #define OUTPUT_NORM_ACT_STATS 0 #if USE_ACT_INDEX // Calculate an activity index for each mb static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) { VP9_COMMON *const cm = &cpi->common; int mb_row, mb_col; int64_t act; int64_t a; int64_t b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n%12d\n", cpi->activity_avg); #endif // Reset pointers to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; // Calculate normalized mb activity number. for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Read activity from the map act = *(x->mb_activity_ptr); // Calculate a normalized activity number a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (b >= a) *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; else *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_activity_ptr)); #endif // Increment activity map pointers x->mb_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } #endif // Loop through all MBs. Note activity of each, average activity and // calculate a normalized activity for each static void build_activity_map(VP9_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *xd = &x->e_mbd; VP9_COMMON *const cm = &cpi->common; #if ALT_ACT_MEASURE YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; int recon_yoffset; int recon_y_stride = new_yv12->y_stride; #endif int mb_row, mb_col; unsigned int mb_activity; int64_t activity_sum = 0; x->mb_activity_ptr = cpi->mb_activity_map; // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { #if ALT_ACT_MEASURE // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); #endif // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { #if ALT_ACT_MEASURE xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; xd->left_available = (mb_col != 0); recon_yoffset += 16; #endif // measure activity mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col); // Keep frame sum activity_sum += mb_activity; // Store MB level activity details. *x->mb_activity_ptr = mb_activity; // Increment activity map pointer x->mb_activity_ptr++; // adjust to the next column of source macroblocks x->plane[0].src.buf += 16; } // adjust to the next row of mbs x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; } // Calculate an "average" MB activity calc_av_activity(cpi, activity_sum); #if USE_ACT_INDEX // Calculate an activity index number of each mb calc_activity_index(cpi, x); #endif } // Macroblock activity masking void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + (2 * cpi->activity_avg); b = (2 * act) + cpi->activity_avg; x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #endif // Activity based Zbin adjustment adjust_act_zbin(cpi, x); } static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, BLOCK_SIZE_TYPE bsize, int output_enabled) { int i, x_idx, y; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = &ctx->mic; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; #if CONFIG_DEBUG || CONFIG_INTERNAL_STATS MB_PREDICTION_MODE mb_mode = mi->mbmi.mode; #endif int mb_mode_index = ctx->best_mode_index; const int mis = cpi->common.mode_info_stride; const int bh = 1 << mi_height_log2(bsize), bw = 1 << mi_width_log2(bsize); #if CONFIG_DEBUG assert(mb_mode < MB_MODE_COUNT); assert(mb_mode_index < MAX_MODES); assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES); assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES); #endif assert(mi->mbmi.sb_type == bsize); // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < bh; y++) { for (x_idx = 0; x_idx < bw; x_idx++) { if ((xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)) + bw > x_idx && (xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)) + bh > y) { MODE_INFO *mi_addr = xd->mode_info_context + x_idx + y * mis; *mi_addr = *mi; } } } if (bsize < BLOCK_SIZE_SB32X32) { if (bsize < BLOCK_SIZE_MB16X16) ctx->txfm_rd_diff[ALLOW_16X16] = ctx->txfm_rd_diff[ALLOW_8X8]; ctx->txfm_rd_diff[ALLOW_32X32] = ctx->txfm_rd_diff[ALLOW_16X16]; } if (mbmi->ref_frame[0] != INTRA_FRAME && mbmi->sb_type < BLOCK_SIZE_SB8X8) { *x->partition_info = ctx->partition_info; mbmi->mv[0].as_int = x->partition_info->bmi[3].mv.as_int; mbmi->mv[1].as_int = x->partition_info->bmi[3].second_mv.as_int; } x->skip = ctx->skip; if (!output_enabled) return; if (!vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) { for (i = 0; i < NB_TXFM_MODES; i++) { cpi->rd_tx_select_diff[i] += ctx->txfm_rd_diff[i]; } } if (cpi->common.frame_type == KEY_FRAME) { // Restore the coding modes to that held in the coding context // if (mb_mode == I4X4_PRED) // for (i = 0; i < 16; i++) // { // xd->block[i].bmi.as_mode = // xd->mode_info_context->bmi[i].as_mode; // assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT); // } #if CONFIG_INTERNAL_STATS static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, THR_D153_PRED /*D153_PRED*/, THR_D27_PRED /*D27_PRED*/, THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, THR_B_PRED /*I4X4_PRED*/, }; cpi->mode_chosen_counts[kf_mode_index[mb_mode]]++; #endif } else { /* // Reduce the activation RD thresholds for the best choice mode if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) && (cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2))) { int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2); cpi->rd_thresh_mult[mb_mode_index] = (cpi->rd_thresh_mult[mb_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[mb_mode_index] - best_adjustment : MIN_THRESHMULT; cpi->rd_threshes[mb_mode_index] = (cpi->rd_baseline_thresh[mb_mode_index] >> 7) * cpi->rd_thresh_mult[mb_mode_index]; } */ // Note how often each mode chosen as best cpi->mode_chosen_counts[mb_mode_index]++; if (mbmi->ref_frame[0] != INTRA_FRAME && (mbmi->sb_type < BLOCK_SIZE_SB8X8 || mbmi->mode == NEWMV)) { int_mv best_mv, best_second_mv; const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0]; const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1]; best_mv.as_int = ctx->best_ref_mv.as_int; best_second_mv.as_int = ctx->second_best_ref_mv.as_int; if (mbmi->mode == NEWMV) { best_mv.as_int = mbmi->ref_mvs[rf1][0].as_int; best_second_mv.as_int = mbmi->ref_mvs[rf2][0].as_int; } mbmi->best_mv.as_int = best_mv.as_int; mbmi->best_second_mv.as_int = best_second_mv.as_int; vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv); } if (bsize > BLOCK_SIZE_SB8X8 && mbmi->mode == NEWMV) { int i, j; for (j = 0; j < bh; ++j) for (i = 0; i < bw; ++i) if ((xd->mb_to_right_edge >> (3 + LOG2_MI_SIZE)) + bw > i && (xd->mb_to_bottom_edge >> (3 + LOG2_MI_SIZE)) + bh > j) xd->mode_info_context[mis * j + i].mbmi = *mbmi; } if (cpi->common.mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) { ++cpi->common.fc.switchable_interp_count [vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)] [vp9_switchable_interp_map[mbmi->interp_filter]]; } cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff; cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff; cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff; } } static unsigned find_seg_id(uint8_t *buf, BLOCK_SIZE_TYPE bsize, int start_y, int height, int start_x, int width) { const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize); const int end_x = MIN(start_x + bw, width); const int end_y = MIN(start_y + bh, height); int x, y; unsigned seg_id = -1; buf += width * start_y; for (y = start_y; y < end_y; y++, buf += width) { for (x = start_x; x < end_x; x++) { seg_id = MIN(seg_id, buf[x]); } } return seg_id; } void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mb_row, int mb_col) { uint8_t *buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, src->alpha_buffer}; int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, src->alpha_stride}; int i; for (i = 0; i < MAX_MB_PLANE; i++) { setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mb_row, mb_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } } static void set_offsets(VP9_COMP *cpi, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; const int dst_fb_idx = cm->new_fb_idx; const int idx_str = xd->mode_info_stride * mi_row + mi_col; const int bw = 1 << mi_width_log2(bsize), bh = 1 << mi_height_log2(bsize); const int mb_row = mi_row >> 1; const int mb_col = mi_col >> 1; const int idx_map = mb_row * cm->mb_cols + mb_col; int i; // entropy context structures for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].above_context = cm->above_context[i] + (mi_col * 2 >> xd->plane[i].subsampling_x); xd->plane[i].left_context = cm->left_context[i] + (((mi_row * 2) & 15) >> xd->plane[i].subsampling_y); } // partition contexts set_partition_seg_context(cm, xd, mi_row, mi_col); // Activity map pointer x->mb_activity_ptr = &cpi->mb_activity_map[idx_map]; x->active_ptr = cpi->active_map + idx_map; /* pointers to mode info contexts */ x->partition_info = x->pi + idx_str; xd->mode_info_context = cm->mi + idx_str; mbmi = &xd->mode_info_context->mbmi; // Special case: if prev_mi is NULL, the previous mode info context // cannot be used. xd->prev_mode_info_context = cm->prev_mi ? cm->prev_mi + idx_str : NULL; // Set up destination pointers setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col); /* Set up limit values for MV components to prevent them from * extending beyond the UMV borders assuming 16x16 block size */ x->mv_row_min = -((mi_row * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND); x->mv_col_min = -((mi_col * MI_SIZE) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND); x->mv_row_max = ((cm->mi_rows - mi_row) * MI_SIZE + (VP9BORDERINPIXELS - MI_SIZE * bh - VP9_INTERP_EXTEND)); x->mv_col_max = ((cm->mi_cols - mi_col) * MI_SIZE + (VP9BORDERINPIXELS - MI_SIZE * bw - VP9_INTERP_EXTEND)); // Set up distance of MB to edge of frame in 1/8th pel units assert(!(mi_col & (bw - 1)) && !(mi_row & (bh - 1))); set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); /* set up source buffers */ vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); /* R/D setup */ x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; /* segment ID */ if (xd->segmentation_enabled) { uint8_t *map = xd->update_mb_segmentation_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = find_seg_id(map, bsize, mi_row, cm->mi_rows, mi_col, cm->mi_cols); assert(mbmi->segment_id <= (MAX_MB_SEGMENTS-1)); vp9_mb_init_quantizer(cpi, x); if (xd->segmentation_enabled && cpi->seg0_cnt > 0 && !vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) && vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) && vp9_check_segref(xd, 1, INTRA_FRAME) + vp9_check_segref(xd, 1, LAST_FRAME) + vp9_check_segref(xd, 1, GOLDEN_FRAME) + vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) { cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt; } else { const int y = mb_row & ~3; const int x = mb_col & ~3; const int p16 = ((mb_row & 1) << 1) + (mb_col & 1); const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1); const int tile_progress = cm->cur_tile_mi_col_start * cm->mb_rows >> 1; const int mb_cols = (cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start) >> 1; cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs; } } else { mbmi->segment_id = 0; } } static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col, TOKENEXTRA **tp, int *totalrate, int *totaldist, BLOCK_SIZE_TYPE bsize, PICK_MODE_CONTEXT *ctx) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index != 0) return; set_offsets(cpi, mi_row, mi_col, bsize); xd->mode_info_context->mbmi.sb_type = bsize; if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp9_activity_masking(cpi, x); /* Find best coding mode & reconstruct the MB so it is available * as a predictor for MBs that follow in the SB */ if (cm->frame_type == KEY_FRAME) { vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx); } else { vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist, bsize, ctx); } } static void update_stats(VP9_COMP *cpi, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (cm->frame_type != KEY_FRAME) { int segment_id, seg_ref_active; cpi->intra_inter_count[vp9_get_pred_context(cm, xd, PRED_INTRA_INTER)] [mbmi->ref_frame[0] > INTRA_FRAME]++; // If we have just a single reference frame coded for a segment then // exclude from the reference frame counts used to work out // probabilities. NOTE: At the moment we dont support custom trees // for the reference frame coding for each segment but this is a // possible future action. segment_id = mbmi->segment_id; seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); if (mbmi->ref_frame[0] > INTRA_FRAME && (!seg_ref_active || ((vp9_check_segref(xd, segment_id, INTRA_FRAME) + vp9_check_segref(xd, segment_id, LAST_FRAME) + vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + vp9_check_segref(xd, segment_id, ALTREF_FRAME)) > 1))) { if (cm->comp_pred_mode == HYBRID_PREDICTION) cpi->comp_inter_count[vp9_get_pred_context(cm, xd, PRED_COMP_INTER_INTER)] [mbmi->ref_frame[1] > INTRA_FRAME]++; if (mbmi->ref_frame[1] > INTRA_FRAME) { cpi->comp_ref_count[vp9_get_pred_context(cm, xd, PRED_COMP_REF_P)] [mbmi->ref_frame[0] == GOLDEN_FRAME]++; } else { cpi->single_ref_count[vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P1)] [0][mbmi->ref_frame[0] != LAST_FRAME]++; if (mbmi->ref_frame[0] != LAST_FRAME) cpi->single_ref_count[vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P2)] [1][mbmi->ref_frame[0] != GOLDEN_FRAME]++; } } // Count