/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_header.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_entropy.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_quant_common.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_setupintrarecon.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_modecont.h" #include "vpx_mem/vpx_mem.h" #include "vp9/decoder/vp9_dboolhuff.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9_rtcd.h" #include #include #define COEFCOUNT_TESTING // #define DEC_DEBUG #ifdef DEC_DEBUG int dec_debug = 0; #endif static int read_le16(const uint8_t *p) { return (p[1] << 8) | p[0]; } static int read_le32(const uint8_t *p) { return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]; } // len == 0 is not allowed static int read_is_valid(const unsigned char *start, size_t len, const unsigned char *end) { return start + len > start && start + len <= end; } static int merge_index(int v, int n, int modulus) { int max1 = (n - 1 - modulus / 2) / modulus + 1; if (v < max1) v = v * modulus + modulus / 2; else { int w; v -= max1; w = v; v += (v + modulus - modulus / 2) / modulus; while (v % modulus == modulus / 2 || w != v - (v + modulus - modulus / 2) / modulus) v++; } return v; } static int inv_remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; v = merge_index(v, n - 1, modulus); if ((m << 1) <= n) { return vp9_inv_recenter_nonneg(v + 1, m); } else { return n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m); } } static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) { int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255); return (vp9_prob)inv_remap_prob(delp, oldp); } void vp9_init_de_quantizer(VP9D_COMP *pbi) { int i; int q; VP9_COMMON *const pc = &pbi->common; for (q = 0; q < QINDEX_RANGE; q++) { pc->Y1dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y1dc_delta_q); pc->UVdequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uvdc_delta_q); /* all the ac values =; */ for (i = 1; i < 16; i++) { int rc = vp9_default_zig_zag1d_4x4[i]; pc->Y1dequant[q][rc] = (int16_t)vp9_ac_yquant(q); pc->UVdequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uvac_delta_q); } } } static int get_qindex(MACROBLOCKD *mb, int segment_id, int base_qindex) { // Set the Q baseline allowing for any segment level adjustment if (vp9_segfeature_active(mb, segment_id, SEG_LVL_ALT_Q)) { if (mb->mb_segment_abs_delta == SEGMENT_ABSDATA) return vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q); // Abs Value else return clamp(base_qindex + vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q), 0, MAXQ); // Delta Value } else { return base_qindex; } } static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *mb) { int i; VP9_COMMON *const pc = &pbi->common; const int segment_id = mb->mode_info_context->mbmi.segment_id; const int qindex = get_qindex(mb, segment_id, pc->base_qindex); mb->q_index = qindex; for (i = 0; i < 16; i++) mb->block[i].dequant = pc->Y1dequant[qindex]; for (i = 16; i < 24; i++) mb->block[i].dequant = pc->UVdequant[qindex]; if (mb->lossless) { assert(qindex == 0); mb->inv_txm4x4_1 = vp9_short_iwalsh4x4_1; mb->inv_txm4x4 = vp9_short_iwalsh4x4; mb->itxm_add = vp9_dequant_idct_add_lossless_c; mb->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c; mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c; } else { mb->inv_txm4x4_1 = vp9_short_idct4x4_1; mb->inv_txm4x4 = vp9_short_idct4x4; mb->itxm_add = vp9_dequant_idct_add; mb->itxm_add_y_block = vp9_dequant_idct_add_y_block; mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block; } } /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col) { BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (sb_type == BLOCK_SIZE_SB64X64) { vp9_build_intra_predictors_sb64uv_s(xd); vp9_build_intra_predictors_sb64y_s(xd); } else if (sb_type == BLOCK_SIZE_SB32X32) { vp9_build_intra_predictors_sbuv_s(xd); vp9_build_intra_predictors_sby_s(xd); } else { vp9_build_intra_predictors_mbuv_s(xd); vp9_build_intra_predictors_mby_s(xd); } } else { if (sb_type == BLOCK_SIZE_SB64X64) { vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride, mb_row, mb_col); } else if (sb_type == BLOCK_SIZE_SB32X32) { vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride, mb_row, mb_col); } else { vp9_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride, mb_row, mb_col); #if CONFIG_COMP_INTERINTRA_PRED if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } #endif } } } static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { TX_TYPE tx_type = get_tx_type_16x16(xd, 0); #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 16x16\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } else { vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { // First do Y // if the first one is DCT_DCT assume all the rest are as well TX_TYPE tx_type = get_tx_type_8x8(xd, 0); #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 8x8\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; uint8_t *pre = xd->block[ib].predictor; uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst; int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); } tx_type = get_tx_type_8x8(xd, ib); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride, xd->eobs[idx]); } else { vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride, xd->eobs[idx]); } } } else { vp9_dequant_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd); } // Now do UV if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]); } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else { vp9_dequant_idct_add_uv_block_8x8 (xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif } static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { TX_TYPE tx_type; int i, eobtotal = 0; MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; if (mode == I8X8_PRED) { for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; const int iblock[4] = {0, 1, 4, 5}; int j; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); for (j = 0; j < 4; j++) { b = &xd->block[ib + iblock[j]]; tx_type = get_tx_type_4x4(xd, ib + iblock[j]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[ib + iblock[j]]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[ib + iblock[j]]); } } b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]); } } else if (mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; int b_mode = xd->mode_info_context->bmi[i].as_mode.first; #if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context = vp9_find_bpred_context(xd, b); #endif if (!xd->mode_info_context->mbmi.mb_skip_coeff) eobtotal += vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i); vp9_intra4x4_predict(xd, b, b_mode, b->predictor); tx_type = get_tx_type_4x4(xd, i); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } } if (!xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc); } vp9_build_intra_predictors_mbuv(xd); xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) { xd->itxm_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd); xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else { #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 4x4\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; tx_type = get_tx_type_4x4(xd, i); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } } xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } } static void decode_superblock64(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int n, eobtotal; VP9_COMMON *const pc = &pbi->common; MODE_INFO *mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_sb64_tokens_context(xd); /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. */ skip_recon_mb(pbi, xd, mb_row, mb_col); return; } /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sb64y_s(xd); vp9_build_intra_predictors_sb64uv_s(xd); } else { vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride, mb_row, mb_col); } /* dequantization and idct */ eobtotal = vp9_decode_sb64_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows) mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff; } } else { switch (xd->mode_info_context->mbmi.txfm_size) { case TX_32X32: for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int y_offset = x_idx * 32 + y_idx * xd->dst.y_stride * 32; vp9_dequant_idct_add_32x32(xd->qcoeff + n * 1024, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 64]); } vp9_dequant_idct_add_32x32(xd->qcoeff + 4096, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.u_buffer, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256]); vp9_dequant_idct_add_32x32(xd->qcoeff + 4096 + 1024, xd->block[20].dequant, xd->dst.v_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320]); break; case TX_16X16: for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; const int y_offset = y_idx * 16 * xd->dst.y_stride + x_idx * 16; const TX_TYPE tx_type = get_tx_type_16x16(xd, (y_idx * 16 + x_idx) * 4); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_16x16(xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } else { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } } for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int uv_offset = y_idx * 16 * xd->dst.uv_stride + x_idx * 16; vp9_dequant_idct_add_16x16(xd->qcoeff + 4096 + n * 256, xd->block[16].dequant, xd->dst.u_buffer + uv_offset, xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n * 16]); vp9_dequant_idct_add_16x16(xd->qcoeff + 4096 + 1024 + n * 256, xd->block[20].dequant, xd->dst.v_buffer + uv_offset, xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n * 16]); } break; case TX_8X8: for (n = 0; n < 64; n++) { const int x_idx = n & 7, y_idx = n >> 3; const int y_offset = y_idx * 8 * xd->dst.y_stride + x_idx * 8; const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * 16 + x_idx) * 2); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]); } else { vp9_ht_dequant_idct_add_8x8_c(tx_type, xd->qcoeff + n * 64, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]); } } for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; const int uv_offset = y_idx * 8 * xd->dst.uv_stride + x_idx * 8; vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 4096, xd->block[16].dequant, xd->dst.u_buffer + uv_offset, xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n * 4]); vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 4096 + 1024, xd->block[20].dequant, xd->dst.v_buffer + uv_offset, xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n * 4]); } break; case TX_4X4: for (n = 0; n < 256; n++) { const int x_idx = n & 15, y_idx = n >> 4; const int y_offset = y_idx * 4 * xd->dst.y_stride + x_idx * 4; const TX_TYPE tx_type = get_tx_type_4x4(xd, y_idx * 16 + x_idx); if (tx_type == DCT_DCT) { xd->itxm_add(xd->qcoeff + n * 16, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]); } else { vp9_ht_dequant_idct_add_c(tx_type, xd->qcoeff + n * 16, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]); } } for (n = 0; n < 64; n++) { const int x_idx = n & 7, y_idx = n >> 3; const int uv_offset = y_idx * 4 * xd->dst.uv_stride + x_idx * 4; xd->itxm_add(xd->qcoeff + 4096 + n * 16, xd->block[16].dequant, xd->dst.u_buffer + uv_offset, xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n]); xd->itxm_add(xd->qcoeff + 4096 + 1024 + n * 16, xd->block[20].dequant, xd->dst.v_buffer + uv_offset, xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n]); } break; default: assert(0); } } } static void decode_superblock32(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int n, eobtotal; VP9_COMMON *const pc = &pbi->common; const int mis = pc->mode_info_stride; assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_sb_tokens_context(xd); /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. */ skip_recon_mb(pbi, xd, mb_row, mb_col); return; } /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sby_s(xd); vp9_build_intra_predictors_sbuv_s(xd); } else { vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride, mb_row, mb_col); } /* dequantization and idct */ eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { xd->mode_info_context[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = 1; } } else { switch (xd->mode_info_context->mbmi.txfm_size) { case TX_32X32: vp9_dequant_idct_add_32x32(xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer, xd->dst.y_buffer, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); break; case TX_16X16: for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int y_offset = y_idx * 16 * xd->dst.y_stride + x_idx * 16; const TX_TYPE tx_type = get_tx_type_16x16(xd, (y_idx * 8 + x_idx) * 4); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_16x16( xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } else { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } } vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); break; case TX_8X8: for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; const int y_offset = y_idx * 8 * xd->dst.y_stride + x_idx * 8; const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * 8 + x_idx) * 2); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]); } else { vp9_ht_dequant_idct_add_8x8_c(tx_type, xd->qcoeff + n * 64, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 4]); } } for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int uv_offset = y_idx * 8 * xd->dst.uv_stride + x_idx * 8; vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 1024, xd->block[16].dequant, xd->dst.u_buffer + uv_offset, xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[64 + n * 4]); vp9_dequant_idct_add_8x8_c(xd->qcoeff + n * 64 + 1280, xd->block[20].dequant, xd->dst.v_buffer + uv_offset, xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[80 + n * 4]); } break; case TX_4X4: for (n = 0; n < 64; n++) { const int x_idx = n & 7, y_idx = n >> 3; const int y_offset = y_idx * 4 * xd->dst.y_stride + x_idx * 4; const TX_TYPE tx_type = get_tx_type_4x4(xd, y_idx * 8 + x_idx); if (tx_type == DCT_DCT) { xd->itxm_add(xd->qcoeff + n * 16, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]); } else { vp9_ht_dequant_idct_add_c(tx_type, xd->qcoeff + n * 16, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n]); } } for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; const int uv_offset = y_idx * 4 * xd->dst.uv_stride + x_idx * 4; xd->itxm_add(xd->qcoeff + 1024 + n * 16, xd->block[16].dequant, xd->dst.u_buffer + uv_offset, xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[64 + n]); xd->itxm_add(xd->qcoeff + 1280 + n * 16, xd->block[20].dequant, xd->dst.v_buffer + uv_offset, xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[80 + n]); } break; default: assert(0); } } } static void decode_macroblock(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int eobtotal = 0; MB_PREDICTION_MODE mode; int tx_size; assert(!xd->mode_info_context->mbmi.sb_type); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); tx_size = xd->mode_info_context->mbmi.txfm_size; mode = xd->mode_info_context->mbmi.mode; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); } else if (!bool_error(bc)) { if (mode != B_PRED) eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); } //mode = xd->mode_info_context->mbmi.mode; if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, &pbi->common); if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && mode != I8X8_PRED && !bool_error(bc)) { /* Special case: Force the loopfilter to skip when eobtotal and mb_skip_coeff are zero. */ xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd, mb_row, mb_col); return; } #ifdef DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size); #endif // moved to be performed before detokenization // if (xd->segmentation_enabled) // mb_init_dequantizer(pbi, xd); /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (mode != I8X8_PRED) { vp9_build_intra_predictors_mbuv(xd); if (mode != B_PRED) { vp9_build_intra_predictors_mby(xd); } } } else { #ifdef DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d interp %d\n", xd->mode_info_context->mbmi.mode, tx_size, xd->mode_info_context->mbmi.interp_filter); #endif vp9_build_inter_predictors_mb(xd, mb_row, mb_col); } if (tx_size == TX_16X16) { decode_16x16(pbi, xd, bc); } else if (tx_size == TX_8X8) { decode_8x8(pbi, xd, bc); } else { decode_4x4(pbi, xd, bc); } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("\n"); printf("final y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]); printf("\n"); } printf("\n"); printf("final u\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } printf("\n"); printf("final v\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } fflush(stdout); } #endif } static int get_delta_q(vp9_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp9_read_bit(bc)) { ret_val = vp9_read_literal(bc, 4); if (vp9_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include FILE *vpxlog = 0; #endif static void set_offsets(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; const int idx = mis * mb_row + mb_col; const int dst_fb_idx = cm->new_fb_idx; const int recon_y_stride = cm->yv12_fb[dst_fb_idx].y_stride; const int recon_uv_stride = cm->yv12_fb[dst_fb_idx].uv_stride; const int recon_yoffset = mb_row * 16 * recon_y_stride + 16 * mb_col; const int recon_uvoffset = mb_row * 8 * recon_uv_stride + 8 * mb_col; xd->mode_info_context = cm->mi + idx; xd->mode_info_context->mbmi.sb_type = block_size >> 5; xd->prev_mode_info_context = cm->prev_mi + idx; xd->above_context = cm->above_context + mb_col; xd->left_context = cm->left_context + (mb_row & 3); // Distance of Mb to the various image edges. // These are specified to 8th pel as they are always compared to // values that are in 1/8th pel units block_size >>= 4; // in mb units set_mb_row(cm, xd, mb_row, block_size); set_mb_col(cm, xd, mb_col, block_size); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; } static void set_refs(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; if (mbmi->ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB int ref_fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1]; xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; setup_pred_block(&xd->pre, &cm->yv12_fb[ref_fb_idx], mb_row, mb_col, &xd->scale_factor[0], &xd->scale_factor_uv[0]); // propagate errors from reference frames xd->corrupted |= cm->yv12_fb[ref_fb_idx].corrupted; if (mbmi->second_ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB int second_ref_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1]; setup_pred_block(&xd->second_pre, &cm->yv12_fb[second_ref_fb_idx], mb_row, mb_col, &xd->scale_factor[1], &xd->scale_factor_uv[1]); // propagate errors from reference frames xd->corrupted |= cm->yv12_fb[second_ref_fb_idx].corrupted; } } } /* Decode a row of Superblocks (2x2 region of MBs) */ static void decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc, int mb_row, MACROBLOCKD *xd, BOOL_DECODER* const bc) { int mb_col; // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); for (mb_col = pc->cur_tile_mb_col_start; mb_col < pc->cur_tile_mb_col_end; mb_col += 4) { if (vp9_read(bc, pc->sb64_coded)) { #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 1 && mb_row == 0 && mb_col == 0); if (dec_debug) printf("Debug\n"); #endif set_offsets(pbi, 64, mb_row, mb_col); vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc); set_refs(pbi, 64, mb_row, mb_col); decode_superblock64(pbi, xd, mb_row, mb_col, bc); xd->corrupted |= bool_error(bc); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; if (mb_row + y_idx_sb >= pc->mb_rows || mb_col + x_idx_sb >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } xd->sb_index = j; if (vp9_read(bc, pc->sb32_coded)) { #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 1 && mb_row + y_idx_sb == 0 && mb_col + x_idx_sb == 0); #endif set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); decode_superblock32(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); xd->corrupted |= bool_error(bc); } else { int i; // Process the 4 MBs within the SB in the order: // top-left, top-right, bottom-left, bottom-right for (i = 0; i < 4; i++) { const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); if (mb_row + y_idx >= pc->mb_rows || mb_col + x_idx >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 1 && mb_row + y_idx == 0 && mb_col + x_idx == 0); #endif set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx); xd->mb_index = i; vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx); decode_macroblock(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); /* check if the boolean decoder has suffered an error */ xd->corrupted |= bool_error(bc); } } } } } } static void setup_token_decoder(VP9D_COMP *pbi, const unsigned char *cx_data, BOOL_DECODER* const bool_decoder) { VP9_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; const unsigned char *partition = cx_data; ptrdiff_t bytes_left = user_data_end - partition; ptrdiff_t partition_size = bytes_left; // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(partition, partition_size, user_data_end)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); } if (vp9_start_decode(bool_decoder, partition, (unsigned int)partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP9D_COMP *pbi) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { vp9_setup_past_independence(pc, xd); // All buffers are implicitly updated on key frames. pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; } else if (pc->error_resilient_mode) { vp9_setup_past_independence(pc, xd); } if (pc->frame_type != KEY_FRAME) { pc->mcomp_filter_type = pc->use_bilinear_mc_filter ? BILINEAR : EIGHTTAP; // To enable choice of different interpolation filters vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; xd->fullpixel_mask = pc->full_pixel ? 