/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license and patent * grant that can be found in the LICENSE file in the root of the source * tree. All contributing project authors may be found in the AUTHORS * file in the root of the source tree. */ #include #include #include #include "vpx_mem/vpx_mem.h" #include "vpxscale_arbitrary.h" #define FIXED_POINT #define MAX_IN_WIDTH 800 #define MAX_IN_HEIGHT 600 #define MAX_OUT_WIDTH 800 #define MAX_OUT_HEIGHT 600 #define MAX_OUT_DIMENSION ((MAX_OUT_WIDTH > MAX_OUT_HEIGHT) ? \ MAX_OUT_WIDTH : MAX_OUT_HEIGHT) BICUBIC_SCALER_STRUCT g_b_scaler; static int g_first_time = 1; #pragma DATA_SECTION(g_hbuf, "VP6_HEAP") #pragma DATA_ALIGN (g_hbuf, 32); unsigned char g_hbuf[MAX_OUT_DIMENSION]; #pragma DATA_SECTION(g_hbuf_uv, "VP6_HEAP") #pragma DATA_ALIGN (g_hbuf_uv, 32); unsigned char g_hbuf_uv[MAX_OUT_DIMENSION]; #ifdef FIXED_POINT static int a_i = 0.6 * 65536; #else static float a = -0.6; #endif #ifdef FIXED_POINT // 3 2 // C0 = a*t - a*t // static INLINE short c0_fixed(unsigned int t) { // put t in Q16 notation unsigned short v1, v2; // Q16 v1 = (a_i * t) >> 16; v1 = (v1 * t) >> 16; // Q16 v2 = (a_i * t) >> 16; v2 = (v2 * t) >> 16; v2 = (v2 * t) >> 16; // Q12 return -((v1 - v2) >> 4); } // 2 3 // C1 = a*t + (3-2*a)*t - (2-a)*t // static INLINE short c1_fixed(unsigned int t) { unsigned short v1, v2, v3; unsigned short two, three; // Q16 v1 = (a_i * t) >> 16; // Q13 two = 2 << 13; v2 = two - (a_i >> 3); v2 = (v2 * t) >> 16; v2 = (v2 * t) >> 16; v2 = (v2 * t) >> 16; // Q13 three = 3 << 13; v3 = three - (2 * (a_i >> 3)); v3 = (v3 * t) >> 16; v3 = (v3 * t) >> 16; // Q12 return (((v1 >> 3) - v2 + v3) >> 1); } // 2 3 // C2 = 1 - (3-a)*t + (2-a)*t // static INLINE short c2_fixed(unsigned int t) { unsigned short v1, v2, v3; unsigned short two, three; // Q13 v1 = 1 << 13; // Q13 three = 3 << 13; v2 = three - (a_i >> 3); v2 = (v2 * t) >> 16; v2 = (v2 * t) >> 16; // Q13 two = 2 << 13; v3 = two - (a_i >> 3); v3 = (v3 * t) >> 16; v3 = (v3 * t) >> 16; v3 = (v3 * t) >> 16; // Q12 return (v1 - v2 + v3) >> 1; } // 2 3 // C3 = a*t - 2*a*t + a*t // static INLINE short c3_fixed(unsigned int t) { int v1, v2, v3; // Q16 v1 = (a_i * t) >> 16; // Q15 v2 = 2 * (a_i >> 1); v2 = (v2 * t) >> 16; v2 = (v2 * t) >> 16; // Q16 v3 = (a_i * t) >> 16; v3 = (v3 * t) >> 16; v3 = (v3 * t) >> 16; // Q12 return ((v2 - (v1 >> 1) - (v3 >> 1)) >> 3); } #else // 3 2 // C0 = -a*t + a*t // float C0(float t) { return -a * t * t * t + a * t * t; } // 2 3 // C1 = -a*t + (2*a+3)*t - (a+2)*t // float C1(float t) { return -(a + 2.0f) * t * t * t + (2.0f * a + 3.0f) * t * t - a * t; } // 2 3 // C2 = 1 - (a+3)*t + (a+2)*t // float C2(float t) { return (a + 2.0f) * t * t * t - (a + 3.0f) * t * t + 1.0f; } // 2 3 // C3 = a*t - 2*a*t + a*t // float C3(float t) { return a * t * t * t - 2.0f * a * t * t + a * t; } #endif #if 0 int compare_real_fixed() { int i, errors = 0; float mult = 1.0 / 10000.0; unsigned int fixed_mult = mult * 4294967296;//65536; unsigned int phase_offset_int; float phase_offset_real; for (i = 0; i < 10000; i++) { int fixed0, fixed1, fixed2, fixed3, fixed_total; int real0, real1, real2, real3, real_total; phase_offset_real = (float)i * mult; phase_offset_int = (fixed_mult * i) >> 16; // phase_offset_int = phase_offset_real * 65536; fixed0 = c0_fixed(phase_offset_int); real0 = C0(phase_offset_real) * 4096.0; if ((abs(fixed0) > (abs(real0) + 1)) || (abs(fixed0) < (abs(real0) - 