/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "vpx/vpx_encoder.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_treecoder.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_pragmas.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_subexp.h" #include "vp9/encoder/vp9_write_bit_buffer.h" #if defined(SECTIONBITS_OUTPUT) unsigned __int64 Sectionbits[500]; #endif #ifdef ENTROPY_STATS int intra_mode_stats[INTRA_MODES] [INTRA_MODES] [INTRA_MODES]; vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES]; extern unsigned int active_section; #endif #ifdef MODE_STATS int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES]; int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1]; int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2]; int64_t switchable_interp_stats[SWITCHABLE_FILTER_CONTEXTS][SWITCHABLE_FILTERS]; void init_tx_count_stats() { vp9_zero(tx_count_32x32p_stats); vp9_zero(tx_count_16x16p_stats); vp9_zero(tx_count_8x8p_stats); } void init_switchable_interp_stats() { vp9_zero(switchable_interp_stats); } static void update_tx_count_stats(VP9_COMMON *cm) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES; j++) { tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j]; } } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES - 1; j++) { tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j]; } } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES - 2; j++) { tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j]; } } } static void update_switchable_interp_stats(VP9_COMMON *cm) { int i, j; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) for (j = 0; j < SWITCHABLE_FILTERS; ++j) switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j]; } void write_tx_count_stats() { int i, j; FILE *fp = fopen("tx_count.bin", "wb"); fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp); fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp); fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp); fclose(fp); printf( "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n"); for (i = 0; i < TX_SIZE_CONTEXTS; i++) { printf(" { "); for (j = 0; j < TX_SIZES; j++) { printf("%"PRId64", ", tx_count_32x32p_stats[i][j]); } printf("},\n"); } printf("};\n"); printf( "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n"); for (i = 0; i < TX_SIZE_CONTEXTS; i++) { printf(" { "); for (j = 0; j < TX_SIZES - 1; j++) { printf("%"PRId64", ", tx_count_16x16p_stats[i][j]); } printf("},\n"); } printf("};\n"); printf( "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n"); for (i = 0; i < TX_SIZE_CONTEXTS; i++) { printf(" { "); for (j = 0; j < TX_SIZES - 2; j++) { printf("%"PRId64", ", tx_count_8x8p_stats[i][j]); } printf("},\n"); } printf("};\n"); } void write_switchable_interp_stats() { int i, j; FILE *fp = fopen("switchable_interp.bin", "wb"); fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp); fclose(fp); printf( "vp9_default_switchable_filter_count[SWITCHABLE_FILTER_CONTEXTS]" "[SWITCHABLE_FILTERS] = {\n"); for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { printf(" { "); for (j = 0; j < SWITCHABLE_FILTERS; j++) { printf("%"PRId64", ", switchable_interp_stats[i][j]); } printf("},\n"); } printf("};\n"); } #endif static INLINE void write_be32(uint8_t *p, int value) { p[0] = value >> 24; p[1] = value >> 16; p[2] = value >> 8; p[3] = value; } void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb, int data, int max) { vp9_wb_write_literal(wb, data, get_unsigned_bits(max)); } static void update_mode(vp9_writer *w, int n, vp9_tree tree, vp9_prob Pcur[/* n-1 */], unsigned int bct[/* n-1 */][2], const unsigned int num_events[/* n */]) { int i = 0; vp9_tree_probs_from_distribution(tree, bct, num_events); for (i = 0; i < n - 1; ++i) vp9_cond_prob_diff_update(w, &Pcur[i], bct[i]); } static void update_mbintra_mode_probs(VP9_COMP* const cpi, vp9_writer* const bc) { VP9_COMMON *const cm = &cpi->common; int j; unsigned int bct[INTRA_MODES - 1][2]; for (j = 0; j < BLOCK_SIZE_GROUPS; j++) update_mode(bc, INTRA_MODES, vp9_intra_mode_tree, cm->fc.y_mode_prob[j], bct, (unsigned int *)cpi->y_mode_count[j]); } static void write_selected_tx_size(const VP9_COMP *cpi, MODE_INFO *m, TX_SIZE tx_size, BLOCK_SIZE bsize, vp9_writer *w) { const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; const MACROBLOCKD *const xd = &cpi->mb.e_mbd; const vp9_prob *const tx_probs = get_tx_probs2(max_tx_size, xd, &cpi->common.fc.tx_probs); vp9_write(w, tx_size != TX_4X4, tx_probs[0]); if (tx_size != TX_4X4 && max_tx_size >= TX_16X16) { vp9_write(w, tx_size != TX_8X8, tx_probs[1]); if (tx_size != TX_8X8 && max_tx_size >= TX_32X32) vp9_write(w, tx_size != TX_16X16, tx_probs[2]); } } static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m, vp9_writer *w) { const MACROBLOCKD *const xd = &cpi->mb.e_mbd; if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int skip_coeff = m->mbmi.skip_coeff; vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd)); return skip_coeff; } } void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) { VP9_COMMON *cm = &cpi->common; int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], cm->counts.mbskip[k]); } static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m); } static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer *w) { VP9_COMMON *const cm = &cpi->common; unsigned int branch_ct[SWITCHABLE_FILTERS - 1][2]; int i, j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) { vp9_tree_probs_from_distribution(vp9_switchable_interp_tree, branch_ct, cm->counts.switchable_interp[j]); for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_cond_prob_diff_update(w, &cm->fc.switchable_interp_prob[j][i], branch_ct[i]); } #ifdef MODE_STATS if (!cpi->dummy_packing) update_switchable_interp_stats(cm); #endif } static void update_inter_mode_probs(VP9_COMMON *cm, vp9_writer *w) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { unsigned int branch_ct[INTER_MODES - 1][2]; vp9_tree_probs_from_distribution(vp9_inter_mode_tree, branch_ct, cm->counts.inter_mode[i]); for (j = 0; j < INTER_MODES - 1; ++j) vp9_cond_prob_diff_update(w, &cm->fc.inter_mode_probs[i][j], branch_ct[j]); } } static void pack_mb_tokens(vp9_writer* const w, TOKENEXTRA **tp, const TOKENEXTRA *const stop) { TOKENEXTRA *p = *tp; while (p < stop && p->token != EOSB_TOKEN) { const int t = p->token; const struct vp9_token *const a = &vp9_coef_encodings[t]; const vp9_extra_bit *const b = &vp9_extra_bits[t]; int i = 0; const vp9_prob *pp; int v = a->value; int n = a->len; vp9_prob probs[ENTROPY_NODES]; if (t >= TWO_TOKEN) { vp9_model_to_full_probs(p->context_tree, probs); pp = probs; } else { pp = p->context_tree; } assert(pp != 0); /* skip one or two nodes */ if (p->skip_eob_node) { n -= p->skip_eob_node; i = 2 * p->skip_eob_node; } do { const int bb = (v >> --n) & 1; vp9_write(w, bb, pp[i >> 1]); i = vp9_coef_tree[i + bb]; } while (n); if (b->base_val) { const int e = p->extra, l = b->len; if (l) { const unsigned char *pb = b->prob; int v = e >> 1; int n = l; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; vp9_write(w, bb, pb[i >> 1]); i = b->tree[i + bb]; } while (n); } vp9_write_bit(w, e & 1); } ++p; } *tp = p + (p->token == EOSB_TOKEN); } static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode, const vp9_prob *p) { assert(is_inter_mode(mode)); write_token(w, vp9_inter_mode_tree, p, &vp9_inter_mode_encodings[INTER_OFFSET(mode)]); } static void write_segment_id(vp9_writer *w, const struct segmentation *seg, int segment_id) { if (seg->enabled && seg->update_map) treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3); } // This function encodes the reference frame static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mi = &xd->mi_8x8[0]->mbmi; const int segment_id = mi->segment_id; int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (!seg_ref_active) { // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cm->comp_pred_mode == HYBRID_PREDICTION) { vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME, vp9_get_pred_prob_comp_inter_inter(cm, xd)); } else { assert((mi->ref_frame[1] <= INTRA_FRAME) == (cm->comp_pred_mode == SINGLE_PREDICTION_ONLY)); } if (mi->ref_frame[1] > INTRA_FRAME) { vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME, vp9_get_pred_prob_comp_ref_p(cm, xd)); } else { vp9_write(bc, mi->ref_frame[0] != LAST_FRAME, vp9_get_pred_prob_single_ref_p1(cm, xd)); if (mi->ref_frame[0] != LAST_FRAME) vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME, vp9_get_pred_prob_single_ref_p2(cm, xd)); } } else { assert(mi->ref_frame[1] <= INTRA_FRAME); assert(vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) == mi->ref_frame[0]); } // If using the prediction model we have nothing further to do because // the reference frame is fully coded by the segment. } static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc) { VP9_COMMON *const cm = &cpi->common; const nmv_context *nmvc = &cm->fc.nmvc; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; struct segmentation *seg = &cm->seg; MB_MODE_INFO *const mi = &m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame[0]; const MB_PREDICTION_MODE mode = mi->mode; const int segment_id = mi->segment_id; int skip_coeff; const BLOCK_SIZE bsize = mi->sb_type; const int allow_hp = cm->allow_high_precision_mv; #ifdef ENTROPY_STATS active_section = 9; #endif if (seg->update_map) { if (seg->temporal_update) { const int pred_flag = mi->seg_id_predicted; vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); vp9_write(bc, pred_flag, pred_prob); if (!pred_flag) write_segment_id(bc, seg, segment_id); } else { write_segment_id(bc, seg, segment_id); } } skip_coeff = write_skip_coeff(cpi, segment_id, m, bc); if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) vp9_write(bc, rf != INTRA_FRAME, vp9_get_pred_prob_intra_inter(cm, xd)); if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && !(rf != INTRA_FRAME && (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) { write_selected_tx_size(cpi, m, mi->tx_size, bsize, bc); } if (rf == INTRA_FRAME) { #ifdef ENTROPY_STATS active_section = 6; #endif if (bsize >= BLOCK_8X8) { write_intra_mode(bc, mode, cm->fc.y_mode_prob[size_group_lookup[bsize]]); } else { int idx, idy; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode; write_intra_mode(bc, bm, cm->fc.y_mode_prob[0]); } } } write_intra_mode(bc, mi->uv_mode, cm->fc.uv_mode_prob[mode]); } else { vp9_prob *mv_ref_p; encode_ref_frame(cpi, bc); mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mode_context[rf]]; #ifdef ENTROPY_STATS active_section = 3; #endif // If segment skip is not enabled code the mode. if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { if (bsize >= BLOCK_8X8) { write_sb_mv_ref(bc, mode, mv_ref_p); ++cm->counts.inter_mode[mi->mode_context[rf]] [INTER_OFFSET(mode)]; } } if (cm->mcomp_filter_type == SWITCHABLE) { const int ctx = vp9_get_pred_context_switchable_interp(xd); write_token(bc, vp9_switchable_interp_tree, cm->fc.switchable_interp_prob[ctx], &vp9_switchable_interp_encodings[mi->interp_filter]); } else { assert(mi->interp_filter == cm->mcomp_filter_type); } if (bsize < BLOCK_8X8) { const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { const int j = idy * 2 + idx; const MB_PREDICTION_MODE blockmode = m->bmi[j].as_mode; write_sb_mv_ref(bc, blockmode, mv_ref_p); ++cm->counts.inter_mode[mi->mode_context[rf]] [INTER_OFFSET(blockmode)]; if (blockmode == NEWMV) { #ifdef ENTROPY_STATS active_section = 11; #endif vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[0].as_mv, &mi->best_mv[0].as_mv, nmvc, allow_hp); if (has_second_ref(mi)) vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv, &mi->best_mv[1].as_mv, nmvc, allow_hp); } } } } else if (mode == NEWMV) { #ifdef ENTROPY_STATS active_section = 5; #endif vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv[0].as_mv, nmvc, allow_hp); if (has_second_ref(mi)) vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv, &mi->best_mv[1].as_mv, nmvc, allow_hp); } } } static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO **mi_8x8, vp9_writer *bc) { const VP9_COMMON *const cm = &cpi->common; const MACROBLOCKD *const xd = &cpi->mb.e_mbd; const struct segmentation *const seg = &cm->seg; MODE_INFO *m = mi_8x8[0]; const int ym = m->mbmi.mode; const int segment_id = m->mbmi.segment_id; MODE_INFO *above_mi = mi_8x8[-xd->mode_info_stride]; MODE_INFO *left_mi = xd->left_available ? mi_8x8[-1] : NULL; if (seg->update_map) write_segment_id(bc, seg, m->mbmi.segment_id); write_skip_coeff(cpi, segment_id, m, bc); if (m->mbmi.sb_type >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT) write_selected_tx_size(cpi, m, m->mbmi.tx_size, m->mbmi.sb_type, bc); if (m->mbmi.sb_type >= BLOCK_8X8) { const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0); const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, 0); write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]); } else { int idx, idy; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type]; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { int i = idy * 2 + idx; const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, i); const MB_PREDICTION_MODE L = left_block_mode(m, left_mi, i); const int bm = m->bmi[i].as_mode; #ifdef ENTROPY_STATS ++intra_mode_stats[A][L][bm]; #endif write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]); } } } write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]); } static void write_modes_b(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mi_row, int mi_col, int index) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; MODE_INFO *m = mi_8x8[0]; if (m->mbmi.sb_type < BLOCK_8X8) if (index > 0) return; xd->mi_8x8 = mi_8x8; set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type], mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type], cm->mi_rows, cm->mi_cols); if (frame_is_intra_only(cm)) { write_mb_modes_kf(cpi, mi_8x8, bc); #ifdef ENTROPY_STATS active_section = 