/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #if defined(_WIN32) || defined(__OS2__) || !CONFIG_OS_SUPPORT #define USE_POSIX_MMAP 0 #else #define USE_POSIX_MMAP 1 #endif #include #include #include #include #include #include #include "vpx/vpx_encoder.h" #if CONFIG_DECODERS #include "vpx/vpx_decoder.h" #endif #if USE_POSIX_MMAP #include #include #include #include #include #endif #if CONFIG_VP8_ENCODER || CONFIG_VP9_ENCODER #include "vpx/vp8cx.h" #endif #if CONFIG_VP8_DECODER || CONFIG_VP9_DECODER #include "vpx/vp8dx.h" #endif #include "vpx_ports/mem_ops.h" #include "vpx_ports/vpx_timer.h" #include "tools_common.h" #include "y4minput.h" #include "libmkv/EbmlWriter.h" #include "libmkv/EbmlIDs.h" /* Need special handling of these functions on Windows */ #if defined(_MSC_VER) /* MSVS doesn't define off_t, and uses _f{seek,tell}i64 */ typedef __int64 off_t; #define fseeko _fseeki64 #define ftello _ftelli64 #elif defined(_WIN32) /* MinGW defines off_t as long and uses f{seek,tell}o64/off64_t for large files */ #define fseeko fseeko64 #define ftello ftello64 #define off_t off64_t #endif #define LITERALU64(hi,lo) ((((uint64_t)hi)<<32)|lo) /* We should use 32-bit file operations in WebM file format * when building ARM executable file (.axf) with RVCT */ #if !CONFIG_OS_SUPPORT typedef long off_t; #define fseeko fseek #define ftello ftell #endif /* Swallow warnings about unused results of fread/fwrite */ static size_t wrap_fread(void *ptr, size_t size, size_t nmemb, FILE *stream) { return fread(ptr, size, nmemb, stream); } #define fread wrap_fread static size_t wrap_fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream) { return fwrite(ptr, size, nmemb, stream); } #define fwrite wrap_fwrite static const char *exec_name; #define VP8_FOURCC (0x00385056) #define VP9_FOURCC (0x00395056) static const struct codec_item { char const *name; const vpx_codec_iface_t *(*iface)(void); const vpx_codec_iface_t *(*dx_iface)(void); unsigned int fourcc; } codecs[] = { #if CONFIG_VP8_ENCODER && CONFIG_VP8_DECODER {"vp8", &vpx_codec_vp8_cx, &vpx_codec_vp8_dx, VP8_FOURCC}, #elif CONFIG_VP8_ENCODER && !CONFIG_VP8_DECODER {"vp8", &vpx_codec_vp8_cx, NULL, VP8_FOURCC}, #endif #if CONFIG_VP9_ENCODER && CONFIG_VP9_DECODER {"vp9", &vpx_codec_vp9_cx, &vpx_codec_vp9_dx, VP9_FOURCC}, #elif CONFIG_VP9_ENCODER && !CONFIG_VP9_DECODER {"vp9", &vpx_codec_vp9_cx, NULL, VP9_FOURCC}, #endif }; static void usage_exit(); #define LOG_ERROR(label) do \ {\ const char *l=label;\ va_list ap;\ va_start(ap, fmt);\ if(l)\ fprintf(stderr, "%s: ", l);\ vfprintf(stderr, fmt, ap);\ fprintf(stderr, "\n");\ va_end(ap);\ } while(0) void die(const char *fmt, ...) { LOG_ERROR(NULL); usage_exit(); } void fatal(const char *fmt, ...) { LOG_ERROR("Fatal"); exit(EXIT_FAILURE); } void warn(const char *fmt, ...) { LOG_ERROR("Warning"); } static void ctx_exit_on_error(vpx_codec_ctx_t *ctx, const char *s, ...) { va_list ap; va_start(ap, s); if (ctx->err) { const char *detail = vpx_codec_error_detail(ctx); vfprintf(stderr, s, ap); fprintf(stderr, ": %s\n", vpx_codec_error(ctx)); if (detail) fprintf(stderr, " %s\n", detail); exit(EXIT_FAILURE); } } /* This structure is used to abstract the different ways of handling * first pass statistics. */ typedef struct { vpx_fixed_buf_t buf; int pass; FILE *file; char *buf_ptr; size_t buf_alloc_sz; } stats_io_t; int