1))) errors++; fixed1 = c1_fixed(phase_offset_int); real1 = C1(phase_offset_real) * 4096.0; if ((abs(fixed1) > (abs(real1) + 1)) || (abs(fixed1) < (abs(real1) - 1))) errors++; fixed2 = c2_fixed(phase_offset_int); real2 = C2(phase_offset_real) * 4096.0; if ((abs(fixed2) > (abs(real2) + 1)) || (abs(fixed2) < (abs(real2) - 1))) errors++; fixed3 = c3_fixed(phase_offset_int); real3 = C3(phase_offset_real) * 4096.0; if ((abs(fixed3) > (abs(real3) + 1)) || (abs(fixed3) < (abs(real3) - 1))) errors++; fixed_total = fixed0 + fixed1 + fixed2 + fixed3; real_total = real0 + real1 + real2 + real3; if ((fixed_total > 4097) || (fixed_total < 4094)) errors ++; if ((real_total > 4097) || (real_total < 4095)) errors ++; } return errors; } #endif // Find greatest common denominator between two integers. Method used here is // slow compared to Euclid's algorithm, but does not require any division. int gcd(int a, int b) { // Problem with this algorithm is that if a or b = 0 this function // will never exit. Don't want to return 0 because any computation // that was based on a common denoninator and tried to reduce by // dividing by 0 would fail. Best solution that could be thought of // would to be fail by returing a 1; if (a <= 0 || b <= 0) return 1; while (a != b) { if (b > a) b = b - a; else { int tmp = a;//swap large and a = b; //small b = tmp; } } return b; } void bicubic_coefficient_init() { vpx_memset(&g_b_scaler, 0, sizeof(BICUBIC_SCALER_STRUCT)); g_first_time = 0; } void bicubic_coefficient_destroy() { if (!g_first_time) { if (g_b_scaler.l_w) vpx_free(g_b_scaler.l_w); if (g_b_scaler.l_h) vpx_free(g_b_scaler.l_h); if (g_b_scaler.l_h_uv) vpx_free(g_b_scaler.l_h_uv); if (g_b_scaler.c_w) vpx_free(g_b_scaler.c_w); if (g_b_scaler.c_h) vpx_free(g_b_scaler.c_h); if (g_b_scaler.c_h_uv) vpx_free(g_b_scaler.c_h_uv); vpx_memset(&g_b_scaler, 0, sizeof(BICUBIC_SCALER_STRUCT)); } } // Create the coeffients that will be used for the cubic interpolation. // Because scaling does not have to be equal in the vertical and horizontal // regimes the phase offsets will be different. There are 4 coefficents // for each point, two on each side. The layout is that there are the // 4 coefficents for each phase in the array and then the next phase. int bicubic_coefficient_setup(int in_width, int in_height, int out_width, int out_height) { int i; #ifdef FIXED_POINT int phase_offset_int; unsigned int fixed_mult; int product_val = 0; #else float phase_offset; #endif int gcd_w, gcd_h, gcd_h_uv, d_w, d_h, d_h_uv; if (g_first_time) bicubic_coefficient_init(); // check to see if the coefficents have already been set up correctly if ((in_width == g_b_scaler.in_width) && (in_height == g_b_scaler.in_height) && (out_width == g_b_scaler.out_width) && (out_height == g_b_scaler.out_height)) return 0; g_b_scaler.in_width = in_width; g_b_scaler.in_height = in_height; g_b_scaler.out_width = out_width; g_b_scaler.out_height = out_height; // Don't want to allow crazy scaling, just try and prevent a catastrophic // failure here. Want to fail after setting the member functions so if // if the scaler is called the member functions will not scale. if (out_width <= 0 || out_height <= 0) return -1; // reduce in/out width and height ratios using the gcd gcd_w = gcd(out_width, in_width); gcd_h = gcd(out_height, in_height); gcd_h_uv = gcd(out_height, in_height / 2); // the numerator width and height are to be saved in // globals so