8; #endif } else { pack_inter_mode_mvs(cpi, m, bc); #ifdef ENTROPY_STATS active_section = 1; #endif } assert(*tok < tok_end); pack_mb_tokens(bc, tok, tok_end); } static void write_partition(VP9_COMP *cpi, int hbs, int mi_row, int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, vp9_writer *w) { VP9_COMMON *const cm = &cpi->common; const int ctx = partition_plane_context(cpi->above_seg_context, cpi->left_seg_context, mi_row, mi_col, bsize); const vp9_prob *const probs = get_partition_probs(cm, ctx); const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (has_rows && has_cols) { write_token(w, vp9_partition_tree, probs, &vp9_partition_encodings[p]); } else if (!has_rows && has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); vp9_write(w, p == PARTITION_SPLIT, probs[1]); } else if (has_rows && !has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_VERT); vp9_write(w, p == PARTITION_SPLIT, probs[2]); } else { assert(p == PARTITION_SPLIT); } } static void write_modes_sb(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mi_row, int mi_col, BLOCK_SIZE bsize, int index) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int bsl = b_width_log2(bsize); int bs = (1 << bsl) / 4; // mode_info step for subsize int n; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE subsize; MODE_INFO *m = mi_8x8[0]; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = partition_lookup[bsl][m->mbmi.sb_type]; if (bsize < BLOCK_8X8) { if (index > 0) return; } else { write_partition(cpi, bs, mi_row, mi_col, partition, bsize, bc); } subsize = get_subsize(bsize, partition); switch (partition) { case PARTITION_NONE: write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0); break; case PARTITION_HORZ: write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0); if ((mi_row + bs) < cm->mi_rows) write_modes_b(cpi, tile, mi_8x8 + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col, 1); break; case PARTITION_VERT: write_modes_b(cpi, tile, mi_8x8, bc, tok, tok_end, mi_row, mi_col, 0); if ((mi_col + bs) < cm->mi_cols) write_modes_b(cpi, tile, mi_8x8 + bs, bc, tok, tok_end, mi_row, mi_col + bs, 1); break; case PARTITION_SPLIT: for (n = 0; n < 4; n++) { const int j = n >> 1, i = n & 1; write_modes_sb(cpi, tile, mi_8x8 + j * bs * mis + i * bs, bc, tok, tok_end, mi_row + j * bs, mi_col + i * bs, subsize, n); } break; default: assert(0); } // update partition context if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(cpi->above_seg_context, cpi->left_seg_context, mi_row, mi_col, subsize, bsize); } static void write_modes(VP9_COMP *cpi, const TileInfo *const tile, vp9_writer* const bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int mi_row, mi_col; MODE_INFO **mi_8x8 = cm->mi_grid_visible; MODE_INFO **m_8x8; mi_8x8 += tile->mi_col_start + tile->mi_row_start * mis; for (mi_row = tile->mi_row_start; mi_row < tile->mi_row_end; mi_row += 8, mi_8x8 += 8 * mis) { m_8x8 = mi_8x8; vp9_zero(cpi->left_seg_context); for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE, m_8x8 += MI_BLOCK_SIZE) { write_modes_sb(cpi, tile, m_8x8, bc, tok, tok_end, mi_row, mi_col, BLOCK_64X64, 0); } } } static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) { vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size]; vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size]; unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] = cpi->common.counts.eob_branch[tx_size]; vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size]; int i, j, k, l, m; for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { if (l >= 3 && k == 0) continue; vp9_tree_probs_from_distribution(vp9_coef_tree, coef_branch_ct[i][j][k][l], coef_counts[i][j][k][l]); coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; for (m = 0; m < UNCONSTRAINED_NODES; ++m) coef_probs[i][j][k][l][m] = get_binary_prob( coef_branch_ct[i][j][k][l][m][0], coef_branch_ct[i][j][k][l][m][1]); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) { int t; for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) context_counters[tx_size][i][j][k][l][t] += coef_counts[i][j][k][l][t]; context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] += eob_branch_ct[i][j][k][l]; } #endif } } } } } static void build_coeff_contexts(VP9_COMP *cpi) { TX_SIZE t; for (t = TX_4X4; t <= TX_32X32; t++) build_tree_distribution(cpi, t); } static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi, TX_SIZE tx_size) { vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size]; vp9_coeff_probs_model *old_frame_coef_probs = cpi->common.fc.coef_probs[tx_size]; vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size]; const vp9_prob upd = DIFF_UPDATE_PROB; const int entropy_nodes_update = UNCONSTRAINED_NODES; int i, j, k, l, t; switch (cpi->sf.use_fast_coef_updates) { case 0: { /* dry run to see if there is any udpate at all needed */ int savings = 0; int update[2] = {0, 0}; for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t]; int s; int u = 0; if (l >= 3 && k == 0) continue; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); update[u]++; } } } } } // printf("Update %d %d, savings %d\n", update[0], update[1], savings); /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp9_write_bit(bc, 0); return; } vp9_write_bit(bc, 1); for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; const vp9_prob upd = DIFF_UPDATE_PROB; int s; int u = 0; if (l >= 3 && k == 0) continue; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vp9_write(bc, u, upd); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) ++tree_update_hist[tx_size][i][j][k][l][t][u]; #endif if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } return; } case 1: case 2: { const int prev_coef_contexts_to_update = (cpi->sf.use_fast_coef_updates == 2 ? PREV_COEF_CONTEXTS >> 1 : PREV_COEF_CONTEXTS); const int coef_band_to_update = (cpi->sf.use_fast_coef_updates == 2 ? COEF_BANDS >> 1 : COEF_BANDS); int updates = 0; int noupdates_before_first = 0; for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; int s; int u = 0; if (l >= 3 && k == 0) continue; if (l >= prev_coef_contexts_to_update || k >= coef_band_to_update) { u = 0; } else { if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; } updates += u; if (u == 0 && updates == 0) { noupdates_before_first++; #ifdef ENTROPY_STATS if (!cpi->dummy_packing) ++tree_update_hist[tx_size][i][j][k][l][t][u]; #endif continue; } if (u == 1 && updates == 1) { int v; // first update vp9_write_bit(bc, 1); for (v = 0; v < noupdates_before_first; ++v) vp9_write(bc, 0, upd); } vp9_write(bc, u, upd); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) ++tree_update_hist[tx_size][i][j][k][l][t][u]; #endif if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } if (updates == 0) { vp9_write_bit(bc, 0); // no updates } return; } default: assert(0); } } static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { const TX_MODE tx_mode = cpi->common.tx_mode; vp9_clear_system_state(); // Build the cofficient contexts based on counts collected in encode loop build_coeff_contexts(cpi); update_coef_probs_common(bc, cpi, TX_4X4); // do not do this if not even allowed if (tx_mode > ONLY_4X4) update_coef_probs_common(bc, cpi, TX_8X8); if (tx_mode > ALLOW_8X8) update_coef_probs_common(bc, cpi, TX_16X16); if (tx_mode > ALLOW_16X16) update_coef_probs_common(bc, cpi, TX_32X32); } static void encode_loopfilter(struct loopfilter *lf, struct vp9_write_bit_buffer *wb) { int i; // Encode the loop filter level and type vp9_wb_write_literal(wb, lf->filter_level, 6); vp9_wb_write_literal(wb, lf->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled). vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled); if (lf->mode_ref_delta_enabled) { // Do the deltas need to be updated vp9_wb_write_bit(wb, lf->mode_ref_delta_update); if (lf->mode_ref_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { const int delta = lf->ref_deltas[i]; // Frame level data if (delta != lf->last_ref_deltas[i]) { lf->last_ref_deltas[i] = delta; vp9_wb_write_bit(wb, 1); assert(delta != 0); vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); vp9_wb_write_bit(wb, delta < 0); } else { vp9_wb_write_bit(wb, 0); } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = lf->mode_deltas[i]; if (delta != lf->last_mode_deltas[i]) { lf->last_mode_deltas[i] = delta; vp9_wb_write_bit(wb, 1); assert(delta != 0); vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); vp9_wb_write_bit(wb, delta < 0); } else { vp9_wb_write_bit(wb, 0); } } } } } static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) { if (delta_q != 0) { vp9_wb_write_bit(wb, 1); vp9_wb_write_literal(wb, abs(delta_q), 4); vp9_wb_write_bit(wb, delta_q < 0); } else { vp9_wb_write_bit(wb, 0); } } static void encode_quantization(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); write_delta_q(wb, cm->y_dc_delta_q); write_delta_q(wb, cm->uv_dc_delta_q); write_delta_q(wb, cm->uv_ac_delta_q); } static void encode_segmentation(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { int i, j; struct segmentation *seg = &cpi->common.seg; vp9_wb_write_bit(wb, seg->enabled); if (!seg->enabled) return; // Segmentation map vp9_wb_write_bit(wb, seg->update_map); if (seg->update_map) { // Select the coding strategy (temporal or spatial) vp9_choose_segmap_coding_method(cpi); // Write out