stats_open_file(stats_io_t *stats, const char *fpf, int pass) { int res; stats->pass = pass; if (pass == 0) { stats->file = fopen(fpf, "wb"); stats->buf.sz = 0; stats->buf.buf = NULL, res = (stats->file != NULL); } else { #if 0 #elif USE_POSIX_MMAP struct stat stat_buf; int fd; fd = open(fpf, O_RDONLY); stats->file = fdopen(fd, "rb"); fstat(fd, &stat_buf); stats->buf.sz = stat_buf.st_size; stats->buf.buf = mmap(NULL, stats->buf.sz, PROT_READ, MAP_PRIVATE, fd, 0); res = (stats->buf.buf != NULL); #else size_t nbytes; stats->file = fopen(fpf, "rb"); if (fseek(stats->file, 0, SEEK_END)) fatal("First-pass stats file must be seekable!"); stats->buf.sz = stats->buf_alloc_sz = ftell(stats->file); rewind(stats->file); stats->buf.buf = malloc(stats->buf_alloc_sz); if (!stats->buf.buf) fatal("Failed to allocate first-pass stats buffer (%lu bytes)", (unsigned long)stats->buf_alloc_sz); nbytes = fread(stats->buf.buf, 1, stats->buf.sz, stats->file); res = (nbytes == stats->buf.sz); #endif } return res; } int stats_open_mem(stats_io_t *stats, int pass) { int res; stats->pass = pass; if (!pass) { stats->buf.sz = 0; stats->buf_alloc_sz = 64 * 1024; stats->buf.buf = malloc(stats->buf_alloc_sz); } stats->buf_ptr = stats->buf.buf; res = (stats->buf.buf != NULL); return res; } void stats_close(stats_io_t *stats, int last_pass) { if (stats->file) { if (stats->pass == last_pass) { #if 0 #elif USE_POSIX_MMAP munmap(stats->buf.buf, stats->buf.sz); #else free(stats->buf.buf); #endif } fclose(stats->file); stats->file = NULL; } else { if (stats->pass == last_pass) free(stats->buf.buf); } } void stats_write(stats_io_t *stats, const void *pkt, size_t len) { if (stats->file) { (void) fwrite(pkt, 1, len, stats->file); } else { if (stats->buf.sz + len > stats->buf_alloc_sz) { size_t new_sz = stats->buf_alloc_sz + 64 * 1024; char *new_ptr = realloc(stats->buf.buf, new_sz); if (new_ptr) { stats->buf_ptr = new_ptr + (stats->buf_ptr - (char *)stats->buf.buf); stats->buf.buf = new_ptr; stats->buf_alloc_sz = new_sz; } else fatal("Failed to realloc firstpass stats buffer."); } memcpy(stats->buf_ptr, pkt, len); stats->buf.sz += len; stats->buf_ptr += len; } } vpx_fixed_buf_t stats_get(stats_io_t *stats) { return stats->buf; } /* Stereo 3D packed frame format */ typedef enum stereo_format { STEREO_FORMAT_MONO = 0, STEREO_FORMAT_LEFT_RIGHT = 1, STEREO_FORMAT_BOTTOM_TOP = 2, STEREO_FORMAT_TOP_BOTTOM = 3, STEREO_FORMAT_RIGHT_LEFT = 11 } stereo_format_t; enum video_file_type { FILE_TYPE_RAW, FILE_TYPE_IVF, FILE_TYPE_Y4M }; struct detect_buffer { char buf[4]; size_t buf_read; size_t position; }; struct input_state { char *fn; FILE *file; off_t length; y4m_input y4m; struct detect_buffer detect; enum video_file_type file_type; unsigned int w; unsigned int h; struct vpx_rational framerate; int use_i420; }; #define IVF_FRAME_HDR_SZ (4+8) /* 4 byte size + 8 byte timestamp */ static int read_frame(struct input_state *input, vpx_image_t *img) { FILE *f = input->file; enum video_file_type file_type = input->file_type; y4m_input *y4m = &input->y4m; struct detect_buffer *detect = &input->detect; int plane = 0; int shortread = 0; if (file_type == FILE_TYPE_Y4M) { if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0; } else { if (file_type == FILE_TYPE_IVF) { char junk[IVF_FRAME_HDR_SZ]; /* Skip the frame header. We know how big the frame should be. See * write_ivf_frame_header() for documentation on the frame header * layout. */ (void) fread(junk, 1, IVF_FRAME_HDR_SZ, f); } for (plane = 0; plane < 3; plane++) { unsigned char *ptr; int w = (plane ? (1 + img->d_w) / 2 : img->d_w); int h = (plane ? (1 + img->d_h) / 2 : img->d_h); int r; /* Determine the correct plane based on the image format. The for-loop * always counts in Y,U,V order, but this may not match the order of * the data on disk. */ switch (plane) { case 1: ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_V : VPX_PLANE_U]; break; case 2: ptr = img->planes[img->fmt == VPX_IMG_FMT_YV12 ? VPX_PLANE_U : VPX_PLANE_V]; break; default: ptr = img->planes[plane]; } for (r = 0; r < h; r++) { size_t needed = w; size_t buf_position = 0; const size_t left = detect->buf_read - detect->position; if (left > 0) { const size_t more = (left < needed) ? left : needed; memcpy(ptr, detect->buf + detect->position, more); buf_position = more; needed -= more; detect->position += more; } if (needed > 0) { shortread |= (fread(ptr + buf_position, 1, needed, f) < needed); } ptr += img->stride[plane]; } } } return !shortread; } unsigned int file_is_y4m(FILE *infile, y4m_input *y4m, char detect[4]) { if (memcmp(detect, "YUV4", 4) == 0) { return 1; } return 0; } #define IVF_FILE_HDR_SZ (32) unsigned int file_is_ivf(struct input_state *input, unsigned int *fourcc) { char raw_hdr[IVF_FILE_HDR_SZ]; int is_ivf = 0; FILE *infile = input->file; unsigned int *width = &input->w; unsigned int *height = &input->h; struct detect_buffer *detect = &input->detect; if (memcmp(detect->buf, "DKIF", 4) != 0) return 0; /* See write_ivf_file_header() for more documentation on the file header * layout. */ if (fread(raw_hdr + 4, 1, IVF_FILE_HDR_SZ - 4, infile) == IVF_FILE_HDR_SZ - 4) { { is_ivf = 1; if (mem_get_le16(raw_hdr + 4) != 0) warn("Unrecognized IVF version! This file may not decode " "properly."); *fourcc = mem_get_le32(raw_hdr + 8); } } if (is_ivf) { *width = mem_get_le16(raw_hdr + 12); *height = mem_get_le16(raw_hdr + 14); detect->position = 4; } return is_ivf; } static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg, unsigned int fourcc, int frame_cnt) { char header[32]; if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return; header[0] = 'D'; header[1] = 'K'; header[2] = 'I'; header[3] = 'F'; mem_put_le16(header + 4, 0); /* version */ mem_put_le16(header + 6, 32); /* headersize */ mem_put_le32(header + 8, fourcc); /* headersize */ mem_put_le16(header + 12, cfg->g_w); /* width */ mem_put_le16(header + 14, cfg->g_h); /* height */ mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */ mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */ mem_put_le32(header + 24, frame_cnt); /* length */ mem_put_le32(header + 28, 0); /* unused */ (void) fwrite(header, 1, 32, outfile); } static void write_ivf_frame_header(FILE *outfile, const vpx_codec_cx_pkt_t *pkt) { char header[12]; vpx_codec_pts_t pts; if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return; pts = pkt->data.frame.pts; mem_put_le32(header, (int)pkt->data.frame.sz); mem_put_le32(header + 4, pts & 0xFFFFFFFF); mem_put_le32(header + 8, pts >> 32); (void) fwrite(header, 1, 12, outfile); } static void write_ivf_frame_size(FILE *outfile, size_t size) { char header[4]; mem_put_le32(header, (int)size); (void) fwrite(header, 1, 4, outfile); } typedef off_t