they can be used during the scaling process // without having to be recalculated. g_b_scaler.nw = out_width / gcd_w; d_w = in_width / gcd_w; g_b_scaler.nh = out_height / gcd_h; d_h = in_height / gcd_h; g_b_scaler.nh_uv = out_height / gcd_h_uv; d_h_uv = (in_height / 2) / gcd_h_uv; // allocate memory for the coefficents if (g_b_scaler.l_w) vpx_free(g_b_scaler.l_w); if (g_b_scaler.l_h) vpx_free(g_b_scaler.l_h); if (g_b_scaler.l_h_uv) vpx_free(g_b_scaler.l_h_uv); g_b_scaler.l_w = (short *)vpx_memalign(32, out_width * 2); g_b_scaler.l_h = (short *)vpx_memalign(32, out_height * 2); g_b_scaler.l_h_uv = (short *)vpx_memalign(32, out_height * 2); if (g_b_scaler.c_w) vpx_free(g_b_scaler.c_w); if (g_b_scaler.c_h) vpx_free(g_b_scaler.c_h); if (g_b_scaler.c_h_uv) vpx_free(g_b_scaler.c_h_uv); g_b_scaler.c_w = (short *)vpx_memalign(32, g_b_scaler.nw * 4 * 2); g_b_scaler.c_h = (short *)vpx_memalign(32, g_b_scaler.nh * 4 * 2); g_b_scaler.c_h_uv = (short *)vpx_memalign(32, g_b_scaler.nh_uv * 4 * 2); g_b_scaler.hbuf = g_hbuf; g_b_scaler.hbuf_uv = g_hbuf_uv; // Set up polyphase filter taps. This needs to be done before // the scaling because of the floating point math required. The // coefficients are multiplied by 2^12 so that fixed point math // can be used in the main scaling loop. #ifdef FIXED_POINT fixed_mult = (1.0 / (float)g_b_scaler.nw) * 4294967296; product_val = 0; for (i = 0; i < g_b_scaler.nw; i++) { if (product_val > g_b_scaler.nw) product_val -= g_b_scaler.nw; phase_offset_int = (fixed_mult * product_val) >> 16; g_b_scaler.c_w[i*4] = c3_fixed(phase_offset_int); g_b_scaler.c_w[i*4+1] = c2_fixed(phase_offset_int); g_b_scaler.c_w[i*4+2] = c1_fixed(phase_offset_int); g_b_scaler.c_w[i*4+3] = c0_fixed(phase_offset_int); product_val += d_w; } fixed_mult = (1.0 / (float)g_b_scaler.nh) * 4294967296; product_val = 0; for (i = 0; i < g_b_scaler.nh; i++) { if (product_val > g_b_scaler.nh) product_val -= g_b_scaler.nh; phase_offset_int = (fixed_mult * product_val) >> 16; g_b_scaler.c_h[i*4] = c0_fixed(phase_offset_int); g_b_scaler.c_h[i*4+1] = c1_fixed(phase_offset_int); g_b_scaler.c_h[i*4+2] = c2_fixed(phase_offset_int); g_b_scaler.c_h[i*4+3] = c3_fixed(phase_offset_int); product_val += d_h; } fixed_mult = (1.0 / (float)g_b_scaler.nh_uv) * 4294967296; product_val = 0; for (i = 0; i < g_b_scaler.nh_uv; i++) { if (product_val > g_b_scaler.nh_uv) product_val -= g_b_scaler.nh_uv; phase_offset_int = (fixed_mult * product_val) >> 16; g_b_scaler.c_h_uv[i*4] = c0_fixed(phase_offset_int); g_b_scaler.c_h_uv[i*4+1] = c1_fixed(phase_offset_int); g_b_scaler.c_h_uv[i*4+2] = c2_fixed(phase_offset_int); g_b_scaler.c_h_uv[i*4+3] = c3_fixed(phase_offset_int); product_val += d_h_uv; } #else for (i = 0; i < g_nw; i++) { phase_offset = (float)((i * d_w) % g_nw) / (float)g_nw; g_c_w[i*4] = (C3(phase_offset) * 4096.0); g_c_w[i*4+1] = (C2(phase_offset) * 4096.0); g_c_w[i*4+2] = (C1(phase_offset) * 4096.0); g_c_w[i*4+3] = (C0(phase_offset) * 4096.0); } for (i = 0; i < g_nh; i++) { phase_offset = (float)((i * d_h) % g_nh) / (float)g_nh; g_c_h[i*4] = (C0(phase_offset) * 4096.0); g_c_h[i*4+1] = (C1(phase_offset) * 4096.0); g_c_h[i*4+2] = (C2(phase_offset) * 4096.0); g_c_h[i*4+3] = (C3(phase_offset) * 4096.0); } for (i = 0; i < g_nh_uv; i++) { phase_offset = (float)((i * d_h_uv) % g_nh_uv) / (float)g_nh_uv; g_c_h_uv[i*4] = (C0(phase_offset) * 4096.0); g_c_h_uv[i*4+1] = (C1(phase_offset) * 4096.0); g_c_h_uv[i*4+2] = (C2(phase_offset) * 