/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/common/vp9_reconintra.h" #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9_rtcd.h" void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) { uint8_t *src_ptr = (*(be->base_src) + be->src); int16_t *diff_ptr = be->src_diff; uint8_t *pred_ptr = *(bd->base_dst) + bd->dst; int src_stride = be->src_stride; int dst_stride = bd->dst_stride; int r, c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) diff_ptr[c] = src_ptr[c] - pred_ptr[c]; diff_ptr += pitch; pred_ptr += dst_stride; src_ptr += src_stride; } } void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) { uint8_t *src_ptr = (*(be->base_src) + be->src); int16_t *diff_ptr = be->src_diff; uint8_t *pred_ptr = *(bd->base_dst) + bd->dst; int src_stride = be->src_stride; int dst_stride = bd->dst_stride; int r, c; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) diff_ptr[c] = src_ptr[c] - pred_ptr[c]; diff_ptr += pitch; pred_ptr += dst_stride; src_ptr += src_stride; } } void vp9_subtract_sby_s_c(int16_t *diff, const uint8_t *src, int src_stride, const uint8_t *pred, int dst_stride, BLOCK_SIZE_TYPE bsize) { const int bh = 16 << mb_height_log2(bsize), bw = 16 << mb_width_log2(bsize); int r, c; for (r = 0; r < bh; r++) { for (c = 0; c < bw; c++) diff[c] = src[c] - pred[c]; diff += bw; pred += dst_stride; src += src_stride; } } void vp9_subtract_sbuv_s_c(int16_t *diff, const uint8_t *usrc, const uint8_t *vsrc, int src_stride, const uint8_t *upred, const uint8_t *vpred, int dst_stride, BLOCK_SIZE_TYPE bsize) { const int bhl = mb_height_log2(bsize), bwl = mb_width_log2(bsize); const int uoff = (16 * 16) << (bhl + bwl), voff = (uoff * 5) >> 2; const int bw = 8 << bwl, bh = 8 << bhl; int16_t *udiff = diff + uoff; int16_t *vdiff = diff + voff; int r, c; for (r = 0; r < bh; r++) { for (c = 0; c < bw; c++) udiff[c] = usrc[c] - upred[c]; udiff += bw; upred += dst_stride; usrc += src_stride; } for (r = 0; r < bh; r++) { for (c = 0; c < bw; c++) vdiff[c] = vsrc[c] - vpred[c]; vdiff += bw; vpred += dst_stride; vsrc += src_stride; } } static void subtract_mb(MACROBLOCK *x) { MACROBLOCKD *xd = &x->e_mbd; vp9_subtract_sby_s_c(x->src_diff, x->src.y_buffer, x->src.y_stride, xd->plane[0].dst.buf, xd->plane[0].dst.stride, BLOCK_SIZE_MB16X16); vp9_subtract_sbuv_s_c(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->src.uv_stride, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, BLOCK_SIZE_MB16X16); } void vp9_transform_sby_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl; const int bh = 1 << (mb_height_log2(bsize) - 1); const int stride = 32 << bwl; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; vp9_short_fdct32x32(x->src_diff + y_idx * stride * 32 + x_idx * 32, x->coeff + n * 1024, stride * 2); } } void vp9_transform_sby_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bw = 1 << bwl; const int bh = 1 << mb_height_log2(bsize); const int stride = 16 << bwl, bstride = 4 << bwl; MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; const TX_TYPE tx_type = get_tx_type_16x16(xd, (y_idx * bstride + x_idx) * 4); if (tx_type != DCT_DCT) { vp9_short_fht16x16(x->src_diff + y_idx * stride * 16 + x_idx * 16, x->coeff + n * 256, stride, tx_type); } else { x->fwd_txm16x16(x->src_diff + y_idx * stride * 16 + x_idx * 16, x->coeff + n * 256, stride * 2); } } } void vp9_transform_sby_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl; const int bh = 1 << (mb_height_log2(bsize) + 1); const int stride = 8 << bwl, bstride = 2 << bwl; MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * bstride + x_idx) * 2); if (tx_type != DCT_DCT) { vp9_short_fht8x8(x->src_diff + y_idx * stride * 8 + x_idx * 8, x->coeff + n * 64, stride, tx_type); } else { x->fwd_txm8x8(x->src_diff + y_idx * stride * 8 + x_idx * 8, x->coeff + n * 64, stride * 2); } } } void vp9_transform_sby_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl; const int bh = 1 << (mb_height_log2(bsize) + 2); const int stride = 4 << bwl; MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; const TX_TYPE tx_type = get_tx_type_4x4(xd, n); if (tx_type != DCT_DCT) { vp9_short_fht4x4(x->src_diff + y_idx * stride * 4 + x_idx * 4, x->coeff + n * 16, stride, tx_type); } else { x->fwd_txm4x4(x->src_diff + y_idx * stride * 4 + x_idx * 4, x->coeff + n * 16, stride * 2); } } } void vp9_transform_sbuv_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { assert(bsize == BLOCK_SIZE_SB64X64); vp9_clear_system_state(); vp9_short_fdct32x32(x->src_diff + 4096, x->coeff + 4096, 64); vp9_short_fdct32x32(x->src_diff + 4096 + 1024, x->coeff + 4096 + 1024, 64); } void vp9_transform_sbuv_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize); const int uoff = (16 * 16) << (bwl + bhl), voff = (uoff * 5) >> 2; const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1); const int stride = 16 << (bwl - 1); int n; vp9_clear_system_state(); for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); x->fwd_txm16x16(x->src_diff + uoff + y_idx * stride * 16 + x_idx * 16, x->coeff + uoff + n * 256, stride * 2); x->fwd_txm16x16(x->src_diff + voff + y_idx * stride * 16 + x_idx * 16, x->coeff + voff + n * 256, stride * 2); } } void vp9_transform_sbuv_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 1, bhl = mb_height_log2(bsize) + 1; const int uoff = (8 * 8) << (bwl + bhl), voff = (uoff * 5) >> 2; const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1); const int stride = 8 << (bwl - 1); int n; vp9_clear_system_state(); for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); x->fwd_txm8x8(x->src_diff + uoff + y_idx * stride * 8 + x_idx * 8, x->coeff + uoff + n * 64, stride * 2); x->fwd_txm8x8(x->src_diff + voff + y_idx * stride * 8 + x_idx * 8, x->coeff + voff + n * 64, stride * 2); } } void vp9_transform_sbuv_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 2, bhl = mb_height_log2(bsize) + 2; const int uoff = (4 * 4) << (bwl + bhl), voff = (uoff * 5) >> 2; const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1); const int stride = 4 << (bwl - 1); int n; vp9_clear_system_state(); for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); x->fwd_txm4x4(x->src_diff + uoff + y_idx * stride * 4 + x_idx * 4, x->coeff + uoff + n * 16, stride * 2); x->fwd_txm4x4(x->src_diff + voff + y_idx * stride * 4 + x_idx * 4, x->coeff + voff + n * 16, stride * 2); } } #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) #define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp9_token_state vp9_token_state; struct vp9_token_state { int rate; int error; int next; signed char token; short qc; }; // TODO: experiments to find optimal multiple numbers #define Y1_RD_MULT 4 #define UV_RD_MULT 2 static const int plane_rd_mult[4] = { Y1_RD_MULT, UV_RD_MULT, }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int *scan, const int *nb, int idx, int token, uint8_t *token_cache, int pad, int l) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = token; pt = vp9_get_coef_context(scan, nb, pad, token_cache, idx + 1, l); token_cache[scan[idx]] = bak; return pt; } static void optimize_b(VP9_COMMON *const cm, MACROBLOCK *mb, int ib, PLANE_TYPE type, const