/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "vpx_config.h" #include "vpx/vpx_integer.h" typedef enum { OUTPUT_FMT_PLAIN, OUTPUT_FMT_RVDS, OUTPUT_FMT_GAS, } output_fmt_t; int log_msg(const char *fmt, ...) { int res; va_list ap; va_start(ap, fmt); res = vfprintf(stderr, fmt, ap); va_end(ap); return res; } #if defined(__GNUC__) && __GNUC__ #if defined(__MACH__) #include #include int parse_macho(uint8_t *base_buf, size_t sz) { int i, j; struct mach_header header; uint8_t *buf = base_buf; int base_data_section = 0; int bits = 0; /* We can read in mach_header for 32 and 64 bit architectures * because it's identical to mach_header_64 except for the last * element (uint32_t reserved), which we don't use. Then, when * we know which architecture we're looking at, increment buf * appropriately. */ memcpy(&header, buf, sizeof(struct mach_header)); if (header.magic == MH_MAGIC) { if (header.cputype == CPU_TYPE_ARM || header.cputype == CPU_TYPE_X86) { bits = 32; buf += sizeof(struct mach_header); } else { log_msg("Bad cputype for object file. Currently only tested for CPU_TYPE_[ARM|X86].\n"); goto bail; } } else if (header.magic == MH_MAGIC_64) { if (header.cputype == CPU_TYPE_X86_64) { bits = 64; buf += sizeof(struct mach_header_64); } else { log_msg("Bad cputype for object file. Currently only tested for CPU_TYPE_X86_64.\n"); goto bail; } } else { log_msg("Bad magic number for object file. 0x%x or 0x%x expected, 0x%x found.\n", MH_MAGIC, MH_MAGIC_64, header.magic); goto bail; } if (header.filetype != MH_OBJECT) { log_msg("Bad filetype for object file. Currently only tested for MH_OBJECT.\n"); goto bail; } for (i = 0; i < header.ncmds; i++) { struct load_command lc; memcpy(&lc, buf, sizeof(struct load_command)); if (lc.cmd == LC_SEGMENT) { uint8_t *seg_buf = buf; struct section s; struct segment_command seg_c; memcpy(&seg_c, seg_buf, sizeof(struct segment_command)); seg_buf += sizeof(struct segment_command); /* Although each section is given it's own offset, nlist.n_value * references the offset of the first section. This isn't * apparent without debug information because the offset of the * data section is the same as the first section. However, with * debug sections mixed in, the offset of the debug section * increases but n_value still references the first section. */ if (seg_c.nsects < 1) { log_msg("Not enough sections\n"); goto bail; } memcpy(&s, seg_buf, sizeof(struct section)); base_data_section = s.offset; } else if (lc.cmd == LC_SEGMENT_64) { uint8_t *seg_buf = buf; struct section_64 s; struct segment_command_64 seg_c; memcpy(&seg_c, seg_buf, sizeof(struct segment_command_64)); seg_buf += sizeof(struct segment_command_64); /* Explanation in LG_SEGMENT */ if (seg_c.nsects < 1) { log_msg("Not enough sections\n"); goto bail; } memcpy(&s, seg_buf, sizeof(struct section_64)); base_data_section = s.offset; } else if (lc.cmd == LC_SYMTAB) { if (base_data_section != 0) { struct symtab_command sc; uint8_t *sym_buf = base_buf; uint8_t *str_buf = base_buf; memcpy(&sc, buf, sizeof(struct symtab_command)); if (sc.cmdsize != sizeof(struct symtab_command)) { log_msg("Can't find symbol table!\n"); goto bail; } sym_buf += sc.symoff; str_buf += sc.stroff; for (j = 0; j < sc.nsyms; j++) { /* Location of string is cacluated each time from the * start of the string buffer. On darwin the symbols * are prefixed by "_", so we bump the pointer by 1. * The target value is defined as an int in asm_*_offsets.c, * which is 4 bytes on all targets we currently use. */ if (bits == 32) { struct nlist nl; int val; memcpy(&nl, sym_buf, sizeof(struct nlist)); sym_buf += sizeof(struct nlist); memcpy(&val, base_buf + base_data_section + nl.n_value, sizeof(val)); printf("%-40s EQU %5d\n", str_buf + nl.n_un.n_strx + 1, val); } else { /* if (bits == 64) */ struct nlist_64 nl; int val; memcpy(&nl, sym_buf, sizeof(struct nlist_64)); sym_buf += sizeof(struct nlist_64); memcpy(&val, base_buf + base_data_section + nl.n_value, sizeof(val)); printf("%-40s EQU %5d\n", str_buf + nl.n_un.n_strx + 1, val); } } } } buf += lc.cmdsize; } return 0; bail: return 1; } #elif defined(__ELF__) #include "elf.h" #define COPY_STRUCT(dst, buf, ofst, sz) do {\ if(ofst + sizeof((*(dst))) > sz) goto bail;\ memcpy(dst, buf+ofst, sizeof((*(dst))));\ } while(0) #define ENDIAN_ASSIGN(val, memb) do {\ if(!elf->le_data) {log_msg("Big Endian data not supported yet!