of last ref frame 0,0 usage if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame[0] == LAST_FRAME)) cpi->inter_zz_count++; } } // TODO(jingning): the variables used here are little complicated. need further // refactoring on organizing the the temporary buffers, when recursive // partition down to 4x4 block size is enabled. static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &x->e_mbd; switch (bsize) { case BLOCK_SIZE_SB64X64: return &x->sb64_context; case BLOCK_SIZE_SB64X32: return &x->sb64x32_context[xd->sb_index]; case BLOCK_SIZE_SB32X64: return &x->sb32x64_context[xd->sb_index]; case BLOCK_SIZE_SB32X32: return &x->sb32_context[xd->sb_index]; case BLOCK_SIZE_SB32X16: return &x->sb32x16_context[xd->sb_index][xd->mb_index]; case BLOCK_SIZE_SB16X32: return &x->sb16x32_context[xd->sb_index][xd->mb_index]; case BLOCK_SIZE_MB16X16: return &x->mb_context[xd->sb_index][xd->mb_index]; case BLOCK_SIZE_SB16X8: return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_SIZE_SB8X16: return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_SIZE_SB8X8: return &x->sb8x8_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_SIZE_SB8X4: return &x->sb8x4_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_SIZE_SB4X8: return &x->sb4x8_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_SIZE_AB4X4: return &x->ab4x4_context[xd->sb_index][xd->mb_index][xd->b_index]; default: assert(0); return NULL; } } static BLOCK_SIZE_TYPE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *xd = &x->e_mbd; switch (bsize) { case BLOCK_SIZE_SB64X64: return &x->sb64_partitioning; case BLOCK_SIZE_SB32X32: return &x->sb_partitioning[xd->sb_index]; case BLOCK_SIZE_MB16X16: return &x->mb_partitioning[xd->sb_index][xd->mb_index]; case BLOCK_SIZE_SB8X8: return &x->b_partitioning[xd->sb_index][xd->mb_index][xd->b_index]; default: assert(0); return NULL; } } static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int p; int bwl = b_width_log2(bsize), bw = 1 << bwl; int bhl = b_height_log2(bsize), bh = 1 << bhl; int mwl = mi_width_log2(bsize), mw = 1 << mwl; int mhl = mi_height_log2(bsize), mh = 1 << mhl; for (p = 0; p < MAX_MB_PLANE; p++) { vpx_memcpy(cm->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), a + bw * p, sizeof(ENTROPY_CONTEXT) * bw >> xd->plane[p].subsampling_x); vpx_memcpy(cm->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), l + bh * p, sizeof(ENTROPY_CONTEXT) * bh >> xd->plane[p].subsampling_y); } vpx_memcpy(cm->above_seg_context + mi_col, sa, sizeof(PARTITION_CONTEXT) * mw); vpx_memcpy(cm->left_seg_context + (mi_row & MI_MASK), sl, sizeof(PARTITION_CONTEXT) * mh); } static void save_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int p; int bwl = b_width_log2(bsize), bw = 1 << bwl; int bhl = b_height_log2(bsize), bh = 1 << bhl; int mwl = mi_width_log2(bsize), mw = 1 << mwl; int mhl = mi_height_log2(bsize), mh = 1 << mhl; // buffer the above/left context information of the block in search. for (p = 0; p < MAX_MB_PLANE; ++p) { vpx_memcpy(a + bw * p, cm->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), sizeof(ENTROPY_CONTEXT) * bw >> xd->plane[p].subsampling_x); vpx_memcpy(l + bh * p, cm->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), sizeof(ENTROPY_CONTEXT) * bh >> xd->plane[p].subsampling_y); } vpx_memcpy(sa, cm->above_seg_context + mi_col, sizeof(PARTITION_CONTEXT) * mw); vpx_memcpy(sl, cm->left_seg_context + (mi_row & MI_MASK), sizeof(PARTITION_CONTEXT) * mh); } static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE_TYPE bsize, int sub_index) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (sub_index != -1) *(get_sb_index(xd, bsize)) = sub_index; if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index > 0) return; set_offsets(cpi, mi_row, mi_col, bsize); update_state(cpi, get_block_context(x, bsize), bsize, output_enabled); encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize); if (output_enabled) { update_stats(cpi, mi_row, mi_col); (*tp)->token = EOSB_TOKEN; (*tp)++; } } static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; BLOCK_SIZE_TYPE c1 = BLOCK_SIZE_SB8X8; const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4; int bwl, bhl; int UNINITIALIZED_IS_SAFE(pl); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; c1 = BLOCK_SIZE_AB4X4; if (bsize >= BLOCK_SIZE_SB8X8) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); c1 = *(get_sb_partitioning(x, bsize)); } bwl = b_width_log2(c1), bhl = b_height_log2(c1); if (bsl == bwl && bsl == bhl) { if (output_enabled && bsize >= BLOCK_SIZE_SB8X8) cpi->partition_count[pl][PARTITION_NONE]++; encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1); } else if (bsl == bhl && bsl > bwl) { if (output_enabled) cpi->partition_count[pl][PARTITION_VERT]++; encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0); encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1); } else if (bsl == bwl && bsl > bhl) { if (output_enabled) cpi->partition_count[pl][PARTITION_HORZ]++; encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0); encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1); } else { BLOCK_SIZE_TYPE subsize; int i; assert(bwl < bsl && bhl < bsl); subsize = get_subsize(bsize, PARTITION_SPLIT); if (output_enabled) cpi->partition_count[pl][PARTITION_SPLIT]++; for (i = 0; i < 4; i++) { const int x_idx = i & 1, y_idx = i >> 1; *(get_sb_index(xd, subsize)) = i; encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs, output_enabled, subsize); } } if (bsize >= BLOCK_SIZE_SB8X8 && (bsize == BLOCK_SIZE_SB8X8 || bsl == bwl || bsl == bhl)) { set_partition_seg_context(cm, xd, mi_row, mi_col); update_partition_context(xd, c1, bsize); } } static void set_partitioning(VP9_COMP *cpi, MODE_INFO *m, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int bsl = b_width_log2(bsize); int bs = (1 << bsl) / 2; // int block_row, block_col; int row, col; // this test function sets the entire macroblock to the same bsize for (block_row = 0; block_row < 8; block_row += bs) { for (block_col = 0; block_col < 8; block_col += bs) { for (row = 0; row < bs; row++) { for (col = 0; col < bs; col++) { m[(block_row+row)*mis + block_col+col].mbmi.sb_type = bsize; } } } } } static void set_block_size(VP9_COMMON *const cm, MODE_INFO *m, BLOCK_SIZE_TYPE bsize, int mis, int mi_row, int mi_col) { int row, col; int bwl = b_width_log2(bsize); int bhl = b_height_log2(bsize); int bsl = (bwl > bhl ? bwl : bhl); int bs = (1 << bsl) / 2; // MODE_INFO *m2 = m + mi_row * mis + mi_col; for (row = 0; row < bs; row++) { for (col = 0; col < bs; col++) { if (mi_row + row >= cm->mi_rows || mi_col + col >= cm->mi_cols) continue; m2[row*mis+col].mbmi.sb_type = bsize; } } } typedef struct { int64_t sum_square_error; int64_t sum_error; int count; int variance; } var; #define VT(TYPE, BLOCKSIZE) \ typedef struct { \ var none; \ var horz[2]; \ var vert[2]; \ BLOCKSIZE split[4]; } TYPE; VT(v8x8, var) VT(v16x16, v8x8) VT(v32x32, v16x16) VT(v64x64, v32x32) typedef enum { V16X16, V32X32, V64X64, } TREE_LEVEL; // Set variance values given sum square error, sum error, count. static void fill_variance(var *v, int64_t s2, int64_t s, int c) { v->sum_square_error = s2; v->sum_error = s; v->count = c; v->variance = 256 * (v->sum_square_error - v->sum_error * v->sum_error / v->count) / v->count; } // Combine 2 variance structures by summing the sum_error, sum_square_error, // and counts and then calculating the new variance. void sum_2_variances(var *r, var *a, var*b) { fill_variance(r, a->sum_square_error + b->sum_square_error, a->sum_error + b->sum_error, a->count + b->count); } // Fill one level of our variance tree, by summing the split sums into each of // the horizontal, vertical and none from split and recalculating variance. #define fill_variance_tree(VT) \ sum_2_variances(VT.horz[0], VT.split[0].none, VT.split[1].none); \ sum_2_variances(VT.horz[1], VT.split[2].none, VT.split[3].none); \ sum_2_variances(VT.vert[0], VT.split[0].none, VT.split[2].none); \ sum_2_variances(VT.vert[1], VT.split[1].none, VT.split[3].none); \ sum_2_variances(VT.none, VT.vert[0], VT.vert[1]); // Set the blocksize in the macroblock info structure if the variance is less // than our threshold to one of none, horz, vert. #define set_vt_size(VT, BLOCKSIZE, R, C, ACTION) \ if (VT.none.variance < threshold) { \ set_block_size(cm, m, BLOCKSIZE, mis, R, C); \ ACTION; \ } \ if (VT.horz[0].variance < threshold && VT.horz[1].variance < threshold ) { \ set_block_size(cm, m, get_subsize(BLOCKSIZE, PARTITION_HORZ), mis, R, C); \ ACTION; \ } \ if (VT.vert[0].variance < threshold && VT.vert[1].variance < threshold ) { \ set_block_size(cm, m, get_subsize(BLOCKSIZE, PARTITION_VERT), mis, R, C); \ ACTION; \ } static void choose_partitioning(VP9_COMP *cpi, MODE_INFO *m, int mi_row, int mi_col) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK *x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; const int mis = cm->mode_info_stride; // TODO(JBB): More experimentation or testing of this threshold; int64_t threshold = 4; int i, j, k; v64x64 vt; unsigned char * s; int sp; const unsigned char * d = xd->plane[0].pre->buf; int dp = xd->plane[0].pre->stride; int pixels_wide = 64, pixels_high = 64; vpx_memset(&vt, 0, sizeof(vt)); set_offsets(cpi, mi_row, mi_col, BLOCK_SIZE_SB64X64); if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); s = x->plane[0].src.buf; sp = x->plane[0].src.stride; // TODO(JBB): Clearly the higher the quantizer the fewer partitions we want // but this needs more experimentation. threshold = threshold * cpi->common.base_qindex * cpi->common.base_qindex; // if ( cm->frame_type == KEY_FRAME ) { d = vp9_64x64_zeros; dp = 64; // } // Fill in the entire tree of 8x8 variances for splits. for (i = 0; i < 4; i++) { const int x32_idx = ((i & 1) << 5); const int y32_idx = ((i >> 1) << 5); for (j = 0; j < 4; j++) { const int x_idx = x32_idx + ((j & 1) << 4); const int y_idx = y32_idx + ((j >> 1) << 4); const uint8_t *st = s + y_idx * sp + x_idx; const uint8_t *dt = d + y_idx * dp + x_idx; unsigned int sse = 0; int sum = 0; v16x16 *vst = &vt.split[i].split[j]; sse = sum = 0; if (x_idx < pixels_wide && y_idx < pixels_high) vp9_get_sse_sum_8x8(st, sp, dt, dp, &sse, &sum); fill_variance(&vst->split[0].none, sse, sum, 64); sse = sum = 0; if (x_idx + 8 < pixels_wide && y_idx < pixels_high) vp9_get_sse_sum_8x8(st + 8, sp, dt + 8, dp, &sse, &sum); fill_variance(&vst->split[1].none, sse, sum, 64); sse = sum = 0; if (x_idx < pixels_wide && y_idx + 8 < pixels_high) vp9_get_sse_sum_8x8(st + 8 * sp, sp, dt + 8 * dp, dp, &sse, &sum); fill_variance(&vst->split[2].none, sse, sum, 64); sse = sum = 0; if (x_idx + 8 < pixels_wide && y_idx + 8 < pixels_high) vp9_get_sse_sum_8x8(st + 8 * sp + 8, sp, dt + 8 + 8 * dp, dp, &sse, &sum); fill_variance(&vst->split[3].none, sse, sum, 64); } } // Fill the rest of the variance tree by summing the split partition // values. for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { fill_variance_tree(&vt.split[i].split[j]) } fill_variance_tree(&vt.split[i]) } fill_variance_tree(&vt) // Now go through the entire structure, splitting every blocksize until // we get to one that's got a variance lower than our threshold, or we // hit 8x8. set_vt_size( vt, BLOCK_SIZE_SB64X64, mi_row, mi_col, return); for (i = 0; i < 4; ++i) { const int x32_idx = ((i & 1) << 2); const int y32_idx = ((i >> 1) << 2); set_vt_size(vt, BLOCK_SIZE_SB32X32, mi_row + y32_idx, mi_col + x32_idx, continue); for (j = 0; j < 4; ++j) { const int x16_idx = ((j & 1) << 1); const int y16_idx = ((j >> 1) << 1); set_vt_size(vt, BLOCK_SIZE_MB16X16, mi_row + y32_idx + y16_idx, mi_col+x32_idx+x16_idx, continue); for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); set_block_size(cm, m, BLOCK_SIZE_SB8X8, mis, mi_row + y32_idx + y16_idx + y8_idx, mi_col + x32_idx + x16_idx + x8_idx); } } } } static void rd_use_partition(VP9_COMP *cpi, MODE_INFO *m, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize, int *rate, int *dist) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; const int mis = cm->mode_info_stride; int bwl = b_width_log2(m->mbmi.sb_type); int bhl = b_height_log2(m->mbmi.sb_type); int bsl = b_width_log2(bsize); int bh = (1 << bhl); int bs = (1 << bsl); int bss = (1 << bsl)/4; int i, pl; PARTITION_TYPE partition; BLOCK_SIZE_TYPE subsize; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; int r = 0, d = 0; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; // parse the partition type if ((bwl == bsl) && (bhl == bsl)) partition = PARTITION_NONE; else if ((bwl == bsl) && (bhl < bsl)) partition = PARTITION_HORZ; else if ((bwl < bsl) && (bhl == bsl)) partition = PARTITION_VERT; else if ((bwl < bsl) && (bhl < bsl)) partition = PARTITION_SPLIT; else assert(0); subsize = get_subsize(bsize, partition); // TODO(JBB): this restriction is here because pick_sb_modes can return // r's that are INT_MAX meaning we can't select a mode / mv for this block. // when the code is made to work for less than sb8x8 we need to come up with // a solution to this problem. assert(subsize >= BLOCK_SIZE_SB8X8); if (bsize >= BLOCK_SIZE_SB8X8) { xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK); xd->above_seg_context = cm->above_seg_context + mi_col; *(get_sb_partitioning(x, bsize)) = subsize; } pl = partition_plane_context(xd, bsize); save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); switch (partition) { case PARTITION_NONE: pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d, bsize, get_block_context(x, bsize)); r += x->partition_cost[pl][PARTITION_NONE]; break; case PARTITION_HORZ: *(get_sb_index(xd, subsize)) = 0; pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d, subsize, get_block_context(x, subsize)); if (mi_row + (bh >> 1) <= cm->mi_rows) { int rt, dt; update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *(get_sb_index(xd, subsize)) = 1; pick_sb_modes(cpi, mi_row + (bs >> 2), mi_col, tp, &rt, &dt, subsize, get_block_context(x, subsize)); r += rt; d += dt; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); r += x->partition_cost[pl][PARTITION_HORZ]; break; case PARTITION_VERT: *(get_sb_index(xd, subsize)) = 0; pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d, subsize, get_block_context(x, subsize)); if (mi_col + (bs >> 1) <= cm->mi_cols) { int rt, dt; update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *(get_sb_index(xd, subsize)) = 1; pick_sb_modes(cpi, mi_row, mi_col + (bs >> 2), tp, &rt, &dt, subsize, get_block_context(x, subsize)); r += rt; d += dt; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); r += x->partition_cost[pl][PARTITION_VERT]; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); break; case PARTITION_SPLIT: for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (bs >> 2); int y_idx = (i >> 1) * (bs >> 2); int jj = i >> 1, ii = i & 0x01; int rt, dt; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; *(get_sb_index(xd, subsize)) = i; rd_use_partition(cpi, m + jj * bss * mis + ii * bss, tp, mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt); r += rt; d += dt; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); r += x->partition_cost[pl][PARTITION_SPLIT]; break; default: assert(0); } // update partition context #if CONFIG_AB4X4 if (bsize >= BLOCK_SIZE_SB8X8 && (bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) { #else if (bsize > BLOCK_SIZE_SB8X8 && (bsize == BLOCK_SIZE_MB16X16 || partition != PARTITION_SPLIT)) { #endif set_partition_seg_context(cm, xd, mi_row, mi_col); update_partition_context(xd, subsize, bsize); } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (r < INT_MAX && d < INT_MAX) encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_SIZE_SB64X64, bsize); *rate = r; *dist = d; } // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previously rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize, int *rate, int *dist) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int bsl = b_width_log2(bsize), bs = 1 << bsl; int ms = bs / 2; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; TOKENEXTRA *tp_orig = *tp; int i, pl; BLOCK_SIZE_TYPE subsize; int srate = INT_MAX, sdist = INT_MAX; if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index != 0) { *rate = 0; *dist = 0; return; } assert(mi_height_log2(bsize) == mi_width_log2(bsize)); save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); // PARTITION_SPLIT if (bsize >= BLOCK_SIZE_SB8X8) { int r4 = 0, d4 = 0; subsize = get_subsize(bsize, PARTITION_SPLIT); *(get_sb_partitioning(x, bsize)) = subsize; for (i = 0; i < 4; ++i) { int x_idx = (i & 1) * (ms >> 1); int y_idx = (i >> 1) * (ms >> 1); int r = 0, d = 0; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; *(get_sb_index(xd, subsize)) = i; rd_pick_partition(cpi, tp, mi_row + y_idx, mi_col + x_idx, subsize, &r, &d); r4 += r; d4 += d; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); if (r4 < INT_MAX) r4 += x->partition_cost[pl][PARTITION_SPLIT]; assert(r4 >= 0); assert(d4 >= 0); srate = r4; sdist = d4; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_HORZ if ((mi_col + ms <= cm->mi_cols) && (mi_row + (ms >> 1) <= cm->mi_rows) && (bsize >= BLOCK_SIZE_SB8X8)) { int r2, d2; int mb_skip = 0; subsize = get_subsize(bsize, PARTITION_HORZ); *(get_sb_index(xd, subsize)) = 0; pick_sb_modes(cpi, mi_row, mi_col, tp, &r2, &d2, subsize, get_block_context(x, subsize)); if (mi_row + ms <= cm->mi_rows) { int r = 0, d = 0; update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *(get_sb_index(xd, subsize)) = 1; pick_sb_modes(cpi, mi_row + (ms >> 1), mi_col, tp, &r, &d, subsize, get_block_context(x, subsize)); r2 += r; d2 += d; } else { if (mi_row + (ms >> 1) != cm->mi_rows) mb_skip = 1; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); if (r2 < INT_MAX) r2 += x->partition_cost[pl][PARTITION_HORZ]; if ((RDCOST(x->rdmult, x->rddiv, r2, d2) < RDCOST(x->rdmult, x->rddiv, srate, sdist)) && !mb_skip) { srate = r2; sdist = d2; *(get_sb_partitioning(x, bsize)) = subsize; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_VERT if ((mi_row + ms <= cm->mi_rows) && (mi_col + (ms >> 1) <= cm->mi_cols) && (bsize >= BLOCK_SIZE_SB8X8)) { int r2, d2; int mb_skip = 0; subsize = get_subsize(bsize, PARTITION_VERT); *(get_sb_index(xd, subsize)) = 0; pick_sb_modes(cpi, mi_row, mi_col, tp, &r2, &d2, subsize, get_block_context(x, subsize)); if (mi_col + ms <= cm->mi_cols) { int r = 0, d = 0; update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *(get_sb_index(xd, subsize)) = 1; pick_sb_modes(cpi, mi_row, mi_col + (ms >> 1), tp, &r, &d, subsize, get_block_context(x, subsize)); r2 += r; d2 += d; } else { if (mi_col + (ms >> 1) != cm->mi_cols) mb_skip = 1; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); if (r2 < INT_MAX) r2 += x->partition_cost[pl][PARTITION_VERT]; if ((RDCOST(x->rdmult, x->rddiv, r2, d2) < RDCOST(x->rdmult, x->rddiv, srate, sdist)) && !mb_skip) { srate = r2; sdist = d2; *(get_sb_partitioning(x, bsize)) = subsize; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_NONE if (mi_row + ms <= cm->mi_rows && mi_col + ms <= cm->mi_cols) { int r, d; pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d, bsize, get_block_context(x, bsize)); if (bsize >= BLOCK_SIZE_SB8X8) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); r += x->partition_cost[pl][PARTITION_NONE]; } if (RDCOST(x->rdmult, x->rddiv, r, d) < RDCOST(x->rdmult, x->rddiv, srate, sdist)) { srate = r; sdist = d; if (bsize >= BLOCK_SIZE_SB8X8) *(get_sb_partitioning(x, bsize)) = bsize; } } *rate = srate; *dist = sdist; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (srate < INT_MAX && sdist < INT_MAX) encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_SIZE_SB64X64, bsize); if (bsize == BLOCK_SIZE_SB64X64) { assert(tp_orig < *tp); assert(srate < INT_MAX); assert(sdist < INT_MAX); } else { assert(tp_orig == *tp); } } static void