/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "findnearmv.h" #include "vp9/common/sadmxn.h" #include "vp9/common/subpelvar.h" #include const unsigned char vp9_mbsplit_offset[4][16] = { { 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} }; static void lower_mv_precision(int_mv *mv, int usehp) { if (!usehp || !vp9_use_nmv_hp(&mv->as_mv)) { if (mv->as_mv.row & 1) mv->as_mv.row += (mv->as_mv.row > 0 ? -1 : 1); if (mv->as_mv.col & 1) mv->as_mv.col += (mv->as_mv.col > 0 ? -1 : 1); } } /* Predict motion vectors using those from already-decoded nearby blocks. Note that we only consider one 4x4 subblock from each candidate 16x16 macroblock. */ void vp9_find_near_mvs ( MACROBLOCKD *xd, const MODE_INFO *here, const MODE_INFO *lf_here, int_mv *nearest, int_mv *nearby, int_mv *best_mv, int cnt[4], int refframe, int *ref_frame_sign_bias) { const MODE_INFO *above = here - xd->mode_info_stride; const MODE_INFO *left = here - 1; const MODE_INFO *aboveleft = above - 1; const MODE_INFO *third = NULL; int_mv near_mvs[4]; int_mv *mv = near_mvs; int *cntx = cnt; enum {CNT_INTRA, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV}; /* Zero accumulators */ mv[0].as_int = mv[1].as_int = mv[2].as_int = 0; cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0; /* Process above */ if (above->mbmi.ref_frame != INTRA_FRAME) { if (above->mbmi.mv[0].as_int) { ++ mv; mv->as_int = above->mbmi.mv[0].as_int; mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, mv, ref_frame_sign_bias); ++cntx; } *cntx += 2; } /* Process left */ if (left->mbmi.ref_frame != INTRA_FRAME) { if (left->mbmi.mv[0].as_int) { int_mv this_mv; this_mv.as_int = left->mbmi.mv[0].as_int; mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, &this_mv, ref_frame_sign_bias); if (this_mv.as_int != mv->as_int) { ++ mv; mv->as_int = this_mv.as_int; ++ cntx; } *cntx += 2; } else cnt[CNT_INTRA] += 2; } /* Process above left or the one from last frame */ if (aboveleft->mbmi.ref_frame != INTRA_FRAME || (lf_here->mbmi.ref_frame == LAST_FRAME && refframe == LAST_FRAME)) { if (aboveleft->mbmi.mv[0].as_int) { third = aboveleft; } else if (lf_here->mbmi.mv[0].as_int) { third = lf_here; } if (third) { int_mv this_mv; this_mv.as_int = third->mbmi.mv[0].as_int; mv_bias(ref_frame_sign_bias[third->mbmi.ref_frame], refframe, &this_mv, ref_frame_sign_bias); if (this_mv.as_int != mv->as_int) { ++ mv; mv->as_int = this_mv.as_int; ++ cntx; } *cntx += 1; } else cnt[CNT_INTRA] += 1; } /* If we have three distinct MV's ... */ if (cnt[CNT_SPLITMV]) { /* See if the third MV can be merged with NEAREST */ if (mv->as_int == near_mvs[CNT_NEAREST].as_int) cnt[CNT_NEAREST] += 1; } cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV) + (left->mbmi.mode == SPLITMV)) * 2 + ( lf_here->mbmi.mode == SPLITMV || aboveleft->mbmi.mode == SPLITMV); /* Swap near and nearest if necessary */ if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) { int tmp; tmp = cnt[CNT_NEAREST]; cnt[CNT_NEAREST] = cnt[CNT_NEAR]; cnt[CNT_NEAR] = tmp; tmp = near_mvs[CNT_NEAREST].as_int; near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int; near_mvs[CNT_NEAR].as_int = tmp; } /* Use near_mvs[0] to store the "best" MV */ if (cnt[CNT_NEAREST] >= cnt[CNT_INTRA]) near_mvs[CNT_INTRA] = near_mvs[CNT_NEAREST]; /* Set up return values */ best_mv->as_int = near_mvs[0].as_int; nearest->as_int = near_mvs[CNT_NEAREST].as_int; nearby->as_int = near_mvs[CNT_NEAR].as_int; /* Make sure that the 1/8th bits of the Mvs are zero if high_precision * is not being used, by truncating the last bit towards 0 */ lower_mv_precision(best_mv, xd->allow_high_precision_mv); lower_mv_precision(nearest, xd->allow_high_precision_mv); lower_mv_precision(nearby, xd->allow_high_precision_mv); // TODO: move clamp outside findnearmv clamp_mv2(nearest, xd); clamp_mv2(nearby, xd); clamp_mv2(best_mv, xd); } vp9_prob *vp9_mv_ref_probs(VP9_COMMON *pc, vp9_prob p[VP9_MVREFS - 1], const int near_mv_ref_ct[4]) { p[0] = pc->fc.vp9_mode_contexts[near_mv_ref_ct[0]][0]; p[1] = pc->fc.vp9_mode_contexts[near_mv_ref_ct[1]][1]; p[2] = pc->fc.vp9_mode_contexts[near_mv_ref_ct[2]][2]; p[3] = pc->fc.vp9_mode_contexts[near_mv_ref_ct[3]][3]; return p; } #define SP(x) (((x) & 7) << 1) unsigned int vp9_sad3x16_c( const unsigned char *src_ptr, int src_stride, const unsigned char *ref_ptr, int ref_stride, int max_sad) { return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, 3, 16); } unsigned int vp9_sad16x3_c( const unsigned char *src_ptr, int src_stride, const unsigned char *ref_ptr, int ref_stride, int max_sad) { return sad_mx_n_c(src_ptr, src_stride, ref_ptr, ref_stride, 16, 3); } #if CONFIG_SUBPELREFMV unsigned int vp9_variance2x16_c(const unsigned char *src_ptr, const int source_stride, const unsigned char *ref_ptr, const int recon_stride, unsigned int *sse) { unsigned int var; int avg; variance(src_ptr, source_stride, ref_ptr, recon_stride, 2, 16, &var, &avg); *sse = var; return (var - (((unsigned int)avg * avg) >> 5)); } unsigned int vp9_variance16x2_c(const unsigned char *src_ptr, const int source_stride, const unsigned char *ref_ptr, const int recon_stride, unsigned int *sse) { unsigned int var; int avg; variance(src_ptr, source_stride, ref_ptr, recon_stride, 16, 2, &var, &avg); *sse = var; return (var - (((unsigned int)avg * avg) >> 5)); } unsigned int vp9_sub_pixel_variance16x2_c(const unsigned char *src_ptr, const int src_pixels_per_line, const int xoffset, const int yoffset, const unsigned char *dst_ptr, const int dst_pixels_per_line, unsigned int *sse) { unsigned short FData3[16 * 3]; // Temp data bufffer used in filtering unsigned char temp2[20 * 16]; const short *HFilter, *VFilter; HFilter = vp9_bilinear_filters[xoffset]; VFilter = vp9_bilinear_filters[yoffset]; var_filter_block2d_bil_first_pass(src_ptr, FData3, src_pixels_per_line, 1, 3, 16, HFilter); var_filter_block2d_bil_second_pass(FData3, temp2, 16, 16, 2, 16, VFilter); return vp9_variance16x2_c(temp2, 16, dst_ptr, dst_pixels_per_line, sse); } unsigned int vp9_sub_pixel_variance2x16_c(const unsigned char *src_ptr, const int src_pixels_per_line, const int xoffset, const int yoffset, const unsigned char *dst_ptr, const int dst_pixels_per_line, unsigned int *sse) { unsigned short FData3[2 * 17]; // Temp data bufffer used in filtering unsigned char temp2[2 * 16]; const short *HFilter, *VFilter; HFilter = vp9_bilinear_filters[xoffset]; VFilter = vp9_bilinear_filters[yoffset]; var_filter_block2d_bil_first_pass(src_ptr, FData3, src_pixels_per_line, 1, 17, 2, HFilter); var_filter_block2d_bil_second_pass(FData3, temp2, 2, 2, 16, 2, VFilter); return vp9_variance2x16_c(temp2, 2, dst_ptr, dst_pixels_per_line, sse); } #endif /* check a list of motion vectors by sad score using a number rows of pixels * above and a number cols of pixels in the left to select the one with best * score to use as ref motion vector */ void vp9_find_best_ref_mvs(MACROBLOCKD *xd, unsigned char *ref_y_buffer, int ref_y_stride, int_mv *mvlist, int_mv *best_mv, int_mv *nearest, int_mv *near) { int i, j; unsigned char *above_src; unsigned char *left_src; unsigned char *above_ref; unsigned char *left_ref; int score; int sse; int ref_scores[MAX_MV_REFS] = {0}; int_mv