4096.0); g_c_h_uv[i*4+3] = (C3(phase_offset) * 4096.0); } #endif // Create an array that corresponds input lines to output lines. // This doesn't require floating point math, but it does require // a division and because hardware division is not present that // is a call. for (i = 0; i < out_width; i++) { g_b_scaler.l_w[i] = (i * d_w) / g_b_scaler.nw; if ((g_b_scaler.l_w[i] + 2) <= in_width) g_b_scaler.max_usable_out_width = i; } for (i = 0; i < out_height + 1; i++) { g_b_scaler.l_h[i] = (i * d_h) / g_b_scaler.nh; g_b_scaler.l_h_uv[i] = (i * d_h_uv) / g_b_scaler.nh_uv; } return 0; } int bicubic_scale(int in_width, int in_height, int in_stride, int out_width, int out_height, int out_stride, unsigned char *input_image, unsigned char *output_image) { short *RESTRICT l_w, * RESTRICT l_h; short *RESTRICT c_w, * RESTRICT c_h; unsigned char *RESTRICT ip, * RESTRICT op; unsigned char *RESTRICT hbuf; int h, w, lw, lh; int temp_sum; int phase_offset_w, phase_offset_h; c_w = g_b_scaler.c_w; c_h = g_b_scaler.c_h; op = output_image; l_w = g_b_scaler.l_w; l_h = g_b_scaler.l_h; phase_offset_h = 0; for (h = 0; h < out_height; h++) { // select the row to work on lh = l_h[h]; ip = input_image + (in_stride * lh); // vp8_filter the row vertically into an temporary buffer. // If the phase offset == 0 then all the multiplication // is going to result in the output equalling the input. // So instead point the temporary buffer to the input. // Also handle the boundry condition of not being able to // filter that last lines. if (phase_offset_h && (lh < in_height - 2)) { hbuf = g_b_scaler.hbuf; for (w = 0; w < in_width; w++) { temp_sum = c_h[phase_offset_h*4+3] * ip[w - in_stride]; temp_sum += c_h[phase_offset_h*4+2] * ip[w]; temp_sum += c_h[phase_offset_h*4+1] * ip[w + in_stride]; temp_sum += c_h[phase_offset_h*4] * ip[w + 2*in_stride]; hbuf[w] = temp_sum >> 12; } } else hbuf = ip; // increase the phase offset for the next time around. if (++phase_offset_h >= g_b_scaler.nh) phase_offset_h = 0; // now filter and expand it horizontally into the final // output buffer phase_offset_w = 0; for (w = 0; w < out_width; w++) { // get the index to use to expand the image lw = l_w[w]; temp_sum = c_w[phase_offset_w*4] * hbuf[lw - 1]; temp_sum += c_w[phase_offset_w*4+1] * hbuf[lw]; temp_sum += c_w[phase_offset_w*4+2] * hbuf[lw + 1]; temp_sum += c_w[phase_offset_w*4+3] * hbuf[lw + 2]; temp_sum = temp_sum >> 12; if (++phase_offset_w >= g_b_scaler.nw) phase_offset_w = 0; // boundry conditions if ((lw + 2) >= in_width) temp_sum = hbuf[lw]; if (lw == 0) temp_sum = hbuf[0]; op[w] = temp_sum; } op += out_stride; } return 0; } void bicubic_scale_frame_reset() { g_b_scaler.out_width = 0; g_b_scaler.out_height = 0; } void bicubic_scale_frame(YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int new_width, int new_height) { dst->y_width = new_width; dst->y_height = new_height; dst->uv_width = new_width / 2; dst->uv_height = new_height / 2; dst->y_stride = dst->y_width; dst->uv_stride = dst->uv_width; bicubic_scale(src->y_width, src->y_height, src->y_stride, new_width, new_height, dst->y_stride, src->y_buffer, dst->y_buffer); bicubic_scale(src->uv_width, src->uv_height, src->uv_stride, new_width / 2, new_height / 2, dst->uv_stride, src->u_buffer, dst->u_buffer); bicubic_scale(src->uv_width, src->uv_height, src->uv_stride, new_width / 2, new_height / 2, dst->uv_stride, src->v_buffer, dst->v_buffer); }