encode_sb_row(VP9_COMP *cpi, int mi_row, TOKENEXTRA **tp, int *totalrate) { VP9_COMMON *const cm = &cpi->common; int mi_col; // Initialize the left context for the new SB row vpx_memset(&cm->left_context, 0, sizeof(cm->left_context)); vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context)); // Code each SB in the row for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end; mi_col += 8) { int dummy_rate, dummy_dist; if (cpi->speed < 5) { rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_SIZE_SB64X64, &dummy_rate, &dummy_dist); } else { const int idx_str = cm->mode_info_stride * mi_row + mi_col; MODE_INFO *m = cm->mi + idx_str; // set_partitioning(cpi, m, BLOCK_SIZE_SB64X64); choose_partitioning(cpi, cm->mi, mi_row, mi_col); rd_use_partition(cpi, m, tp, mi_row, mi_col, BLOCK_SIZE_SB64X64, &dummy_rate, &dummy_dist); } } } static void init_encode_frame_mb_context(VP9_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; x->act_zbin_adj = 0; cpi->seg0_idx = 0; xd->mode_info_stride = cm->mode_info_stride; xd->frame_type = cm->frame_type; xd->frames_since_golden = cm->frames_since_golden; xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp9_init_mbmode_probs(cm); // Copy data over into macro block data structures. vp9_setup_src_planes(x, cpi->Source, 0, 0); // TODO(jkoleszar): are these initializations required? setup_pre_planes(xd, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], NULL, 0, 0, NULL, NULL); setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0); vp9_build_block_offsets(x); vp9_setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_context->mbmi.uv_mode = DC_PRED; vp9_zero(cpi->y_mode_count) vp9_zero(cpi->y_uv_mode_count) vp9_zero(cm->fc.inter_mode_counts) vp9_zero(cpi->partition_count); vp9_zero(cpi->intra_inter_count); vp9_zero(cpi->comp_inter_count); vp9_zero(cpi->single_ref_count); vp9_zero(cpi->comp_ref_count); vp9_zero(cm->fc.tx_count_32x32p); vp9_zero(cm->fc.tx_count_16x16p); vp9_zero(cm->fc.tx_count_8x8p); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(cm->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 2 * MAX_MB_PLANE * mi_cols_aligned_to_sb(cm)); vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * mi_cols_aligned_to_sb(cm)); } static void switch_lossless_mode(VP9_COMP *cpi, int lossless) { if (lossless) { cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4; cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4; cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add; cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add; cpi->mb.optimize = 0; cpi->common.filter_level = 0; cpi->zbin_mode_boost_enabled = 0; cpi->common.txfm_mode = ONLY_4X4; } else { cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4; cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4; cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add; cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add; } } static void encode_frame_internal(VP9_COMP *cpi) { int mi_row; MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int totalrate; // fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n", // cpi->common.current_video_frame, cpi->common.show_frame, // cm->frame_type); // debug output #if DBG_PRNT_SEGMAP { FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "\n"); fclose(statsfile); } #endif totalrate = 0; // Reset frame count of inter 0,0 motion vector usage. cpi->inter_zz_count = 0; cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0; cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0; vp9_zero(cm->fc.switchable_interp_count); vp9_zero(cpi->best_switchable_interp_count); xd->mode_info_context = cm->mi; xd->prev_mode_info_context = cm->prev_mi; vp9_zero(cpi->NMVcount); vp9_zero(cpi->coef_counts); vp9_zero(cm->fc.eob_branch_counts); cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless); vp9_frame_init_quantizer(cpi); vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q); vp9_initialize_me_consts(cpi, cm->base_qindex); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Initialize encode frame context. init_encode_frame_mb_context(cpi); // Build a frame level activity map build_activity_map(cpi); } // re-initencode frame context. init_encode_frame_mb_context(cpi); vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff)); vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff)); vpx_memset(cpi->rd_tx_select_threshes, 0, sizeof(cpi->rd_tx_select_threshes)); set_prev_mi(cm); { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); { // Take tiles into account and give start/end MB int tile_col, tile_row; TOKENEXTRA *tp = cpi->tok; for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { vp9_get_tile_row_offsets(cm, tile_row); for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) { TOKENEXTRA *tp_old = tp; // For each row of SBs in the frame vp9_get_tile_col_offsets(cm, tile_col); for (mi_row = cm->cur_tile_mi_row_start; mi_row < cm->cur_tile_mi_row_end; mi_row += 8) encode_sb_row(cpi, mi_row, &tp, &totalrate); cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old); assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols)); } } } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); } // 256 rate units to the bit, // projected_frame_size in units of BYTES cpi->projected_frame_size = totalrate >> 8; #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } static int check_dual_ref_flags(VP9_COMP *cpi) { MACROBLOCKD *xd = &cpi->mb.e_mbd; int ref_flags = cpi->ref_frame_flags; if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) { if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) && vp9_check_segref(xd, 1, LAST_FRAME)) return 1; if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) && vp9_check_segref(xd, 1, GOLDEN_FRAME)) return 1; if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) && vp9_check_segref(xd, 1, ALTREF_FRAME)) return 1; return 0; } else { return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) + !!