\n");goto bail;}\ (val) = (memb);\ } while(0) #define ENDIAN_ASSIGN_IN_PLACE(memb) do {\ ENDIAN_ASSIGN(memb, memb);\ } while(0) typedef struct { uint8_t *buf; /* Buffer containing ELF data */ size_t sz; /* Buffer size */ int le_data; /* Data is little-endian */ unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */ int bits; /* 32 or 64 */ Elf32_Ehdr hdr32; Elf64_Ehdr hdr64; } elf_obj_t; int parse_elf_header(elf_obj_t *elf) { int res; /* Verify ELF Magic numbers */ COPY_STRUCT(&elf->e_ident, elf->buf, 0, elf->sz); res = elf->e_ident[EI_MAG0] == ELFMAG0; res &= elf->e_ident[EI_MAG1] == ELFMAG1; res &= elf->e_ident[EI_MAG2] == ELFMAG2; res &= elf->e_ident[EI_MAG3] == ELFMAG3; res &= elf->e_ident[EI_CLASS] == ELFCLASS32 || elf->e_ident[EI_CLASS] == ELFCLASS64; res &= elf->e_ident[EI_DATA] == ELFDATA2LSB; if (!res) goto bail; elf->le_data = elf->e_ident[EI_DATA] == ELFDATA2LSB; /* Read in relevant values */ if (elf->e_ident[EI_CLASS] == ELFCLASS32) { elf->bits = 32; COPY_STRUCT(&elf->hdr32, elf->buf, 0, elf->sz); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_type); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_machine); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_version); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_entry); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_phoff); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_shoff); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_flags); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_ehsize); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_phentsize); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_phnum); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_shentsize); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_shnum); ENDIAN_ASSIGN_IN_PLACE(elf->hdr32.e_shstrndx); } else { /* if (elf->e_ident[EI_CLASS] == ELFCLASS64) */ elf->bits = 64; COPY_STRUCT(&elf->hdr64, elf->buf, 0, elf->sz); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_type); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_machine); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_version); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_entry); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_phoff); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_shoff); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_flags); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_ehsize); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_phentsize); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_phnum); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_shentsize); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_shnum); ENDIAN_ASSIGN_IN_PLACE(elf->hdr64.e_shstrndx); } return 0; bail: log_msg("Failed to parse ELF file header"); return 1; } int parse_elf_section(elf_obj_t *elf, int idx, Elf32_Shdr *hdr32, Elf64_Shdr *hdr64) { if (hdr32) { if (idx >= elf->hdr32.e_shnum) goto bail; COPY_STRUCT(hdr32, elf->buf, elf->hdr32.e_shoff + idx * elf->hdr32.e_shentsize, elf->sz); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_name); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_type); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_flags); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_addr); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_offset); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_size); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_link); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_info); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_addralign); ENDIAN_ASSIGN_IN_PLACE(hdr32->sh_entsize); } else { /* if (hdr64) */ if (idx >= elf->hdr64.e_shnum) goto