int16_t *dequant_ptr, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int tx_size, int y_blocks) { const int ref = mb->e_mbd.mode_info_context->mbmi.ref_frame != INTRA_FRAME; MACROBLOCKD *const xd = &mb->e_mbd; vp9_token_state tokens[1025][2]; unsigned best_index[1025][2]; const struct plane_block_idx pb_idx = plane_block_idx(y_blocks, ib); const int16_t *coeff_ptr = mb->coeff + ib * 16; int16_t *qcoeff_ptr; int16_t *dqcoeff_ptr; int eob = xd->plane[pb_idx.plane].eobs[pb_idx.block], final_eob, sz = 0; const int i0 = 0; int rc, x, next, i; int64_t rdmult, rddiv, rd_cost0, rd_cost1; int rate0, rate1, error0, error1, t0, t1; int best, band, pt; int err_mult = plane_rd_mult[type]; int default_eob, pad; int const *scan, *nb; const int mul = 1 + (tx_size == TX_32X32); uint8_t token_cache[1024]; assert((!type && !pb_idx.plane) || (type && pb_idx.plane)); dqcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].dqcoeff, pb_idx.block, 16); qcoeff_ptr = BLOCK_OFFSET(xd->plane[pb_idx.plane].qcoeff, pb_idx.block, 16); switch (tx_size) { default: case TX_4X4: { const TX_TYPE tx_type = get_tx_type_4x4(xd, ib); default_eob = 16; if (tx_type == DCT_ADST) { scan = vp9_col_scan_4x4; } else if (tx_type == ADST_DCT) { scan = vp9_row_scan_4x4; } else { scan = vp9_default_zig_zag1d_4x4; } break; } case TX_8X8: { const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int sz = 3 + mb_width_log2(sb_type); const int x = ib & ((1 << sz) - 1), y = ib - x; const TX_TYPE tx_type = get_tx_type_8x8(xd, y + (x >> 1)); if (tx_type == DCT_ADST) { scan = vp9_col_scan_8x8; } else if (tx_type == ADST_DCT) { scan = vp9_row_scan_8x8; } else { scan = vp9_default_zig_zag1d_8x8; } default_eob = 64; break; } case TX_16X16: { const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int sz = 4 + mb_width_log2(sb_type); const int x = ib & ((1 << sz) - 1), y = ib - x; const TX_TYPE tx_type = get_tx_type_16x16(xd, y + (x >> 2)); if (tx_type == DCT_ADST) { scan = vp9_col_scan_16x16; } else if (tx_type == ADST_DCT) { scan = vp9_row_scan_16x16; } else { scan = vp9_default_zig_zag1d_16x16; } default_eob = 256; break; } case TX_32X32: scan = vp9_default_zig_zag1d_32x32; default_eob = 1024; break; } assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) rdmult = (rdmult * 9) >> 4; rddiv = mb->rddiv; memset(best_index, 0, sizeof(best_index)); /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = 0; i < eob; i++) token_cache[scan[i]] = vp9_dct_value_tokens_ptr[qcoeff_ptr[scan[i]]].token; nb = vp9_get_coef_neighbors_handle(scan, &pad); for (i = eob; i-- > i0;) { int base_bits, d2, dx; rc = scan[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp9_dct_value_tokens_ptr + x)->token; /* Consider both possible successor states. */ if (next < default_eob) { band = get_coef_band(scan, tx_size, i + 1); pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache, pad, default_eob); rate0 += mb->token_costs[tx_size][type][ref][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][ref][band][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]); d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) && (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token; } if (next < default_eob) { band = get_coef_band(scan, tx_size, i + 1); if (t0 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache, pad, default_eob); rate0 += mb->token_costs[tx_size][type][ref][band][pt][ tokens[next][0].token]; } if (t1 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache, pad, default_eob); rate1 += mb->token_costs[tx_size][type][ref][band][pt][ tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); if (shortcut) { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = get_coef_band(scan, tx_size, i + 1); t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][ref][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][ref][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = get_coef_band(scan, tx_size, i + 1); pt = combine_entropy_contexts(*a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][ref][band][pt][t0]; rate1 += mb->token_costs[tx_size][type][ref][band][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = i0 - 1; vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2))); vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2))); for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) { final_eob = i; } rc = scan[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul; next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; xd->plane[pb_idx.plane].eobs[pb_idx.block] = final_eob; *a = *l = (final_eob > 0); } void vp9_optimize_sby_32x32(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl; const int bh = 1 << (mb_height_log2(bsize) - 1); ENTROPY_CONTEXT ta[2], tl[2]; int n; for (n = 0; n < bw; n++) { ENTROPY_CONTEXT *a = (ENTROPY_CONTEXT *) (x->e_mbd.above_context + n * 2 + 0); ENTROPY_CONTEXT *a1 = (ENTROPY_CONTEXT *) (x->e_mbd.above_context + n * 2 + 1); ta[n] = (a[0] + a[1] + a[2] + a[3] + a1[0] + a1[1] + a1[2] + a1[3]) != 0; } for (n = 0; n < bh; n++) { ENTROPY_CONTEXT *l = (ENTROPY_CONTEXT *) (x->e_mbd.left_context + n * 2); ENTROPY_CONTEXT *l1 = (ENTROPY_CONTEXT *) (x->e_mbd.left_context + n * 2 + 1); tl[n] = (l[0] + l[1] + l[2] + l[3] + l1[0] + l1[1] + l1[2] + l1[3]) != 0; } for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; optimize_b(cm, x, n * 64, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant, ta + x_idx, tl + y_idx, TX_32X32, 64 * bw * bh); } } void vp9_optimize_sby_16x16(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bw = 1 << bwl; const int bh = 1 << mb_height_log2(bsize); ENTROPY_CONTEXT ta[4], tl[4]; int n; for (n = 0; n < bw; n++) { ENTROPY_CONTEXT *a = (ENTROPY_CONTEXT *) (x->e_mbd.above_context + n); ta[n] = (a[0] + a[1] + a[2] + a[3]) != 0; } for (n = 0; n < bh; n++) { ENTROPY_CONTEXT *l = (ENTROPY_CONTEXT *) (x->e_mbd.left_context + n); tl[n] = (l[0] + l[1] + l[2] + l[3]) != 0; } for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; optimize_b(cm, x, n * 16, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant, ta + x_idx, tl + y_idx, TX_16X16, 16 * bw * bh); } } void vp9_optimize_sby_8x8(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl; const int bh = 2 << mb_height_log2(bsize); ENTROPY_CONTEXT ta[8], tl[8]; int n; for (n = 0; n < bw; n += 2) { ENTROPY_CONTEXT *a = (ENTROPY_CONTEXT *) (x->e_mbd.above_context + (n >> 1)); ta[n + 0] = (a[0] + a[1]) != 0; ta[n + 1] = (a[2] + a[3]) != 0; } for (n = 0; n < bh; n += 2) { ENTROPY_CONTEXT *l = (ENTROPY_CONTEXT *) (x->e_mbd.left_context + (n >> 1)); tl[n + 0] = (l[0] + l[1]) != 0; tl[n + 1] = (l[2] + l[3]) != 0; } for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; optimize_b(cm, x, n * 4, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant, ta + x_idx, tl + y_idx, TX_8X8, 4 * bw * bh); } } void vp9_optimize_sby_4x4(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { int bwl = mb_width_log2(bsize), bw = 1 << bwl; int bh = 1 << mb_height_log2(bsize); ENTROPY_CONTEXT ta[16], tl[16]; int n; for (n = 0; n < bw; n++) vpx_memcpy(&ta[n * 4], x->e_mbd.above_context + n, sizeof(ENTROPY_CONTEXT) * 4); for (n = 