(ref_flags & VP9_ALT_FLAG)) >= 2; } } static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) { int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { if (!mi[y * mis + x].mbmi.mb_skip_coeff) return 0; } } return 1; } static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs, TX_SIZE txfm_size) { int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) mi[y * mis + x].mbmi.txfm_size = txfm_size; } } static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi, int mis, TX_SIZE txfm_max, int bw, int bh, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MB_MODE_INFO *const mbmi = &mi->mbmi; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (mbmi->txfm_size > txfm_max) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int segment_id = mbmi->segment_id; const int ymbs = MIN(bh, cm->mi_rows - mi_row); const int xmbs = MIN(bw, cm->mi_cols - mi_col); xd->mode_info_context = mi; assert(vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) || get_skip_flag(mi, mis, ymbs, xmbs)); set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max); } } static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi, TX_SIZE txfm_max, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int bwl, bhl; const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; bwl = mi_width_log2(mi->mbmi.sb_type); bhl = mi_height_log2(mi->mbmi.sb_type); if (bwl == bsl && bhl == bsl) { reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, 1 << bsl, mi_row, mi_col, bsize); } else if (bwl == bsl && bhl < bsl) { reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, bs, mi_row, mi_col, bsize); reset_skip_txfm_size_b(cpi, mi + bs * mis, mis, txfm_max, 1 << bsl, bs, mi_row + bs, mi_col, bsize); } else if (bwl < bsl && bhl == bsl) { reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, bs, 1 << bsl, mi_row, mi_col, bsize); reset_skip_txfm_size_b(cpi, mi + bs, mis, txfm_max, bs, 1 << bsl, mi_row, mi_col + bs, bsize); } else { BLOCK_SIZE_TYPE subsize; int n; assert(bwl < bsl && bhl < bsl); if (bsize == BLOCK_SIZE_SB64X64) { subsize = BLOCK_SIZE_SB32X32; } else if (bsize == BLOCK_SIZE_SB32X32) { subsize = BLOCK_SIZE_MB16X16; } else { assert(bsize == BLOCK_SIZE_MB16X16); subsize = BLOCK_SIZE_SB8X8; } for (n = 0; n < 4; n++) { const int y_idx = n >> 1, x_idx = n & 0x01; reset_skip_txfm_size_sb(cpi, mi + y_idx * bs * mis + x_idx * bs, txfm_max, mi_row + y_idx * bs, mi_col + x_idx * bs, subsize); } } } static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) { VP9_COMMON *const cm = &cpi->common; int mi_row, mi_col; const int mis = cm->mode_info_stride; MODE_INFO *mi, *mi_ptr = cm->mi; for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) { mi = mi_ptr; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi += 8) { reset_skip_txfm_size_sb(cpi, mi, txfm_max, mi_row, mi_col, BLOCK_SIZE_SB64X64); } } } void vp9_encode_frame(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; // In the longer term the encoder should be generalized to match the // decoder such that we allow compound where one of the 3 buffers has a // differnt sign bias and that buffer is then the fixed ref. However, this // requires further work in the rd loop. For now the only supported encoder // side behaviour is where the ALT ref buffer has oppositie sign bias to // the other two. if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) || (cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[LAST_FRAME])) { cm->allow_comp_inter_inter = 0; } else { cm->allow_comp_inter_inter = 1; cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } if (cpi->sf.RD) { int i, frame_type, pred_type; TXFM_MODE txfm_type; /* * This code does a single RD pass over the whole frame assuming * either compound, single or hybrid prediction as per whatever has * worked best for that type of frame in the past. * It also predicts whether another coding mode would have worked * better that this coding mode. If that is the case, it remembers * that for subsequent frames. * It does the same analysis for transform size selection also. */ if (cpi->common.frame_type == KEY_FRAME) frame_type = 0; else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame) frame_type = 3; else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) frame_type = 1; else frame_type = 2; /* prediction (compound, single or hybrid) mode selection */ if (frame_type == 3 || !cm->allow_comp_inter_inter) pred_type = SINGLE_PREDICTION_ONLY; else if (cpi->rd_prediction_type_threshes[frame_type][1] > cpi->rd_prediction_type_threshes[frame_type][0] && cpi->rd_prediction_type_threshes[frame_type][1] > cpi->rd_prediction_type_threshes[frame_type][2] && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) pred_type = COMP_PREDICTION_ONLY; else if (cpi->rd_prediction_type_threshes[frame_type][0] > cpi->rd_prediction_type_threshes[frame_type][2]) pred_type = SINGLE_PREDICTION_ONLY; else pred_type = HYBRID_PREDICTION; /* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */ cpi->mb.e_mbd.lossless = 0; if (cpi->oxcf.lossless) { txfm_type = ONLY_4X4; cpi->mb.e_mbd.lossless = 1; } else #if 0 /* FIXME (rbultje): this code is disabled until we support cost updates * while a frame is being encoded; the problem is that each time we * "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities * for 16x16 (and 8x8) start lagging behind, thus leading to them lagging * further behind and not being chosen for subsequent frames either. This * is essentially a local minimum problem that we can probably fix by * estimating real costs more closely within a frame, perhaps by re- * calculating costs on-the-fly as frame encoding progresses. */ if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] > cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] && cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] > cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] && cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] > cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) { txfm_type = TX_MODE_SELECT; } else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] > cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8] && cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] > cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] ) { txfm_type = ONLY_4X4; } else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >= cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) { txfm_type = ALLOW_16X16; } else txfm_type = ALLOW_8X8; #else txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ? ALLOW_32X32 : TX_MODE_SELECT; #endif cpi->common.txfm_mode = txfm_type; cpi->common.comp_pred_mode = pred_type; encode_frame_internal(cpi); for (i = 0; i < NB_PREDICTION_TYPES; ++i) { const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs); cpi->rd_prediction_type_threshes[frame_type][i] += diff; cpi->rd_prediction_type_threshes[frame_type][i] >>= 1; } for (i = 0; i < NB_TXFM_MODES; ++i) { int64_t pd = cpi->rd_tx_select_diff[i]; int diff; if (i == TX_MODE_SELECT) pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZE_MAX_SB - 1), 0); diff = (int)(pd / cpi->common.MBs); cpi->rd_tx_select_threshes[frame_type][i] += diff; cpi->rd_tx_select_threshes[frame_type][i] /= 2; } if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { int single_count_zero = 0; int comp_count_zero = 0; for (i = 0; i < COMP_INTER_CONTEXTS; i++) { single_count_zero += cpi->comp_inter_count[i][0]; comp_count_zero += cpi->comp_inter_count[i][1]; } if (comp_count_zero == 0) { cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY; vp9_zero(cpi->comp_inter_count); } else if (single_count_zero == 0) { cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY; vp9_zero(cpi->comp_inter_count); } } if (cpi->common.txfm_mode == TX_MODE_SELECT) { const int count4x4 = cm->fc.tx_count_16x16p[TX_4X4] + cm->fc.tx_count_32x32p[TX_4X4] + cm->fc.tx_count_8x8p[TX_4X4]; const int count8x8_lp = cm->fc.tx_count_32x32p[TX_8X8] + cm->fc.tx_count_16x16p[TX_8X8]; const int count8x8_8x8p = cm->fc.tx_count_8x8p[TX_8X8]; const int count16x16_16x16p = cm->fc.tx_count_16x16p[TX_16X16]; const int count16x16_lp = cm->fc.tx_count_32x32p[TX_16X16]; const int count32x32 = cm->fc.tx_count_32x32p[TX_32X32]; if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && count32x32 == 0) { cpi->common.txfm_mode = ALLOW_8X8; reset_skip_txfm_size(cpi, TX_8X8); } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { cpi->common.txfm_mode = ONLY_4X4; reset_skip_txfm_size(cpi, TX_4X4); } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { cpi->common.txfm_mode = ALLOW_32X32; } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { cpi->common.txfm_mode = ALLOW_16X16; reset_skip_txfm_size(cpi, TX_16X16); } } // Update interpolation filter strategy for next frame. if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter)) vp9_select_interp_filter_type(cpi); } else { encode_frame_internal(cpi); } } void vp9_build_block_offsets(MACROBLOCK *x) { } static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = &x->e_mbd; const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; ++cpi->y_uv_mode_count[m][uvm]; if (xd->mode_info_context->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); const int bsl = MIN(bwl, bhl); ++cpi->y_mode_count[MIN(bsl, 3)][m]; } else { int idx, idy; int bw = 1 << b_width_log2(xd->mode_info_context->mbmi.sb_type); int bh = 1 << b_height_log2(xd->mode_info_context->mbmi.sb_type); for (idy = 0; idy < 2; idy += bh) { for (idx = 0; idx < 2; idx += bw) { int m = xd->mode_info_context->bmi[idy * 2 + idx].as_mode.first; ++cpi->y_mode_count[0][m]; } } } } // Experimental stub function to create a per MB zbin adjustment based on // some previously calculated measure of MB activity. static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->act_zbin_adj = *(x->mb_activity_ptr); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (act > cpi->activity_avg) x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1; else x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b); #endif } static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int n; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *mbmi = &mi->mbmi; unsigned int segment_id = mbmi->segment_id; const int mis = cm->mode_info_stride; const int bwl = mi_width_log2(bsize); const int bw = 1 << bwl, bh = 1 << mi_height_log2(bsize); if (cm->frame_type == KEY_FRAME) { if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { adjust_act_zbin(cpi, x); vp9_update_zbin_extra(cpi, x); } } else { vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Adjust the zbin based on this MB rate. adjust_act_zbin(cpi, x); } // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to suppress noise cpi->zbin_mode_boost = 0; if (cpi->zbin_mode_boost_enabled) { if (mbmi->ref_frame[0] != INTRA_FRAME) { if (mbmi->mode == ZEROMV) { if (mbmi->ref_frame[0] != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (mbmi->sb_type < BLOCK_SIZE_SB8X8) { cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST; } else { cpi->zbin_mode_boost = MV_ZBIN_BOOST; } } else { cpi->zbin_mode_boost = INTRA_ZBIN_BOOST; } } vp9_update_zbin_extra(cpi, x); } if (mbmi->ref_frame[0] == INTRA_FRAME) { vp9_encode_intra_block_y(cm, x, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); vp9_encode_intra_block_uv(cm, x, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); if (output_enabled) sum_intra_stats(cpi, x); } else { int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])]; YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx]; YV12_BUFFER_CONFIG *second_ref_fb = NULL; if (mbmi->ref_frame[1] > 0) { idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])]; second_ref_fb = &cm->yv12_fb[idx]; } assert(cm->frame_type != KEY_FRAME); setup_pre_planes(xd, ref_fb, second_ref_fb, mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize < BLOCK_SIZE_SB8X8 ? BLOCK_SIZE_SB8X8 : bsize); } if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME) { vp9_tokenize_sb(cpi, xd, t, !output_enabled, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); } else if (!x->skip) { vp9_encode_sb(cm, x, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); vp9_tokenize_sb(cpi, xd, t, !output_enabled, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); } else { // FIXME(rbultje): not tile-aware (mi - 1) int mb_skip_context = (mi - 1)->mbmi.mb_skip_coeff + (mi - mis)->mbmi.mb_skip_coeff; mbmi->mb_skip_coeff = 1; if (output_enabled) cpi->skip_true_count[mb_skip_context]++; vp9_reset_sb_tokens_context(xd, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); } // copy skip flag on all mb_mode_info contexts in this SB // if this was a skip at this txfm size for (n = 1; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; if (mi_col + x_idx < cm->mi_cols && mi_row + y_idx < cm->mi_rows) mi[x_idx + y_idx * mis].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff; } if (output_enabled) { if (cm->txfm_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_SIZE_SB8X8 && !(mbmi->ref_frame[0] != INTRA_FRAME && (mbmi->mb_skip_coeff || vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) { if (bsize >= BLOCK_SIZE_SB32X32) { cm->fc.tx_count_32x32p[mbmi->txfm_size]++; } else if (bsize >= BLOCK_SIZE_MB16X16) { cm->fc.tx_count_16x16p[mbmi->txfm_size]++; } else { cm->fc.tx_count_8x8p[mbmi->txfm_size]++; } } else { int x, y; TX_SIZE sz = (cm->txfm_mode == TX_MODE_SELECT) ? TX_32X32 : cm->txfm_mode; // The new intra coding scheme requires no change of transform size if (mi->mbmi.ref_frame[0] != INTRA_FRAME) { if (sz == TX_32X32 && bsize < BLOCK_SIZE_SB32X32) sz = TX_16X16; if (sz == TX_16X16 && bsize < BLOCK_SIZE_MB16X16) sz = TX_8X8; if (sz == TX_8X8 && bsize < BLOCK_SIZE_SB8X8) sz = TX_4X4; } else if (bsize >= BLOCK_SIZE_SB8X8) { sz = mbmi->txfm_size; } else { sz = TX_4X4; } for (y = 0; y < bh; y++) { for (x = 0; x < bw; x++) { if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) { mi[mis * y + x].mbmi.txfm_size = sz; } } } } } }