bail; COPY_STRUCT(hdr64, elf->buf, elf->hdr64.e_shoff + idx * elf->hdr64.e_shentsize, elf->sz); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_name); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_type); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_flags); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_addr); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_offset); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_size); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_link); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_info); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_addralign); ENDIAN_ASSIGN_IN_PLACE(hdr64->sh_entsize); } return 0; bail: return 1; } char *parse_elf_string_table(elf_obj_t *elf, int s_idx, int idx) { if (elf->bits == 32) { Elf32_Shdr shdr; if (parse_elf_section(elf, s_idx, &shdr, NULL)) { log_msg("Failed to parse ELF string table: section %d, index %d\n", s_idx, idx); return ""; } return (char *)(elf->buf + shdr.sh_offset + idx); } else { /* if (elf->bits == 64) */ Elf64_Shdr shdr; if (parse_elf_section(elf, s_idx, NULL, &shdr)) { log_msg("Failed to parse ELF string table: section %d, index %d\n", s_idx, idx); return ""; } return (char *)(elf->buf + shdr.sh_offset + idx); } } int parse_elf_symbol(elf_obj_t *elf, unsigned int ofst, Elf32_Sym *sym32, Elf64_Sym *sym64) { if (sym32) { COPY_STRUCT(sym32, elf->buf, ofst, elf->sz); ENDIAN_ASSIGN_IN_PLACE(sym32->st_name); ENDIAN_ASSIGN_IN_PLACE(sym32->st_value); ENDIAN_ASSIGN_IN_PLACE(sym32->st_size); ENDIAN_ASSIGN_IN_PLACE(sym32->st_info); ENDIAN_ASSIGN_IN_PLACE(sym32->st_other); ENDIAN_ASSIGN_IN_PLACE(sym32->st_shndx); } else { /* if (sym64) */ COPY_STRUCT(sym64, elf->buf, ofst, elf->sz); ENDIAN_ASSIGN_IN_PLACE(sym64->st_name); ENDIAN_ASSIGN_IN_PLACE(sym64->st_value); ENDIAN_ASSIGN_IN_PLACE(sym64->st_size); ENDIAN_ASSIGN_IN_PLACE(sym64->st_info); ENDIAN_ASSIGN_IN_PLACE(sym64->st_other); ENDIAN_ASSIGN_IN_PLACE(sym64->st_shndx); } return 0; bail: return 1; } int parse_elf(uint8_t *buf, size_t sz, output_fmt_t mode) { elf_obj_t elf; unsigned int ofst; int i; Elf32_Off strtab_off32; Elf64_Off strtab_off64; /* save String Table offset for later use */ memset(&elf, 0, sizeof(elf)); elf.buf = buf; elf.sz = sz; /* Parse Header */ if (parse_elf_header(&elf)) goto bail; if (elf.bits == 32) { Elf32_Shdr shdr; for (i = 0; i < elf.hdr32.e_shnum; i++) { parse_elf_section(&elf, i, &shdr, NULL); if (shdr.sh_type == SHT_STRTAB) { char strtsb_name[128]; strcpy(strtsb_name, (char *)(elf.buf + shdr.sh_offset + shdr.sh_name)); if (!(strcmp(strtsb_name, ".shstrtab"))) { /* log_msg("found section: %s\n", strtsb_name); */ strtab_off32 = shdr.sh_offset; break; } } } } else { /* if (elf.bits == 64) */ Elf64_Shdr shdr; for (i = 0; i < elf.hdr64.e_shnum; i++) { parse_elf_section(&elf, i, NULL, &shdr); if (shdr.sh_type == SHT_STRTAB) { char strtsb_name[128]; strcpy(strtsb_name, (char *)(elf.buf + shdr.sh_offset + shdr.sh_name)); if (!(strcmp(strtsb_name, ".shstrtab"))) { /* log_msg("found section: %s\n", strtsb_name); */ strtab_off64 = shdr.sh_offset; break; } } } } /* Parse all Symbol Tables */ if (elf.bits == 32) { Elf32_Shdr shdr; for (i = 0; i < elf.hdr32.e_shnum; i++) { parse_elf_section(&elf, i, &shdr, NULL); if (shdr.sh_type == SHT_SYMTAB) { for (ofst = shdr.sh_offset; ofst < shdr.sh_offset + shdr.sh_size; ofst += shdr.sh_entsize) { Elf32_Sym sym; parse_elf_symbol(&elf, ofst, &sym, NULL); /* For all OBJECTS (data objects), extract the value from the * proper data segment. */ /* if (ELF32_ST_TYPE(sym.st_info) == STT_OBJECT && sym.st_name) log_msg("found data object %s\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name)); */ if (ELF32_ST_TYPE(sym.st_info) == STT_OBJECT && sym.st_size == 4) { Elf32_Shdr dhdr; int val = 0; char section_name[128]; parse_elf_section(&elf, sym.st_shndx, &dhdr, NULL); /* For explanition - refer to _MSC_VER version of code */ strcpy(section_name, (char *)(elf.buf + strtab_off32 + dhdr.sh_name)); /* log_msg("Section_name: %s, Section_type: %d\n", section_name, dhdr.sh_type); */ if (strcmp(section_name, ".bss")) { if (sizeof(val) != sym.st_size) { /* The target value is declared as an int in * asm_*_offsets.c, which is 4 bytes on all * targets we currently use. Complain loudly if * this is not true. */ log_msg("Symbol size is wrong\n"); goto bail; } memcpy(&val, elf.buf + dhdr.sh_offset + sym.st_value, sym.st_size); } if (!elf.le_data) { log_msg("Big Endian data not supported yet!