0; n < bh; n++) vpx_memcpy(&tl[n * 4], x->e_mbd.left_context + n, sizeof(ENTROPY_CONTEXT) * 4); bw *= 4; bh *= 4; bwl += 2; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; optimize_b(cm, x, n, PLANE_TYPE_Y_WITH_DC, x->e_mbd.block[0].dequant, ta + x_idx, tl + y_idx, TX_4X4, bh * bw); } } void vp9_optimize_sbuv_32x32(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { ENTROPY_CONTEXT *ta = (ENTROPY_CONTEXT *) x->e_mbd.above_context; ENTROPY_CONTEXT *tl = (ENTROPY_CONTEXT *) x->e_mbd.left_context; ENTROPY_CONTEXT *a, *l, *a1, *l1, *a2, *l2, *a3, *l3, a_ec, l_ec; int b; assert(bsize == BLOCK_SIZE_SB64X64); for (b = 256; b < 384; b += 64) { const int cidx = b >= 320 ? 20 : 16; a = ta + vp9_block2above_sb64[TX_32X32][b]; l = tl + vp9_block2left_sb64[TX_32X32][b]; a1 = a + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT); l1 = l + sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT); a2 = a + 2 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT); l2 = l + 2 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT); a3 = a + 3 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT); l3 = l + 3 * sizeof(ENTROPY_CONTEXT_PLANES) / sizeof(ENTROPY_CONTEXT); a_ec = (a[0] + a[1] + a1[0] + a1[1] + a2[0] + a2[1] + a3[0] + a3[1]) != 0; l_ec = (l[0] + l[1] + l1[0] + l1[1] + l2[0] + l2[1] + l3[0] + l3[1]) != 0; optimize_b(cm, x, b, PLANE_TYPE_UV, x->e_mbd.block[cidx].dequant, &a_ec, &l_ec, TX_32X32, 256); } } void vp9_optimize_sbuv_16x16(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize); const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); int uvoff = 16 << (bwl + bhl); ENTROPY_CONTEXT ta[2][2], tl[2][2]; int plane, n; for (n = 0; n < bw; n++) { ENTROPY_CONTEXT_PLANES *a = x->e_mbd.above_context + n * 2; ENTROPY_CONTEXT_PLANES *a1 = x->e_mbd.above_context + n * 2 + 1; ta[0][n] = (a->u[0] + a->u[1] + a1->u[0] + a1->u[1]) != 0; ta[1][n] = (a->v[0] + a->v[1] + a1->v[0] + a1->v[1]) != 0; } for (n = 0; n < bh; n++) { ENTROPY_CONTEXT_PLANES *l = (x->e_mbd.left_context + n * 2); ENTROPY_CONTEXT_PLANES *l1 = (x->e_mbd.left_context + n * 2 + 1); tl[0][n] = (l->u[0] + l->u[1] + l1->u[0] + l1->u[1]) != 0; tl[1][n] = (l->v[0] + l->v[1] + l1->v[0] + l1->v[1]) != 0; } for (plane = 0; plane < 2; plane++) { const int cidx = 16 + plane * 4; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); optimize_b(cm, x, uvoff + n * 16, PLANE_TYPE_UV, x->e_mbd.block[cidx].dequant, &ta[plane][x_idx], &tl[plane][y_idx], TX_16X16, bh * bw * 64); } uvoff = (uvoff * 5) >> 2; // switch u -> v } } void vp9_optimize_sbuv_8x8(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 1, bhl = mb_height_log2(bsize) + 1; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); int uvoff = 4 << (bwl + bhl); ENTROPY_CONTEXT ta[2][4], tl[2][4]; int plane, n; for (n = 0; n < bw; n++) { ENTROPY_CONTEXT_PLANES *a = x->e_mbd.above_context + n; ta[0][n] = (a->u[0] + a->u[1]) != 0; ta[1][n] = (a->v[0] + a->v[1]) != 0; } for (n = 0; n < bh; n++) { ENTROPY_CONTEXT_PLANES *l = x->e_mbd.left_context + n; tl[0][n] = (l->u[0] + l->u[1]) != 0; tl[1][n] = (l->v[0] + l->v[1]) != 0; } for (plane = 0; plane < 2; plane++) { const int cidx = 16 + plane * 4; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); optimize_b(cm, x, uvoff + n * 4, PLANE_TYPE_UV, x->e_mbd.block[cidx].dequant, &ta[plane][x_idx], &tl[plane][y_idx], TX_8X8, bh * bw * 16); } uvoff = (uvoff * 5) >> 2; // switch u -> v } } void vp9_optimize_sbuv_4x4(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = mb_width_log2(bsize) + 2, bhl = mb_height_log2(bsize) + 2; const