0xfffffff8 : 0xffffffff; } #if CONFIG_CODE_NONZEROCOUNT static void read_nzc_probs_common(VP9_COMMON *cm, BOOL_DECODER* const bc, int block_size) { int c, r, b, t; int tokens, nodes; vp9_prob *nzc_probs; vp9_prob upd; if (!vp9_read_bit(bc)) return; if (block_size == 32) { tokens = NZC32X32_TOKENS; nzc_probs = cm->fc.nzc_probs_32x32[0][0][0]; upd = NZC_UPDATE_PROB_32X32; } else if (block_size == 16) { tokens = NZC16X16_TOKENS; nzc_probs = cm->fc.nzc_probs_16x16[0][0][0]; upd = NZC_UPDATE_PROB_16X16; } else if (block_size == 8) { tokens = NZC8X8_TOKENS; nzc_probs = cm->fc.nzc_probs_8x8[0][0][0]; upd = NZC_UPDATE_PROB_8X8; } else { tokens = NZC4X4_TOKENS; nzc_probs = cm->fc.nzc_probs_4x4[0][0][0]; upd = NZC_UPDATE_PROB_4X4; } nodes = tokens - 1; for (c = 0; c < MAX_NZC_CONTEXTS; ++c) { for (r = 0; r < REF_TYPES; ++r) { for (b = 0; b < BLOCK_TYPES; ++b) { int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b; int offset_nodes = offset * nodes; for (t = 0; t < nodes; ++t) { vp9_prob *p = &nzc_probs[offset_nodes + t]; if (vp9_read(bc, upd)) { *p = read_prob_diff_update(bc, *p); } } } } } } static void read_nzc_pcat_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) { int c, t, b; vp9_prob upd = NZC_UPDATE_PROB_PCAT; if (!vp9_read_bit(bc)) { return; } for (c = 0; c < MAX_NZC_CONTEXTS; ++c) { for (t = 0; t < NZC_TOKENS_EXTRA; ++t) { int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA]; for (b = 0; b < bits; ++b) { vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b]; if (vp9_read(bc, upd)) { *p = read_prob_diff_update(bc, *p); } } } } } static void read_nzc_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) { read_nzc_probs_common(cm, bc, 4); if (cm->txfm_mode != ONLY_4X4) read_nzc_probs_common(cm, bc, 8); if (cm->txfm_mode > ALLOW_8X8) read_nzc_probs_common(cm, bc, 16); if (cm->txfm_mode > ALLOW_16X16) read_nzc_probs_common(cm, bc, 32); #ifdef NZC_PCAT_UPDATE read_nzc_pcat_probs(cm, bc); #endif } #endif // CONFIG_CODE_NONZEROCOUNT static void read_coef_probs_common(BOOL_DECODER* const bc, vp9_coeff_probs *coef_probs, int block_types) { #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES; #else const int entropy_nodes_update = ENTROPY_NODES; #endif int i, j, k, l, m; if (vp9_read_bit(bc)) { for (i = 0; i < block_types; i++) { for (j = 0; j < REF_TYPES; j++) { for (k = 0; k < COEF_BANDS; k++) { for (l = 0; l < PREV_COEF_CONTEXTS; l++) { if (l >= 3 && k == 0) continue; for (m = CONFIG_CODE_NONZEROCOUNT; m < entropy_nodes_update; m++) { vp9_prob *const p = coef_probs[i][j][k][l] + m; if (vp9_read(bc, vp9_coef_update_prob[m])) { *p = read_prob_diff_update(bc, *p); #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE if (m == UNCONSTRAINED_NODES - 1) vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j); #endif } } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) { VP9_COMMON *const pc = &pbi->common; read_coef_probs_common(bc, pc->fc.coef_probs_4x4, BLOCK_TYPES); if (pbi->common.txfm_mode != ONLY_4X4) read_coef_probs_common(bc, pc->fc.coef_probs_8x8, BLOCK_TYPES); if (pbi->common.txfm_mode > ALLOW_8X8) read_coef_probs_common(bc, pc->fc.coef_probs_16x16, BLOCK_TYPES); if (pbi->common.txfm_mode > ALLOW_16X16) read_coef_probs_common(bc, pc->fc.coef_probs_32x32, BLOCK_TYPES); } static void update_frame_size(VP9D_COMP *pbi) { VP9_COMMON *cm = &pbi->common; /* our internal buffers are always multiples of 16 */ const int width = (cm->width + 15) & ~15; const int height = (cm->height + 15) & ~15; cm->mb_rows = height >> 4; cm->mb_cols = width >> 4; cm->MBs = cm->mb_rows * cm->mb_cols; cm->mode_info_stride = cm->mb_cols + 1; memset(cm->mip, 0, (cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO)); vp9_update_mode_info_border(cm, cm->mip); cm->mi = cm->mip + cm->mode_info_stride + 1; cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1; vp9_update_mode_info_in_image(cm, cm->mi); } static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, BOOL_DECODER *header_bc) { int i, j; // Is segmentation enabled xd->segmentation_enabled = vp9_read_bit(header_bc); if (xd->segmentation_enabled) { // Read whether or not the segmentation map is being explicitly updated // this frame. xd->update_mb_segmentation_map = vp9_read_bit(header_bc); // If so what method will be used. if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled. Read the probs used to // decode the segment id for each macro block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { xd->mb_segment_tree_probs[i] = vp9_read_bit(header_bc) ? (vp9_prob)vp9_read_literal(header_bc, 8) : 255; } // Read the prediction probs needed to decode the segment id pc->temporal_update = vp9_read_bit(header_bc); for (i = 0; i < PREDICTION_PROBS; i++) { if (pc->temporal_update) { pc->segment_pred_probs[i] = vp9_read_bit(header_bc) ? (vp9_prob)vp9_read_literal(header_bc, 8) : 255; } else { pc->segment_pred_probs[i] = 255; } } if (pc->temporal_update) { int count[4]; const vp9_prob *p = xd->mb_segment_tree_probs; vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs; count[0] = p[0] * p[1]; count[1] = p[0] * (256 - p[1]); count[2] = (256 - p[0]) * p[2]; count[3] = (256 - p[0]) * (256 - p[2]); p_mod[0] = get_binary_prob(count[1], count[2] + count[3]); p_mod[1] = get_binary_prob(count[0], count[2] + count[3]); p_mod[2] = get_binary_prob(count[0] + count[1], count[3]); p_mod[3] = get_binary_prob(count[0] + count[1], count[2]); } } // Is the segment data being updated xd->update_mb_segmentation_data = vp9_read_bit(header_bc); if (xd->update_mb_segmentation_data) { int data; xd->mb_segment_abs_delta = vp9_read_bit(header_bc); vp9_clearall_segfeatures(xd); // For each segmentation... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each of the segments features... for (j = 0; j < SEG_LVL_MAX; j++) { // Is the feature enabled if (vp9_read_bit(header_bc)) { // Update the feature data and mask vp9_enable_segfeature(xd, i, j); data = vp9_decode_unsigned_max(header_bc, vp9_seg_feature_data_max(j)); // Is the segment data signed.. if (vp9_is_segfeature_signed(j)) { if (vp9_read_bit(header_bc)) data = -data; } } else { data = 0; } vp9_set_segdata(xd, i, j, data); } } } } } static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, BOOL_DECODER *header_bc) { int i; pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(header_bc); pc->filter_level = vp9_read_literal(header_bc, 6); pc->sharpness_level = vp9_read_literal(header_bc, 3); #if CONFIG_LOOP_DERING if (vp9_read_bit(header_bc)) pc->dering_enabled = 1 + vp9_read_literal(header_bc, 4); else pc->dering_enabled = 0; #endif // Read in loop filter deltas applied at the MB level based on mode or ref // frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = vp9_read_bit(header_bc); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated xd->mode_ref_lf_delta_update = vp9_read_bit(header_bc); if (xd->mode_ref_lf_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_read_bit(header_bc)) { // sign = vp9_read_bit( &header_bc ); xd->ref_lf_deltas[i] = (signed char)vp9_read_literal(header_bc, 6); if (vp9_read_bit(header_bc)) xd->ref_lf_deltas[i] = -xd->ref_lf_deltas[i]; // Apply sign } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_read_bit(header_bc)) { // sign = vp9_read_bit( &header_bc ); xd->mode_lf_deltas[i] = (signed char)vp9_read_literal(header_bc, 6); if (vp9_read_bit(header_bc)) xd->mode_lf_deltas[i] = -xd->mode_lf_deltas[i]; // Apply sign } } } } } int vp9_decode_frame(VP9D_COMP *pbi, const unsigned char **p_data_end) { BOOL_DECODER header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data = (const uint8_t *)pbi->Source; const uint8_t *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes = 0; int mb_row, i, corrupt_tokens = 0; // printf("Decoding frame %d\n", pc->current_video_frame); /* start with no corruption of current frame */ xd->corrupted = 0; pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { int scaling_active; pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; scaling_active = (data[0] >> 5) & 1; first_partition_length_in_bytes = read_le16(data + 1); if (!read_is_valid(data, first_partition_length_in_bytes, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp9_setup_version(pc); if (pc->frame_type == KEY_FRAME) { /* vet via sync code */ /* When error concealment is enabled we should only check the sync * code if we have enough bits available */ if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } data += 3; } { const int width = pc->width; const int height = pc->height; /* If error concealment is enabled we should only parse the new size * if we have enough data. Otherwise we will end up with the wrong * size. */ if (scaling_active && data + 4 < data_end) { pc->display_width = read_le16(data + 0); pc->display_height = read_le16(data + 2); data += 4; } if (data + 4 < data_end) { pc->width = read_le16(data + 0); pc->height = read_le16(data + 2); data += 4; } if (!scaling_active) { pc->display_width = pc->width; pc->display_height = pc->height; } if (width != pc->width || height != pc->height) { if (pc->width <= 0) { pc->width = width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->height <= 0) { pc->height = height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (!pbi->initial_width || !pbi->initial_height) { if (vp9_alloc_frame_buffers(pc, pc->width, pc->height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); pbi->initial_width = pc->width; pbi->initial_height = pc->height; } if (pc->width > pbi->initial_width) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame width too large"); } if (pc->height > pbi->initial_height) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame height too large"); } update_frame_size(pbi); } } } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->width == 0 || pc->height == 0) { return -1; } init_frame(pbi); /* Reset the frame pointers to the current frame size */ vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx], pc->width, pc->height, VP9BORDERINPIXELS); if (vp9_start_decode(&header_bc, data, (unsigned int)first_partition_length_in_bytes)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc); pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc); pc->error_resilient_mode = vp9_read_bit(&header_bc); setup_segmentation(pc, xd, &header_bc); // Read common prediction model status flag probability updates for the // reference frame if (pc->frame_type == KEY_FRAME) { // Set the prediction probabilities to defaults pc->ref_pred_probs[0] = 120; pc->ref_pred_probs[1] = 80; pc->ref_pred_probs[2] = 40; } else { for (i = 0; i < PREDICTION_PROBS; i++) { if (vp9_read_bit(&header_bc)) pc->ref_pred_probs[i] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } pc->sb64_coded = vp9_read_literal(&header_bc, 8); pc->sb32_coded = vp9_read_literal(&header_bc, 8); xd->lossless = vp9_read_bit(&header_bc); if (xd->lossless) { pc->txfm_mode = ONLY_4X4; } else { // Read the loop filter level and type pc->txfm_mode = vp9_read_literal(&header_bc, 2); if (pc->txfm_mode == 3) pc->txfm_mode += vp9_read_bit(&header_bc); if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = vp9_read_literal(&header_bc, 8); pc->prob_tx[1] = vp9_read_literal(&header_bc, 8); pc->prob_tx[2] = vp9_read_literal(&header_bc, 8); } } setup_loopfilter(pc, xd, &header_bc); // Dummy read for now vp9_read_literal(&header_bc, 2); /* Read the default quantizers. */ { int q_update = 0; pc->base_qindex = vp9_read_literal(&header_bc, QINDEX_BITS); /* AC 1st order Q = default */ pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update); if (q_update) vp9_init_de_quantizer(pbi); /* MB level dequantizer setup */ mb_init_dequantizer(pbi, &pbi->mb); } /* Determine if the golden frame or ARF buffer should be updated and how. * For all non key frames the GF and ARF refresh flags and sign bias * flags must be set explicitly. */ if (pc->frame_type == KEY_FRAME) { pc->active_ref_idx[0] = pc->new_fb_idx; pc->active_ref_idx[1] = pc->new_fb_idx; pc->active_ref_idx[2] = pc->new_fb_idx; } else { /* Should the GF or ARF be updated from the current frame */ pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES); /* Select active reference frames */ for (i = 0; i < 3; i++) { int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2); pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num]; } pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc); // Is high precision mv allowed xd->allow_high_precision_mv = (unsigned char)vp9_read_bit(&header_bc); // Read the type of subpel filter to use pc->mcomp_filter_type = vp9_read_bit(&header_bc) ? SWITCHABLE : vp9_read_literal(&header_bc, 2); #if CONFIG_COMP_INTERINTRA_PRED pc->use_interintra = vp9_read_bit(&header_bc); #endif /* To enable choice of different interploation filters */ vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } if (!pc->error_resilient_mode) { pc->refresh_entropy_probs = vp9_read_bit(&header_bc); pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc); } else { pc->refresh_entropy_probs = 0; pc->frame_parallel_decoding_mode = 1; } pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2); vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx], sizeof(pc->fc)); // Read inter mode probability context updates if (pc->frame_type != KEY_FRAME) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (vp9_read(&header_bc, 252)) { pc->fc.vp9_mode_contexts[i][j] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } } } #if CONFIG_MODELCOEFPROB && ADJUST_KF_COEF_PROBS if (pc->frame_type == KEY_FRAME) vp9_adjust_default_coef_probs(pc); #endif #if CONFIG_NEW_MVREF // If Key frame reset mv ref id probabilities to defaults if (pc->frame_type != KEY_FRAME) { // Read any mv_ref index probability updates int i, j; for (i = 0; i < MAX_REF_FRAMES; ++i) { // Skip the dummy entry for intra ref frame. if (i == INTRA_FRAME) { continue; } // Read any updates to probabilities for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) { if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) { xd->mb_mv_ref_probs[i][j] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } } } #endif if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,R:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pbi->refresh_frame_flags, pc->base_qindex); fclose(z); } vp9_copy(pbi->common.fc.pre_coef_probs_4x4, pbi->common.fc.coef_probs_4x4); vp9_copy(pbi->common.fc.pre_coef_probs_8x8, pbi->common.fc.coef_probs_8x8); vp9_copy(pbi->common.fc.pre_coef_probs_16x16, pbi->common.fc.coef_probs_16x16); vp9_copy(pbi->common.fc.pre_coef_probs_32x32, pbi->common.fc.coef_probs_32x32); vp9_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob); vp9_copy(pbi->common.fc.pre_sb_ymode_prob, pbi->common.fc.sb_ymode_prob); vp9_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob); vp9_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob); vp9_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob); vp9_copy(pbi->common.fc.pre_sub_mv_ref_prob, pbi->common.fc.sub_mv_ref_prob); vp9_copy(pbi->common.fc.pre_mbsplit_prob, pbi->common.fc.mbsplit_prob); #if CONFIG_COMP_INTERINTRA_PRED pbi->common.fc.pre_interintra_prob = pbi->common.fc.interintra_prob; #endif pbi->common.fc.pre_nmvc = pbi->common.fc.nmvc; #if CONFIG_CODE_NONZEROCOUNT