probabilities used to decode unpredicted macro-block segments for (i = 0; i < SEG_TREE_PROBS; i++) { const int prob = seg->tree_probs[i]; const int update = prob != MAX_PROB; vp9_wb_write_bit(wb, update); if (update) vp9_wb_write_literal(wb, prob, 8); } // Write out the chosen coding method. vp9_wb_write_bit(wb, seg->temporal_update); if (seg->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) { const int prob = seg->pred_probs[i]; const int update = prob != MAX_PROB; vp9_wb_write_bit(wb, update); if (update) vp9_wb_write_literal(wb, prob, 8); } } } // Segmentation data vp9_wb_write_bit(wb, seg->update_data); if (seg->update_data) { vp9_wb_write_bit(wb, seg->abs_delta); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { const int active = vp9_segfeature_active(seg, i, j); vp9_wb_write_bit(wb, active); if (active) { const int data = vp9_get_segdata(seg, i, j); const int data_max = vp9_seg_feature_data_max(j); if (vp9_is_segfeature_signed(j)) { vp9_encode_unsigned_max(wb, abs(data), data_max); vp9_wb_write_bit(wb, data < 0); } else { vp9_encode_unsigned_max(wb, data, data_max); } } } } } } static void encode_txfm_probs(VP9_COMP *cpi, vp9_writer *w) { VP9_COMMON *const cm = &cpi->common; // Mode vp9_write_literal(w, MIN(cm->tx_mode, ALLOW_32X32), 2); if (cm->tx_mode >= ALLOW_32X32) vp9_write_bit(w, cm->tx_mode == TX_MODE_SELECT); // Probabilities if (cm->tx_mode == TX_MODE_SELECT) { int i, j; unsigned int ct_8x8p[TX_SIZES - 3][2]; unsigned int ct_16x16p[TX_SIZES - 2][2]; unsigned int ct_32x32p[TX_SIZES - 1][2]; for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_8x8(cm->counts.tx.p8x8[i], ct_8x8p); for (j = 0; j < TX_SIZES - 3; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p8x8[i][j], ct_8x8p[j]); } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_16x16(cm->counts.tx.p16x16[i], ct_16x16p); for (j = 0; j < TX_SIZES - 2; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p16x16[i][j], ct_16x16p[j]); } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { tx_counts_to_branch_counts_32x32(cm->counts.tx.p32x32[i], ct_32x32p); for (j = 0; j < TX_SIZES - 1; j++) vp9_cond_prob_diff_update(w, &cm->fc.tx_probs.p32x32[i][j], ct_32x32p[j]); } #ifdef MODE_STATS if (!cpi->dummy_packing) update_tx_count_stats(cm); #endif } } static void write_interp_filter_type(INTERPOLATION_TYPE type, struct vp9_write_bit_buffer *wb) { const int type_to_literal[] = { 1, 0, 2, 3 }; vp9_wb_write_bit(wb, type == SWITCHABLE); if (type != SWITCHABLE) vp9_wb_write_literal(wb, type_to_literal[type], 2); } static void fix_mcomp_filter_type(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; if (cm->mcomp_filter_type == SWITCHABLE) { // Check to see if only one of the filters is actually used int count[SWITCHABLE_FILTERS]; int i, j, c = 0; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) count[i] += cm->counts.switchable_interp[j][i]; c += (count[i] > 0); } if (c == 1) { // Only one filter is used. So set the filter at frame level for (i = 0; i < SWITCHABLE_FILTERS; ++i) { if (count[i]) { cm->mcomp_filter_type = i; break; } } } } } static void write_tile_info(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { int min_log2_tile_cols, max_log2_tile_cols, ones; vp9_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns ones = cm->log2_tile_cols - min_log2_tile_cols; while (ones--) vp9_wb_write_bit(wb, 1); if (cm->log2_tile_cols < max_log2_tile_cols) vp9_wb_write_bit(wb, 0); // rows vp9_wb_write_bit(wb, cm->log2_tile_rows != 0); if (cm->log2_tile_rows != 0) vp9_wb_write_bit(wb, cm->log2_tile_rows != 1); } static int get_refresh_mask(VP9_COMP *cpi) { // Should the GF or ARF be updated using the transmitted frame or buffer #if CONFIG_MULTIPLE_ARF if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { #else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame && !cpi->use_svc) { #endif // Preserve the previously existing golden frame and update the frame in // the alt ref slot instead. This is highly specific to the use of // alt-ref as a forward reference, and this needs to be generalized as // other uses are implemented (like RTC/temporal scaling) // // gld_fb_idx and alt_fb_idx need to be swapped for future frames, but // that happens in vp9_onyx_if.c:update_reference_frames() so that it can // be done outside of the recode loop. return (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->alt_fb_idx); } else { int arf_idx = cpi->alt_fb_idx; #if CONFIG_MULTIPLE_ARF // Determine which ARF buffer to use to encode this ARF frame. if (cpi->multi_arf_enabled) { int sn = cpi->sequence_number; arf_idx = (cpi->frame_coding_order[sn] < 0) ? cpi->arf_buffer_idx[sn + 