int bw = 1 << (bwl - 1); const int bh = 1 << (bhl - 1); int uvoff = 1 << (bwl + bhl); ENTROPY_CONTEXT ta[2][8], tl[2][8]; int plane, n; for (n = 0; n < bw; n += 2) { ENTROPY_CONTEXT_PLANES *a = x->e_mbd.above_context + (n >> 1); ta[0][n + 0] = (a->u[0]) != 0; ta[0][n + 1] = (a->u[1]) != 0; ta[1][n + 0] = (a->v[0]) != 0; ta[1][n + 1] = (a->v[1]) != 0; } for (n = 0; n < bh; n += 2) { ENTROPY_CONTEXT_PLANES *l = x->e_mbd.left_context + (n >> 1); tl[0][n + 0] = (l->u[0]) != 0; tl[0][n + 1] = (l->u[1]) != 0; tl[1][n + 0] = (l->v[0]) != 0; tl[1][n + 1] = (l->v[1]) != 0; } for (plane = 0; plane < 2; plane++) { const int cidx = 16 + plane * 4; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); optimize_b(cm, x, uvoff + n, PLANE_TYPE_UV, x->e_mbd.block[cidx].dequant, &ta[plane][x_idx], &tl[plane][y_idx], TX_4X4, bh * bw * 4); } uvoff = (uvoff * 5) >> 2; // switch u -> v } } void vp9_fidct_mb(VP9_COMMON *const cm, MACROBLOCK *x) { MACROBLOCKD *const xd = &x->e_mbd; const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; if (tx_size == TX_16X16) { vp9_transform_sby_16x16(x, BLOCK_SIZE_MB16X16); vp9_transform_sbuv_8x8(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_16x16(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_8x8(x, BLOCK_SIZE_MB16X16); if (x->optimize) { vp9_optimize_sby_16x16(cm, x, BLOCK_SIZE_MB16X16); vp9_optimize_sbuv_8x8(cm, x, BLOCK_SIZE_MB16X16); } vp9_inverse_transform_sby_16x16(xd, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_8x8(xd, BLOCK_SIZE_MB16X16); } else if (tx_size == TX_8X8) { vp9_transform_sby_8x8(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_8x8(x, BLOCK_SIZE_MB16X16); if (x->optimize) vp9_optimize_sby_8x8(cm, x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sby_8x8(xd, BLOCK_SIZE_MB16X16); if (xd->mode_info_context->mbmi.mode == SPLITMV) { assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4); vp9_transform_sbuv_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_4x4(x, BLOCK_SIZE_MB16X16); if (x->optimize) vp9_optimize_sbuv_4x4(cm, x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_4x4(xd, BLOCK_SIZE_MB16X16); } else { vp9_transform_sbuv_8x8(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_8x8(x, BLOCK_SIZE_MB16X16); if (x->optimize) vp9_optimize_sbuv_8x8(cm, x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_8x8(xd, BLOCK_SIZE_MB16X16); } } else { vp9_transform_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_transform_sbuv_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_4x4(x, BLOCK_SIZE_MB16X16); if (x->optimize) { vp9_optimize_sby_4x4(cm, x, BLOCK_SIZE_MB16X16); vp9_optimize_sbuv_4x4(cm, x, BLOCK_SIZE_MB16X16); } vp9_inverse_transform_sby_4x4(xd, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_4x4(xd, BLOCK_SIZE_MB16X16); } } void vp9_encode_inter16x16(VP9_COMMON *const cm, MACROBLOCK *x, int mb_row, int mb_col) { MACROBLOCKD *const xd = &x->e_mbd; vp9_build_inter_predictors_sb(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16); subtract_mb(x); vp9_fidct_mb(cm, x); vp9_recon_sb(xd, BLOCK_SIZE_MB16X16); } /* this function is used by first pass only */ void vp9_encode_inter16x16y(MACROBLOCK *x, int mb_row, int mb_col) { MACROBLOCKD *xd = &x->e_mbd; vp9_build_inter_predictors_sby(xd, mb_row, mb_col, BLOCK_SIZE_MB16X16); vp9_subtract_sby_s_c(x->src_diff, x->src.y_buffer, x->src.y_stride, xd->plane[0].dst.buf, xd->plane[0].dst.stride, BLOCK_SIZE_MB16X16); vp9_transform_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sby_4x4(xd, BLOCK_SIZE_MB16X16); vp9_recon_sby(xd, BLOCK_SIZE_MB16X16); }