vp9_copy(pbi->common.fc.pre_nzc_probs_4x4, pbi->common.fc.nzc_probs_4x4); vp9_copy(pbi->common.fc.pre_nzc_probs_8x8, pbi->common.fc.nzc_probs_8x8); vp9_copy(pbi->common.fc.pre_nzc_probs_16x16, pbi->common.fc.nzc_probs_16x16); vp9_copy(pbi->common.fc.pre_nzc_probs_32x32, pbi->common.fc.nzc_probs_32x32); vp9_copy(pbi->common.fc.pre_nzc_pcat_probs, pbi->common.fc.nzc_pcat_probs); #endif vp9_zero(pbi->common.fc.coef_counts_4x4); vp9_zero(pbi->common.fc.coef_counts_8x8); vp9_zero(pbi->common.fc.coef_counts_16x16); vp9_zero(pbi->common.fc.coef_counts_32x32); vp9_zero(pbi->common.fc.ymode_counts); vp9_zero(pbi->common.fc.sb_ymode_counts); vp9_zero(pbi->common.fc.uv_mode_counts); vp9_zero(pbi->common.fc.bmode_counts); vp9_zero(pbi->common.fc.i8x8_mode_counts); vp9_zero(pbi->common.fc.sub_mv_ref_counts); vp9_zero(pbi->common.fc.mbsplit_counts); vp9_zero(pbi->common.fc.NMVcount); vp9_zero(pbi->common.fc.mv_ref_ct); #if CONFIG_COMP_INTERINTRA_PRED vp9_zero(pbi->common.fc.interintra_counts); #endif #if CONFIG_CODE_NONZEROCOUNT vp9_zero(pbi->common.fc.nzc_counts_4x4); vp9_zero(pbi->common.fc.nzc_counts_8x8); vp9_zero(pbi->common.fc.nzc_counts_16x16); vp9_zero(pbi->common.fc.nzc_counts_32x32); vp9_zero(pbi->common.fc.nzc_pcat_counts); #endif read_coef_probs(pbi, &header_bc); #if CONFIG_CODE_NONZEROCOUNT read_nzc_probs(&pbi->common, &header_bc); #endif /* Initialize xd pointers. Any reference should do for xd->pre, so use 0. */ vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc->last_frame_seg_map, vpx_calloc((pc->mb_rows * pc->mb_cols), 1)); /* set up frame new frame for intra coded blocks */ vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp9_setup_block_dptrs(xd); vp9_build_block_doffsets(xd); /* clear out the coeff buffer */ vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); /* Read the mb_no_coeff_skip flag */ pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc); vp9_decode_mode_mvs_init(pbi, &header_bc); /* tile info */ { const uint8_t *data_ptr = data + first_partition_length_in_bytes; int tile_row, tile_col, delta_log2_tiles; vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles); while (delta_log2_tiles--) { if (vp9_read_bit(&header_bc)) { pc->log2_tile_columns++; } else { break; } } pc->log2_tile_rows = vp9_read_bit(&header_bc); if (pc->log2_tile_rows) pc->log2_tile_rows += vp9_read_bit(&header_bc); pc->tile_columns = 1 << pc->log2_tile_columns; pc->tile_rows = 1 << pc->log2_tile_rows; vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); if (pbi->oxcf.inv_tile_order) { const int n_cols = pc->tile_columns; const uint8_t *data_ptr2[4][1 << 6]; BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak); // pre-initialize the offsets, we're going to read in inverse order data_ptr2[0][0] = data_ptr; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { if (tile_row) { const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]); data_ptr2[tile_row - 1][n_cols - 1] += 4; data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size; } for (tile_col = 1; tile_col < n_cols; tile_col++) { const int size = read_le32(data_ptr2[tile_row][tile_col - 1]); data_ptr2[tile_row][tile_col - 1] += 4; data_ptr2[tile_row][tile_col] = data_ptr2[tile_row][tile_col - 1] + size; } } for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) { vp9_get_tile_col_offsets(pc, tile_col); setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], &residual_bc); /* Decode a row of superblocks */ for (mb_row = pc->cur_tile_mb_row_start; mb_row < pc->cur_tile_mb_row_end; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, &residual_bc); } if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1) bc_bak = residual_bc; } } residual_bc = bc_bak; } else { for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) { vp9_get_tile_col_offsets(pc, tile_col); if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) setup_token_decoder(pbi, data_ptr + 4, &residual_bc); else setup_token_decoder(pbi, data_ptr, &residual_bc); /* Decode a row of superblocks */ for (mb_row = pc->cur_tile_mb_row_start; mb_row < pc->cur_tile_mb_row_end; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, &residual_bc); } if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) { int size = read_le32(data_ptr); data_ptr += 4 + size; } } } } } corrupt_tokens |= xd->corrupted; // keep track of the last coded dimensions pc->last_width = pc->width; pc->last_height = pc->height; // Collect information about decoder corruption. // 1. Check first boolean decoder for errors. // 2. Check the macroblock information pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc) | corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(pc); #if CONFIG_CODE_NONZEROCOUNT vp9_adapt_nzc_probs(pc); #endif } if (pc->frame_type != KEY_FRAME) { if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_mode_probs(pc); vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv); vp9_adapt_mode_context(&pbi->common); } } if (pc->refresh_entropy_probs) { vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = residual_bc.pos + header_bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif /* Find the end of the coded buffer */ while (residual_bc.count > CHAR_BIT && residual_bc.count < VP9_BD_VALUE_SIZE) { residual_bc.count -= CHAR_BIT; residual_bc.user_buffer--; } *p_data_end = residual_bc.user_buffer; return 0; }