/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vpx_scale_rtcd.h" #include "./vpx_config.h" #include "vpx/vpx_integer.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" void vp9_setup_interp_filters(MACROBLOCKD *xd, INTERPOLATIONFILTERTYPE mcomp_filter_type, VP9_COMMON *cm) { if (xd->mode_info_context) { MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; set_scale_factors(xd, mbmi->ref_frame[0] - 1, mbmi->ref_frame[1] - 1, cm->active_ref_scale); } switch (mcomp_filter_type) { case EIGHTTAP: case SWITCHABLE: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8; break; case EIGHTTAP_SMOOTH: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8lp; break; case EIGHTTAP_SHARP: xd->subpix.filter_x = xd->subpix.filter_y = vp9_sub_pel_filters_8s; break; case BILINEAR: xd->subpix.filter_x = xd->subpix.filter_y = vp9_bilinear_filters; break; } assert(((intptr_t)xd->subpix.filter_x & 0xff) == 0); } void vp9_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *scale, int w, int h, int ref, const struct subpix_fn_table *subpix, enum mv_precision precision) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row << 1, is_q4 ? src_mv->col : src_mv->col << 1 }; const MV32 mv = scale->scale_mv(&mv_q4, scale); const int subpel_x = mv.col & SUBPEL_MASK; const int subpel_y = mv.row & SUBPEL_MASK; src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); scale->predict[subpel_x != 0][subpel_y != 0][ref]( src, src_stride, dst, dst_stride, subpix->filter_x[subpel_x], scale->x_step_q4, subpix->filter_y[subpel_y], scale->y_step_q4, w, h); } static INLINE int round_mv_comp_q4(int value) { return (value < 0 ? value - 2 : value + 2) / 4; } static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) { MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row + mi->bmi[1].as_mv[idx].as_mv.row + mi->bmi[2].as_mv[idx].as_mv.row + mi->bmi[3].as_mv[idx].as_mv.row), round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col + mi->bmi[1].as_mv[idx].as_mv.col + mi->bmi[2].as_mv[idx].as_mv.col + mi->bmi[3].as_mv[idx].as_mv.col) }; return res; } // TODO(jkoleszar): yet another mv clamping function :-( MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv, int bw, int bh, int ss_x, int ss_y) { // If the MV points so far into the UMV border that no visible pixels // are used for reconstruction, the subpel part of the MV can be // discarded and the MV limited to 16 pixels with equivalent results. const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS; const int spel_right = spel_left - SUBPEL_SHIFTS; const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS; const int spel_bottom = spel_top - SUBPEL_SHIFTS; MV clamped_mv = { src_mv->row << (1 - ss_y), src_mv->col << (1 - ss_x) }; assert(ss_x <= 1); assert(ss_y <= 1); clamp_mv(&clamped_mv, (xd->mb_to_left_edge << (1 - ss_x)) - spel_left, (xd->mb_to_right_edge << (1 - ss_x)) + spel_right, (xd->mb_to_top_edge << (1 - ss_y)) - spel_top, (xd->mb_to_bottom_edge << (1 - ss_y)) + spel_bottom); return clamped_mv; } struct build_inter_predictors_args { MACROBLOCKD *xd; int x, y; }; static void build_inter_predictors(int plane, int block, BLOCK_SIZE bsize, int pred_w, int pred_h, void *argv) { const struct build_inter_predictors_args* const arg = argv; MACROBLOCKD *const xd = arg->xd; struct macroblockd_plane *const pd = &xd->plane[plane]; const int bwl = b_width_log2(bsize) - pd->subsampling_x; const int bw = 4 << bwl; const int bh = plane_block_height(bsize, pd); const int x = 4 * (block & ((1 << bwl) - 1)); const int y = 4 * (block >> bwl); const MODE_INFO *const mi = xd->mode_info_context; const int use_second_ref = mi->mbmi.ref_frame[1] > 0; int ref; assert(x < bw); assert(y < bh); assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_w == bw); assert(mi->mbmi.sb_type < BLOCK_8X8 || 4 << pred_h == bh); for (ref = 0; ref < 1 + use_second_ref; ++ref) { struct scale_factors *const scale = &xd->scale_factor[ref]; struct buf_2d *const pre_buf = &pd->pre[ref]; struct buf_2d *const dst_buf = &pd->dst; const uint8_t *const pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, scale); uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the // same MV (the average of the 4 luma MVs) but we could do something // smarter for non-4:2:0. Just punt for now, pending the changes to get // rid of SPLITMV mode entirely. const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv : mi_mv_pred_q4(mi, ref)) : mi->mbmi.mv[ref].as_mv; // TODO(jkoleszar): This clamping is done in the incorrect place for the // scaling case. It needs to be done on the scaled MV, not the pre-scaling // MV. Note however that it performs the subsampling aware scaling so // that the result is always q4. const MV res_mv = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); scale->set_scaled_offsets(scale, arg->y + y, arg->x + x); vp9_build_inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride, &res_mv, scale, 4 << pred_w, 4 << pred_h, ref, &xd->subpix, MV_PRECISION_Q4); } } // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could // calculate the subsampled BLOCK_SIZE, but that type isn't defined for // sizes smaller than 16x16 yet. typedef void (*foreach_predicted_block_visitor)(int plane, int block, BLOCK_SIZE bsize, int pred_w, int pred_h, void *arg); static INLINE void foreach_predicted_block_in_plane( const MACROBLOCKD* const xd, BLOCK_SIZE bsize, int plane, foreach_predicted_block_visitor visit, void *arg) { int i, x, y; // block sizes in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // subsampled size of the block const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; // size of the predictor to use. int pred_w, pred_h; if (xd->mode_info_context->mbmi.sb_type < BLOCK_8X8) { assert(bsize == BLOCK_8X8); pred_w = 0; pred_h = 0; } else { pred_w = bwl; pred_h = bhl; } assert(pred_w <= bwl); assert(pred_h <= bhl); // visit each subblock in raster order i = 0; for (y = 0; y < 1 << bhl; y += 1 << pred_h) { for (x = 0; x < 1 << bwl; x += 1 << pred_w) { visit(plane, i, bsize, pred_w, pred_h, arg); i += 1 << pred_w; } i += (1 << (bwl + pred_h)) - (1 << bwl); } } static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; for (plane = plane_from; plane <= plane_to; ++plane) { struct build_inter_predictors_args args = { xd, mi_col * MI_SIZE, mi_row * MI_SIZE, }; foreach_predicted_block_in_plane(xd, bsize, plane, build_inter_predictors, &args); } } void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); } void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); } void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, MAX_MB_PLANE - 1); } // TODO(dkovalev: find better place for this function) void vp9_setup_scale_factors(VP9_COMMON *cm, int i) { const int ref = cm->active_ref_idx[i]; struct scale_factors *const sf = &cm->active_ref_scale[i]; if (ref >= NUM_YV12_BUFFERS) { vp9_zero(*sf); } else { YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref]; vp9_setup_scale_factors_for_frame(sf, fb->y_crop_width, fb->y_crop_height, cm->width, cm->height); if (vp9_is_scaled(sf)) vp9_extend_frame_borders(fb, cm->subsampling_x, cm->subsampling_y); } }