EbmlLoc; struct cue_entry { unsigned int time; uint64_t loc; }; struct EbmlGlobal { int debug; FILE *stream; int64_t last_pts_ms; vpx_rational_t framerate; /* These pointers are to the start of an element */ off_t position_reference; off_t seek_info_pos; off_t segment_info_pos; off_t track_pos; off_t cue_pos; off_t cluster_pos; /* This pointer is to a specific element to be serialized */ off_t track_id_pos; /* These pointers are to the size field of the element */ EbmlLoc startSegment; EbmlLoc startCluster; uint32_t cluster_timecode; int cluster_open; struct cue_entry *cue_list; unsigned int cues; }; void Ebml_Write(EbmlGlobal *glob, const void *buffer_in, unsigned long len) { (void) fwrite(buffer_in, 1, len, glob->stream); } #define WRITE_BUFFER(s) \ for(i = len-1; i>=0; i--)\ { \ x = (char)(*(const s *)buffer_in >> (i * CHAR_BIT)); \ Ebml_Write(glob, &x, 1); \ } void Ebml_Serialize(EbmlGlobal *glob, const void *buffer_in, int buffer_size, unsigned long len) { char x; int i; /* buffer_size: * 1 - int8_t; * 2 - int16_t; * 3 - int32_t; * 4 - int64_t; */ switch (buffer_size) { case 1: WRITE_BUFFER(int8_t) break; case 2: WRITE_BUFFER(int16_t) break; case 4: WRITE_BUFFER(int32_t) break; case 8: WRITE_BUFFER(int64_t) break; default: break; } } #undef WRITE_BUFFER /* Need a fixed size serializer for the track ID. libmkv provides a 64 bit * one, but not a 32 bit one. */ static void Ebml_SerializeUnsigned32(EbmlGlobal *glob, unsigned long class_id, uint64_t ui) { unsigned char sizeSerialized = 4 | 0x80; Ebml_WriteID(glob, class_id); Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1); Ebml_Serialize(glob, &ui, sizeof(ui), 4); } static void Ebml_StartSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc, unsigned long class_id) { /* todo this is always taking 8 bytes, this may need later optimization */ /* this is a key that says length unknown */ uint64_t unknownLen = LITERALU64(0x01FFFFFF, 0xFFFFFFFF); Ebml_WriteID(glob, class_id); *ebmlLoc = ftello(glob->stream); Ebml_Serialize(glob, &unknownLen, sizeof(unknownLen), 8); } static void Ebml_EndSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc) { off_t pos; uint64_t size; /* Save the current stream pointer */ pos = ftello(glob->stream); /* Calculate the size of this element */ size = pos - *ebmlLoc - 8; size |= LITERALU64(0x01000000, 0x00000000); /* Seek back to the beginning of the element and write the new size */ fseeko(glob->stream, *ebmlLoc, SEEK_SET); Ebml_Serialize(glob, &size, sizeof(size), 8); /* Reset the stream pointer */ fseeko(glob->stream, pos, SEEK_SET); } static void write_webm_seek_element(EbmlGlobal *ebml, unsigned long id, off_t pos) { uint64_t offset = pos - ebml->position_reference; EbmlLoc start; Ebml_StartSubElement(ebml, &start, Seek); Ebml_SerializeBinary(ebml, SeekID, id); Ebml_SerializeUnsigned64(ebml, SeekPosition, offset); Ebml_EndSubElement(ebml, &start); } static void write_webm_seek_info(EbmlGlobal *ebml) { off_t pos; /* Save the current stream pointer */ pos = ftello(ebml->stream); if (ebml->seek_info_pos) fseeko(ebml->stream, ebml->seek_info_pos, SEEK_SET); else ebml->seek_info_pos = pos; { EbmlLoc start; Ebml_StartSubElement(ebml, &start, SeekHead); write_webm_seek_element(ebml, Tracks, ebml->track_pos); write_webm_seek_element(ebml, Cues, ebml->cue_pos); write_webm_seek_element(ebml, Info, ebml->segment_info_pos); Ebml_EndSubElement(ebml, &start); } { /* segment