\n"); goto bail; } switch (mode) { case OUTPUT_FMT_RVDS: printf("%-40s EQU %5d\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name), val); break; case OUTPUT_FMT_GAS: printf(".equ %-40s, %5d\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name), val); break; default: printf("%s = %d\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name), val); } } } } } } else { /* if (elf.bits == 64) */ Elf64_Shdr shdr; for (i = 0; i < elf.hdr64.e_shnum; i++) { parse_elf_section(&elf, i, NULL, &shdr); if (shdr.sh_type == SHT_SYMTAB) { for (ofst = shdr.sh_offset; ofst < shdr.sh_offset + shdr.sh_size; ofst += shdr.sh_entsize) { Elf64_Sym sym; parse_elf_symbol(&elf, ofst, NULL, &sym); /* For all OBJECTS (data objects), extract the value from the * proper data segment. */ /* if (ELF64_ST_TYPE(sym.st_info) == STT_OBJECT && sym.st_name) log_msg("found data object %s\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name)); */ if (ELF64_ST_TYPE(sym.st_info) == STT_OBJECT && sym.st_size == 4) { Elf64_Shdr dhdr; int val = 0; char section_name[128]; parse_elf_section(&elf, sym.st_shndx, NULL, &dhdr); /* For explanition - refer to _MSC_VER version of code */ strcpy(section_name, (char *)(elf.buf + strtab_off64 + dhdr.sh_name)); /* log_msg("Section_name: %s, Section_type: %d\n", section_name, dhdr.sh_type); */ if ((strcmp(section_name, ".bss"))) { if (sizeof(val) != sym.st_size) { /* The target value is declared as an int in * asm_*_offsets.c, which is 4 bytes on all * targets we currently use. Complain loudly if * this is not true. */ log_msg("Symbol size is wrong\n"); goto bail; } memcpy(&val, elf.buf + dhdr.sh_offset + sym.st_value, sym.st_size); } if (!elf.le_data) { log_msg("Big Endian data not supported yet!\n"); goto bail; } switch (mode) { case OUTPUT_FMT_RVDS: printf("%-40s EQU %5d\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name), val); break; case OUTPUT_FMT_GAS: printf(".equ %-40s, %5d\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name), val); break; default: printf("%s = %d\n", parse_elf_string_table(&elf, shdr.sh_link, sym.st_name), val); } } } } } } if (mode == OUTPUT_FMT_RVDS) printf(" END\n"); return 0; bail: log_msg("Parse error: File does not appear to be valid ELF32 or ELF64\n"); return 1; } #endif #endif /* defined(__GNUC__) && __GNUC__ */ #if defined(_MSC_VER) || defined(__MINGW32__) || defined(__CYGWIN__) /* See "Microsoft Portable Executable and Common Object File Format Specification" for reference. */ #define get_le32(x) ((*(x)) | (*(x+1)) << 8 |(*(x+2)) << 16 | (*(x+3)) << 24 ) #define get_le16(x) ((*(x)) | (*(x+1)) << 8) int parse_coff(uint8_t *buf, size_t sz) { unsigned int nsections, symtab_ptr, symtab_sz, strtab_ptr; unsigned int sectionrawdata_ptr; unsigned int i; uint8_t *ptr; uint32_t symoffset; char **sectionlist; // this array holds all section names in their correct order. // it is used to check if the symbol is in .bss or .data section. nsections = get_le16(buf + 2); symtab_ptr = get_le32(buf + 8); symtab_sz = get_le32(buf + 12); strtab_ptr = symtab_ptr + symtab_sz * 18; if (nsections > 96) { log_msg("Too many sections\n"); return 1; } sectionlist = malloc(nsections * sizeof(sectionlist)); if (sectionlist == NULL) { log_msg("Allocating first level of section list failed\n"); return 1; } // log_msg("COFF: Found %u symbols in %u sections.