1] : cpi->arf_buffer_idx[sn]; } #endif return (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | (cpi->refresh_alt_ref_frame << arf_idx); } } static size_t encode_tiles(VP9_COMP *cpi, uint8_t *data_ptr) { VP9_COMMON *const cm = &cpi->common; vp9_writer residual_bc; int tile_row, tile_col; TOKENEXTRA *tok[4][1 << 6], *tok_end; size_t total_size = 0; const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; vpx_memset(cpi->above_seg_context, 0, sizeof(*cpi->above_seg_context) * mi_cols_aligned_to_sb(cm->mi_cols)); tok[0][0] = cpi->tok; for (tile_row = 0; tile_row < tile_rows; tile_row++) { if (tile_row) tok[tile_row][0] = tok[tile_row - 1][tile_cols - 1] + cpi->tok_count[tile_row - 1][tile_cols - 1]; for (tile_col = 1; tile_col < tile_cols; tile_col++) tok[tile_row][tile_col] = tok[tile_row][tile_col - 1] + cpi->tok_count[tile_row][tile_col - 1]; } for (tile_row = 0; tile_row < tile_rows; tile_row++) { for (tile_col = 0; tile_col < tile_cols; tile_col++) { TileInfo tile; vp9_tile_init(&tile, cm, tile_row, tile_col); tok_end = tok[tile_row][tile_col] + cpi->tok_count[tile_row][tile_col]; if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) vp9_start_encode(&residual_bc, data_ptr + total_size + 4); else vp9_start_encode(&residual_bc, data_ptr + total_size); write_modes(cpi, &tile, &residual_bc, &tok[tile_row][tile_col], tok_end); assert(tok[tile_row][tile_col] == tok_end); vp9_stop_encode(&residual_bc); if (tile_col < tile_cols - 1 || tile_row < tile_rows - 1) { // size of this tile write_be32(data_ptr + total_size, residual_bc.pos); total_size += 4; } total_size += residual_bc.pos; } } return total_size; } static void write_display_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; const int scaling_active = cm->width != cm->display_width || cm->height != cm->display_height; vp9_wb_write_bit(wb, scaling_active); if (scaling_active) { vp9_wb_write_literal(wb, cm->display_width - 1, 16); vp9_wb_write_literal(wb, cm->display_height - 1, 16); } } static void write_frame_size(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; vp9_wb_write_literal(wb, cm->width - 1, 16); vp9_wb_write_literal(wb, cm->height - 1, 16); write_display_size(cpi, wb); } static void write_frame_size_with_refs(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx}; int i, found = 0; for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->ref_frame_map[refs[i]]]; found = cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; // TODO(ivan): This prevents a bug while more than 3 buffers are used. Do it // in a better way. if (cpi->use_svc) { found = 0; } vp9_wb_write_bit(wb, found); if (found) { break; } } if (!found) { vp9_wb_write_literal(wb, cm->width - 1, 16); vp9_wb_write_literal(wb, cm->height - 1, 16); } write_display_size(cpi, wb); } static void write_sync_code(struct vp9_write_bit_buffer *wb) { vp9_wb_write_literal(wb, VP9_SYNC_CODE_0, 8); vp9_wb_write_literal(wb, VP9_SYNC_CODE_1, 8); vp9_wb_write_literal(wb, VP9_SYNC_CODE_2, 8); } static void write_uncompressed_header(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { VP9_COMMON *const cm = &cpi->common; vp9_wb_write_literal(wb, VP9_FRAME_MARKER, 2); // bitstream version. // 00 - profile 0. 4:2:0 only // 10 - profile 1. adds 4:4:4, 4:2:2, alpha vp9_wb_write_bit(wb, cm->version); vp9_wb_write_bit(wb, 0); vp9_wb_write_bit(wb, 0); vp9_wb_write_bit(wb, cm->frame_type); vp9_wb_write_bit(wb, cm->show_frame); vp9_wb_write_bit(wb, cm->error_resilient_mode); if (cm->frame_type == KEY_FRAME) { const COLOR_SPACE cs = UNKNOWN; write_sync_code(wb); vp9_wb_write_literal(wb, cs, 3); if (cs != SRGB) { vp9_wb_write_bit(wb, 0); // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] if (cm->version == 1) { vp9_wb_write_bit(wb, cm->subsampling_x); vp9_wb_write_bit(wb, cm->subsampling_y); vp9_wb_write_bit(wb, 0); // has extra plane } } else { assert(cm->version == 1); vp9_wb_write_bit(wb, 0); // has extra plane } write_frame_size(cpi, wb); } else { const int refs[ALLOWED_REFS_PER_FRAME] = {cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx}; if (!cm->show_frame) vp9_wb_write_bit(wb, cm->intra_only); if (!cm->error_resilient_mode) vp9_wb_write_literal(wb, cm->reset_frame_context, 2); if (cm->intra_only) { write_sync_code(wb); vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES); write_frame_size(cpi, wb); } else { int i; vp9_wb_write_literal(wb, get_refresh_mask(cpi), NUM_REF_FRAMES); for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { vp9_wb_write_literal(wb, refs[i], NUM_REF_FRAMES_LOG2); vp9_wb_write_bit(wb, cm->ref_frame_sign_bias[LAST_FRAME + i]); } write_frame_size_with_refs(cpi, wb); vp9_wb_write_bit(wb, cm->allow_high_precision_mv); fix_mcomp_filter_type(cpi); write_interp_filter_type(cm->mcomp_filter_type, wb); } } if (!cm->error_resilient_mode) { vp9_wb_write_bit(wb, cm->refresh_frame_context); vp9_wb_write_bit(wb, cm->frame_parallel_decoding_mode); } vp9_wb_write_literal(wb, cm->frame_context_idx, NUM_FRAME_CONTEXTS_LOG2); encode_loopfilter(&cm->lf, wb); encode_quantization(cm, wb); encode_segmentation(cpi, wb); write_tile_info(cm, wb); } static size_t write_compressed_header(VP9_COMP *cpi, uint8_t *data) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; FRAME_CONTEXT *const fc = &cm->fc; vp9_writer header_bc; vp9_start_encode(&header_bc, data); if (xd->lossless) cm->tx_mode = ONLY_4X4; else encode_txfm_probs(cpi, &header_bc); update_coef_probs(cpi, &header_bc); #ifdef ENTROPY_STATS active_section = 2; #endif vp9_update_skip_probs(cpi, &header_bc); if (!frame_is_intra_only(cm)) { int i; #ifdef ENTROPY_STATS active_section = 1; #endif update_inter_mode_probs(cm, &header_bc); vp9_zero(cm->counts.inter_mode); if (cm->mcomp_filter_type == SWITCHABLE) update_switchable_interp_probs(cpi, &header_bc); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], cpi->intra_inter_count[i]); if (cm->allow_comp_inter_inter) { const int comp_pred_mode = cpi->common.comp_pred_mode; const int use_compound_pred = comp_pred_mode != SINGLE_PREDICTION_ONLY; const int use_hybrid_pred = comp_pred_mode == HYBRID_PREDICTION; vp9_write_bit(&header_bc, use_compound_pred); if (use_compound_pred) { vp9_write_bit(&header_bc, use_hybrid_pred); if (use_hybrid_pred) for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], cpi->comp_inter_count[i]); } } if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) { for (i = 0; i < REF_CONTEXTS; i++) { vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][0], cpi->single_ref_count[i][0]); vp9_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][1], cpi->single_ref_count[i][1]); } } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) vp9_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i], cpi->comp_ref_count[i]); update_mbintra_mode_probs(cpi, &header_bc); for (i = 0; i < PARTITION_CONTEXTS; ++i) { unsigned int bct[PARTITION_TYPES - 1][2]; update_mode(&header_bc, PARTITION_TYPES, vp9_partition_tree, fc->partition_prob[i], bct, (unsigned int *)cpi->partition_count[i]); } vp9_write_nmv_probs(cpi, cm->allow_high_precision_mv, &header_bc); } vp9_stop_encode(&header_bc); assert(header_bc.pos <= 0xffff); return header_bc.pos; } void vp9_pack_bitstream(VP9_COMP *cpi, uint8_t *dest, unsigned long *size) { uint8_t *data = dest; size_t first_part_size; struct vp9_write_bit_buffer wb = {data, 0}; struct vp9_write_bit_buffer saved_wb; write_uncompressed_header(cpi, &wb); saved_wb = wb; vp9_wb_write_literal(&wb, 0, 16); // don't know in advance first part. size data += vp9_rb_bytes_written(&wb); vp9_compute_update_table(); #ifdef ENTROPY_STATS if (cm->frame_type == INTER_FRAME) active_section = 0; else active_section = 7; #endif vp9_clear_system_state(); // __asm emms; first_part_size = write_compressed_header(cpi, data); data += first_part_size; vp9_wb_write_literal(&saved_wb, first_part_size, 16); data += encode_tiles(cpi, data); *size = data - dest; } #ifdef ENTROPY_STATS static void print_tree_update_for_type(FILE *f, vp9_coeff_stats *tree_update_hist, int block_types, const char *header) { int i, j, k, l, m; fprintf(f, "const vp9_coeff_prob %s = {\n", header); for (i = 0; i < block_types; i++) { fprintf(f, " { \n"); for (j = 0; j < REF_TYPES; j++) { fprintf(f, " { \n"); for (k = 0; k < COEF_BANDS; k++) { fprintf(f, " {\n"); for (l = 0; l < PREV_COEF_CONTEXTS; l++) { fprintf(f, " {"); for (m = 0; m < ENTROPY_NODES; m++) { fprintf(f, "%3d, ", get_binary_prob(tree_update_hist[i][j][k][l][m][0], tree_update_hist[i][j][k][l][m][1])); } fprintf(f, "},\n"); } fprintf(f, "},\n"); } fprintf(f, " },\n"); } fprintf(f, " },\n"); } fprintf(f, "};\n"); } void print_tree_update_probs() { FILE *f = fopen("coefupdprob.h", "w"); fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); print_tree_update_for_type(f, tree_update_hist[TX_4X4], BLOCK_TYPES, "vp9_coef_update_probs_4x4[BLOCK_TYPES]"); print_tree_update_for_type(f, tree_update_hist[TX_8X8], BLOCK_TYPES, "vp9_coef_update_probs_8x8[BLOCK_TYPES]"); print_tree_update_for_type(f, tree_update_hist[TX_16X16], BLOCK_TYPES, "vp9_coef_update_probs_16x16[BLOCK_TYPES]"); print_tree_update_for_type(f, tree_update_hist[TX_32X32], BLOCK_TYPES, "vp9_coef_update_probs_32x32[BLOCK_TYPES]"); fclose(f); f = fopen("treeupdate.bin", "wb"); fwrite(tree_update_hist, sizeof(tree_update_hist), 1, f); fclose(f); } #endif