sorted_mvs[MAX_MV_REFS]; int zero_seen = FALSE; // Default all to 0,0 if nothing else available best_mv->as_int = nearest->as_int = near->as_int = 0; vpx_memset(sorted_mvs, 0, sizeof(sorted_mvs)); #if CONFIG_SUBPELREFMV above_src = xd->dst.y_buffer - xd->dst.y_stride * 2; left_src = xd->dst.y_buffer - 2; above_ref = ref_y_buffer - ref_y_stride * 2; left_ref = ref_y_buffer - 2; #else above_src = xd->dst.y_buffer - xd->dst.y_stride * 3; left_src = xd->dst.y_buffer - 3; above_ref = ref_y_buffer - ref_y_stride * 3; left_ref = ref_y_buffer - 3; #endif //for(i = 0; i < MAX_MV_REFS; ++i) { // Limit search to the predicted best 4 for(i = 0; i < 4; ++i) { int_mv this_mv; int offset = 0; int row_offset, col_offset; this_mv.as_int = mvlist[i].as_int; // If we see a 0,0 vector for a second time we have reached the end of // the list of valid candidate vectors. if (!this_mv.as_int && zero_seen) break; zero_seen = zero_seen || !this_mv.as_int; clamp_mv(&this_mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN + 24, xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, xd->mb_to_top_edge - LEFT_TOP_MARGIN + 24, xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); #if CONFIG_SUBPELREFMV row_offset = this_mv.as_mv.row >> 3; col_offset = this_mv.as_mv.col >> 3; offset = ref_y_stride * row_offset + col_offset; score = 0; if (xd->up_available) { vp9_sub_pixel_variance16x2_c(above_ref + offset, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), above_src, xd->dst.y_stride, &sse); score += sse; } if (xd->left_available) { vp9_sub_pixel_variance2x16_c(left_ref + offset, ref_y_stride, SP(this_mv.as_mv.col), SP(this_mv.as_mv.row), left_src, xd->dst.y_stride, &sse); score += sse; } #else row_offset = (this_mv.as_mv.row > 0) ? ((this_mv.as_mv.row + 3) >> 3):((this_mv.as_mv.row + 4) >> 3); col_offset = (this_mv.as_mv.col > 0) ? ((this_mv.as_mv.col + 3) >> 3):((this_mv.as_mv.col + 4) >> 3); offset = ref_y_stride * row_offset + col_offset; score = 0; if (xd->up_available) { score += vp9_sad16x3(above_src, xd->dst.y_stride, above_ref + offset, ref_y_stride, INT_MAX); } if (xd->left_available) { score += vp9_sad3x16(left_src, xd->dst.y_stride, left_ref + offset, ref_y_stride, INT_MAX); } #endif // Add the entry to our list and then resort the list on score. ref_scores[i] = score; sorted_mvs[i].as_int = this_mv.as_int; j = i; while (j > 0) { if (ref_scores[j] < ref_scores[j-1]) { ref_scores[j] = ref_scores[j-1]; sorted_mvs[j].as_int = sorted_mvs[j-1].as_int; ref_scores[j-1] = score; sorted_mvs[j-1].as_int = this_mv.as_int; j--; } else break; } } // Make sure all the candidates are properly clamped etc for (i = 0; i < 4; ++i) { lower_mv_precision(&sorted_mvs[i], xd->allow_high_precision_mv); clamp_mv2(&sorted_mvs[i], xd); } // Set the best mv to the first entry in the sorted list best_mv->as_int = sorted_mvs[0].as_int; // Provided that there are non zero vectors available there will not // be more than one 0,0 entry in the sorted list. // The best ref mv is always set to the first entry (which gave the best // results. The nearest is set to the first non zero vector if available and // near to the second non zero vector if available. // We do not use 0,0 as a nearest or near as 0,0 has its own mode. if ( sorted_mvs[0].as_int ) { nearest->as_int = sorted_mvs[0].as_int; if ( sorted_mvs[1].as_int ) near->as_int = sorted_mvs[1].as_int; else near->as_int = sorted_mvs[2].as_int; } else { nearest->as_int = sorted_mvs[1].as_int; near->as_int = sorted_mvs[2].as_int; } // Copy back the re-ordered mv list vpx_memcpy(mvlist, sorted_mvs, sizeof(sorted_mvs)); }