info */ EbmlLoc startInfo; uint64_t frame_time; char version_string[64]; /* Assemble version string */ if (ebml->debug) strcpy(version_string, "vpxenc"); else { strcpy(version_string, "vpxenc "); strncat(version_string, vpx_codec_version_str(), sizeof(version_string) - 1 - strlen(version_string)); } frame_time = (uint64_t)1000 * ebml->framerate.den / ebml->framerate.num; ebml->segment_info_pos = ftello(ebml->stream); Ebml_StartSubElement(ebml, &startInfo, Info); Ebml_SerializeUnsigned(ebml, TimecodeScale, 1000000); Ebml_SerializeFloat(ebml, Segment_Duration, (double)(ebml->last_pts_ms + frame_time)); Ebml_SerializeString(ebml, 0x4D80, version_string); Ebml_SerializeString(ebml, 0x5741, version_string); Ebml_EndSubElement(ebml, &startInfo); } } static void write_webm_file_header(EbmlGlobal *glob, const vpx_codec_enc_cfg_t *cfg, const struct vpx_rational *fps, stereo_format_t stereo_fmt, unsigned int fourcc) { { EbmlLoc start; Ebml_StartSubElement(glob, &start, EBML); Ebml_SerializeUnsigned(glob, EBMLVersion, 1); Ebml_SerializeUnsigned(glob, EBMLReadVersion, 1); Ebml_SerializeUnsigned(glob, EBMLMaxIDLength, 4); Ebml_SerializeUnsigned(glob, EBMLMaxSizeLength, 8); Ebml_SerializeString(glob, DocType, "webm"); Ebml_SerializeUnsigned(glob, DocTypeVersion, 2); Ebml_SerializeUnsigned(glob, DocTypeReadVersion, 2); Ebml_EndSubElement(glob, &start); } { Ebml_StartSubElement(glob, &glob->startSegment, Segment); glob->position_reference = ftello(glob->stream); glob->framerate = *fps; write_webm_seek_info(glob); { EbmlLoc trackStart; glob->track_pos = ftello(glob->stream); Ebml_StartSubElement(glob, &trackStart, Tracks); { unsigned int trackNumber = 1; uint64_t trackID = 0; EbmlLoc start; Ebml_StartSubElement(glob, &start, TrackEntry); Ebml_SerializeUnsigned(glob, TrackNumber, trackNumber); glob->track_id_pos = ftello(glob->stream); Ebml_SerializeUnsigned32(glob, TrackUID, trackID); Ebml_SerializeUnsigned(glob, TrackType, 1); Ebml_SerializeString(glob, CodecID, fourcc == VP8_FOURCC ? "V_VP8" : "V_VP9"); { unsigned int pixelWidth = cfg->g_w; unsigned int pixelHeight = cfg->g_h; float frameRate = (float)fps->num / (float)fps->den; EbmlLoc videoStart; Ebml_StartSubElement(glob, &videoStart, Video); Ebml_SerializeUnsigned(glob, PixelWidth, pixelWidth); Ebml_SerializeUnsigned(glob, PixelHeight, pixelHeight); Ebml_SerializeUnsigned(glob, StereoMode, stereo_fmt); Ebml_SerializeFloat(glob, FrameRate, frameRate); Ebml_EndSubElement(glob, &videoStart); } Ebml_EndSubElement(glob, &start); /* Track Entry */ } Ebml_EndSubElement(glob, &trackStart); } /* segment element is open */ } } static void write_webm_block(EbmlGlobal *glob, const vpx_codec_enc_cfg_t *cfg, const vpx_codec_cx_pkt_t *pkt) { unsigned long block_length; unsigned char track_number; unsigned short block_timecode = 0; unsigned char flags; int64_t pts_ms; int start_cluster = 0, is_keyframe; /* Calculate the PTS of this frame in milliseconds */ pts_ms = pkt->data.frame.pts * 1000 * (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den; if (pts_ms <= glob->last_pts_ms) pts_ms = glob->last_pts_ms + 1; glob->last_pts_ms = pts_ms; /* Calculate the relative time of this block */ if (pts_ms - glob->cluster_timecode > SHRT_MAX) start_cluster = 1; else block_timecode = (unsigned short)pts_ms - glob->cluster_timecode; is_keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY); if (start_cluster || is_keyframe) { if (glob->cluster_open) Ebml_EndSubElement(glob, &glob->startCluster); /* Open the new cluster */ block_timecode = 0; glob->cluster_open = 1; glob->cluster_timecode = (uint32_t)pts_ms; glob->cluster_pos = ftello(glob->stream); Ebml_StartSubElement(glob, &glob->startCluster, Cluster); /* cluster */ Ebml_SerializeUnsigned(glob, Timecode, glob->cluster_timecode); /* Save a cue point if this is a keyframe. */ if (is_keyframe) { struct cue_entry *cue, *new_cue_list; new_cue_list = realloc(glob->cue_list, (glob->cues + 1) * sizeof(struct cue_entry)); if (new_cue_list) glob->cue_list = new_cue_list; else fatal("Failed to realloc cue list."); cue = &glob->cue_list[glob->cues]; cue->time = glob->cluster_timecode; cue->loc = glob->cluster_pos; glob->cues++; } } /* Write the Simple Block */ Ebml_WriteID(glob, SimpleBlock); block_length = (unsigned long)pkt->data.frame.sz + 4; block_length |= 0x10000000; Ebml_Serialize(glob, &block_length, sizeof(block_length), 4); track_number = 1; track_number |= 0x80; Ebml_Write(glob, &track_number, 1); Ebml_Serialize(glob, &block_timecode, sizeof(block_timecode), 2); flags = 0; if (is_keyframe) flags |= 0x80; if (pkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE) flags |= 0x08; Ebml_Write(glob, &flags, 1); Ebml_Write(glob, pkt->data.frame.buf, (unsigned long)pkt->data.frame.sz); } static void write_webm_file_footer(EbmlGlobal *glob, long hash) { if (glob->cluster_open) Ebml_EndSubElement(glob, &glob->startCluster); { EbmlLoc start; unsigned int i; glob->cue_pos = ftello(glob->stream); Ebml_StartSubElement(glob, &start, Cues); for (i = 0; i < glob->cues; i++) { struct cue_entry *cue = &glob->cue_list[i]; EbmlLoc start; Ebml_StartSubElement(glob, &start, CuePoint); { EbmlLoc start; Ebml_SerializeUnsigned(glob, CueTime, cue->time); Ebml_StartSubElement(glob, &start, CueTrackPositions); Ebml_SerializeUnsigned(glob, CueTrack, 1); Ebml_SerializeUnsigned64(glob, CueClusterPosition, cue->loc - glob->position_reference); Ebml_EndSubElement(glob, &start); } Ebml_EndSubElement(glob, &start); } Ebml_EndSubElement(glob, &start); } Ebml_EndSubElement(glob, &glob->startSegment); /* Patch up the seek info block */ write_webm_seek_info(glob); /* Patch up the track id */ fseeko(glob->stream, glob->track_id_pos, SEEK_SET); Ebml_SerializeUnsigned32(glob, TrackUID, glob->debug ? 0xDEADBEEF : hash); fseeko(glob->stream, 0, SEEK_END); } /* Murmur hash derived from public domain reference implementation at * http:// sites.google.com/site/murmurhash/ */ static unsigned int murmur(const void *key, int len, unsigned int seed) { const unsigned int m = 0x5bd1e995; const int r = 24; unsigned int h = seed ^ len; const unsigned char *data = (const unsigned char *)key; while (len >= 4) { unsigned int k; k = data[0]; k |= data[1] << 8; k |= data[2] << 16; k |= data[3] << 24; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } switch (len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } #include "math.h" #define MAX_PSNR 100 static double vp8_mse2psnr(double Samples, double Peak, double Mse) { double psnr; if ((double)Mse > 0.0) psnr = 10.0 * log10(Peak * Peak * Samples / Mse); else psnr = MAX_PSNR; /* Limit to prevent / 0 */ if (psnr > MAX_PSNR) psnr = MAX_PSNR; return psnr; } #include "args.h" static