\n", symtab_sz, nsections); /* The size of optional header is always zero for an obj file. So, the section header follows the file header immediately. */ ptr = buf + 20; // section header for (i = 0; i < nsections; i++) { char sectionname[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; strncpy(sectionname, ptr, 8); // log_msg("COFF: Parsing section %s\n",sectionname); sectionlist[i] = malloc(strlen(sectionname) + 1); if (sectionlist[i] == NULL) { log_msg("Allocating storage for %s failed\n", sectionname); goto bail; } strcpy(sectionlist[i], sectionname); if (!strcmp(sectionname, ".data")) sectionrawdata_ptr = get_le32(ptr + 20); ptr += 40; } // log_msg("COFF: Symbol table at offset %u\n", symtab_ptr); // log_msg("COFF: raw data pointer ofset for section .data is %u\n", sectionrawdata_ptr); /* The compiler puts the data with non-zero offset in .data section, but puts the data with zero offset in .bss section. So, if the data in in .bss section, set offset=0. Note from Wiki: In an object module compiled from C, the bss section contains the local variables (but not functions) that were declared with the static keyword, except for those with non-zero initial values. (In C, static variables are initialized to zero by default.) It also contains the non-local (both extern and static) variables that are also initialized to zero (either explicitly or by default). */ // move to symbol table /* COFF symbol table: offset field 0 Name(*) 8 Value 12 SectionNumber 14 Type 16 StorageClass 17 NumberOfAuxSymbols */ ptr = buf + symtab_ptr; for (i = 0; i < symtab_sz; i++) { int16_t section = get_le16(ptr + 12); // section number if (section > 0 && ptr[16] == 2) { // if(section > 0 && ptr[16] == 3 && get_le32(ptr+8)) { if (get_le32(ptr)) { char name[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; strncpy(name, ptr, 8); // log_msg("COFF: Parsing symbol %s\n",name); /* The 64bit Windows compiler doesn't prefix with an _. * Check what's there, and bump if necessary */ if (name[0] == '_') printf("%-40s EQU ", name + 1); else printf("%-40s EQU ", name); } else { // log_msg("COFF: Parsing symbol %s\n", // buf + strtab_ptr + get_le32(ptr+4)); if ((buf + strtab_ptr + get_le32(ptr + 4))[0] == '_') printf("%-40s EQU ", buf + strtab_ptr + get_le32(ptr + 4) + 1); else printf("%-40s EQU ", buf + strtab_ptr + get_le32(ptr + 4)); } if (!(strcmp(sectionlist[section - 1], ".bss"))) { symoffset = 0; } else { symoffset = get_le32(buf + sectionrawdata_ptr + get_le32(ptr + 8)); } // log_msg(" Section: %d\n",section); // log_msg(" Class: %d\n",ptr[16]); // log_msg(" Address: %u\n",get_le32(ptr+8)); // log_msg(" Offset: %u\n", symoffset); printf("%5d\n", symoffset); } ptr += 18; } printf(" END\n"); for (i = 0; i < nsections; i++) { free(sectionlist[i]); } free(sectionlist); return 0; bail: for (i = 0; i < nsections; i++) { free(sectionlist[i]); } free(sectionlist); return 1; } #endif /* defined(_MSC_VER) || defined(__MINGW32__) || defined(__CYGWIN__) */ int main(int argc, char **argv) { output_fmt_t mode = OUTPUT_FMT_PLAIN; const char *f; uint8_t *file_buf; int res; FILE *fp; long int file_size; if (argc < 2 || argc > 3) { fprintf(stderr, "Usage: %s [output format] \n\n", argv[0]); fprintf(stderr, " \tobject file to parse\n"); fprintf(stderr, "Output Formats:\n"); fprintf(stderr, " gas - compatible with GNU assembler\n"); fprintf(stderr, " rvds - compatible with armasm\n"); goto bail; } f = argv[2]; if (!strcmp(argv[1], "rvds")) mode = OUTPUT_FMT_RVDS; else if (!strcmp(argv[1], "gas")) mode = OUTPUT_FMT_GAS; else f = argv[1]; fp = fopen(f, "rb"); if (!fp) { perror("Unable to open file"); goto bail; } if (fseek(fp, 0, SEEK_END)) { perror("stat"); goto bail; } file_size = ftell(fp); file_buf = malloc(file_size); if (!file_buf) { perror("malloc"); goto bail; } rewind(fp); if (fread(file_buf, sizeof(char), file_size, fp) != file_size) { perror("read"); goto bail; } if (fclose(fp)) { perror("close"); goto bail; } #if defined(__GNUC__) && __GNUC__ #if defined(__MACH__) res = parse_macho(file_buf, file_size); #elif defined(__ELF__) res = parse_elf(file_buf, file_size, mode); #endif #endif #if defined(_MSC_VER) || defined(__MINGW32__) || defined(__CYGWIN__) res = parse_coff(file_buf, file_size); #endif free(file_buf); if (!res) return EXIT_SUCCESS; bail: return EXIT_FAILURE; }