const arg_def_t debugmode = ARG_DEF("D", "debug", 0, "Debug mode (makes output deterministic)"); static const arg_def_t outputfile = ARG_DEF("o", "output", 1, "Output filename"); static const arg_def_t use_yv12 = ARG_DEF(NULL, "yv12", 0, "Input file is YV12 "); static const arg_def_t use_i420 = ARG_DEF(NULL, "i420", 0, "Input file is I420 (default)"); static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1, "Codec to use"); static const arg_def_t passes = ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); static const arg_def_t fpf_name = ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); static const arg_def_t limit = ARG_DEF(NULL, "limit", 1, "Stop encoding after n input frames"); static const arg_def_t skip = ARG_DEF(NULL, "skip", 1, "Skip the first n input frames"); static const arg_def_t deadline = ARG_DEF("d", "deadline", 1, "Deadline per frame (usec)"); static const arg_def_t best_dl = ARG_DEF(NULL, "best", 0, "Use Best Quality Deadline"); static const arg_def_t good_dl = ARG_DEF(NULL, "good", 0, "Use Good Quality Deadline"); static const arg_def_t rt_dl = ARG_DEF(NULL, "rt", 0, "Use Realtime Quality Deadline"); static const arg_def_t quietarg = ARG_DEF("q", "quiet", 0, "Do not print encode progress"); static const arg_def_t verbosearg = ARG_DEF("v", "verbose", 0, "Show encoder parameters"); static const arg_def_t psnrarg = ARG_DEF(NULL, "psnr", 0, "Show PSNR in status line"); static const arg_def_t recontest = ARG_DEF(NULL, "test-decode", 0, "Test encode/decode mismatch"); static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1, "Stream frame rate (rate/scale)"); static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0, "Output IVF (default is WebM)"); static const arg_def_t out_part = ARG_DEF("P", "output-partitions", 0, "Makes encoder output partitions. Requires IVF output!"); static const arg_def_t q_hist_n = ARG_DEF(NULL, "q-hist", 1, "Show quantizer histogram (n-buckets)"); static const arg_def_t rate_hist_n = ARG_DEF(NULL, "rate-hist", 1, "Show rate histogram (n-buckets)"); static const arg_def_t *main_args[] = { &debugmode, &outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &skip, &deadline, &best_dl, &good_dl, &rt_dl, &quietarg, &verbosearg, &psnrarg, &use_ivf, &out_part, &q_hist_n, &rate_hist_n, NULL }; static const arg_def_t usage = ARG_DEF("u", "usage", 1, "Usage profile number to use"); static const arg_def_t threads = ARG_DEF("t", "threads", 1, "Max number of threads to use"); static const arg_def_t profile = ARG_DEF(NULL, "profile", 1, "Bitstream profile number to use"); static const arg_def_t width = ARG_DEF("w", "width", 1, "Frame width"); static const arg_def_t height = ARG_DEF("h", "height", 1, "Frame height"); static const struct arg_enum_list stereo_mode_enum[] = { {"mono", STEREO_FORMAT_MONO}, {"left-right", STEREO_FORMAT_LEFT_RIGHT}, {"bottom-top", STEREO_FORMAT_BOTTOM_TOP}, {"top-bottom", STEREO_FORMAT_TOP_BOTTOM}, {"right-left", STEREO_FORMAT_RIGHT_LEFT}, {NULL, 0} }; static const arg_def_t stereo_mode = ARG_DEF_ENUM(NULL, "stereo-mode", 1, "Stereo 3D video format", stereo_mode_enum); static const arg_def_t timebase = ARG_DEF(NULL, "timebase", 1, "Output timestamp precision (fractional seconds)"); static const arg_def_t error_resilient = ARG_DEF(NULL, "error-resilient", 1, "Enable error resiliency features"); static const arg_def_t lag_in_frames = ARG_DEF(NULL, "lag-in-frames", 1, "Max number of frames to lag"); static const arg_def_t *global_args[] = { &use_yv12, &use_i420, &usage, &threads, &profile, &width, &height, &stereo_mode, &timebase, &framerate, &error_resilient, &lag_in_frames, NULL }; static const arg_def_t dropframe_thresh = ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); static const arg_def_t resize_allowed = ARG_DEF(NULL, "resize-allowed", 1, "Spatial resampling enabled (bool)"); static const arg_def_t resize_up_thresh = ARG_DEF(NULL, "resize-up", 1, "Upscale threshold (buf %)"); static const arg_def_t resize_down_thresh = ARG_DEF(NULL, "resize-down", 1, "Downscale threshold (buf %)"); static const struct arg_enum_list end_usage_enum[] = { {"vbr", VPX_VBR}, {"cbr", VPX_CBR}, {"cq", VPX_CQ}, {NULL, 0} }; static const arg_def_t end_usage = ARG_DEF_ENUM(NULL, "end-usage", 1, "Rate control mode", end_usage_enum); static const arg_def_t target_bitrate = ARG_DEF(NULL, "target-bitrate", 1, "Bitrate (kbps)"); static const arg_def_t min_quantizer = ARG_DEF(NULL, "min-q", 1, "Minimum (best) quantizer"); static const arg_def_t max_quantizer = ARG_DEF(NULL, "max-q", 1, "Maximum (worst) quantizer"); static const arg_def_t undershoot_pct = ARG_DEF(NULL, "undershoot-pct", 1, "Datarate undershoot (min) target (%)"); static const arg_def_t overshoot_pct = ARG_DEF(NULL, "overshoot-pct", 1, "Datarate overshoot (max) target (%)"); static const arg_def_t buf_sz = ARG_DEF(NULL, "buf-sz", 1, "Client buffer size (ms)"); static const arg_def_t buf_initial_sz = ARG_DEF(NULL, "buf-initial-sz", 1, "Client initial buffer size (ms)"); static const arg_def_t buf_optimal_sz = ARG_DEF(NULL, "buf-optimal-sz", 1, "Client optimal buffer size (ms)"); static const arg_def_t *rc_args[] = { &dropframe_thresh, &resize_allowed, &resize_up_thresh, &resize_down_thresh, &end_usage, &target_bitrate, &min_quantizer, &max_quantizer, &undershoot_pct, &overshoot_pct, &buf_sz, &buf_initial_sz, &buf_optimal_sz, NULL }; static const arg_def_t bias_pct = ARG_DEF(NULL, "bias-pct", 1, "CBR/VBR bias (0=CBR, 100=VBR)"); static const arg_def_t minsection_pct = ARG_DEF(NULL, "minsection-pct", 1, "GOP min bitrate (% of target)"); static const arg_def_t maxsection_pct = ARG_DEF(NULL, "maxsection-pct", 1, "GOP max bitrate (% of target)"); static const arg_def_t *rc_twopass_args[] = { &bias_pct, &minsection_pct, &maxsection_pct, NULL }; static const arg_def_t kf_min_dist = ARG_DEF(NULL, "kf-min-dist", 1, "Minimum keyframe interval (frames)"); static const arg_def_t kf_max_dist = ARG_DEF(NULL, "kf-max-dist", 1, "Maximum keyframe interval (frames)"); static const arg_def_t kf_disabled = ARG_DEF(NULL, "disable-kf", 0, "Disable keyframe placement"); static const arg_def_t *kf_args[] = { &kf_min_dist, &kf_max_dist, &kf_disabled, NULL }; static const arg_def_t noise_sens = ARG_DEF(NULL, "noise-sensitivity", 1, "Noise sensitivity (frames to blur)"); static const arg_def_t sharpness = ARG_DEF(NULL, "sharpness", 1, "Filter sharpness (0-7)"); static const arg_def_t static_thresh = ARG_DEF(NULL, "static-thresh", 1, "Motion detection threshold"); static const arg_def_t cpu_used = ARG_DEF(NULL, "cpu-used", 1, "CPU Used (-16..16)"); static const arg_def_t token_parts = ARG_DEF(NULL, "token-parts", 1, "Number of token partitions to use, log2"); static const arg_def_t auto_altref = ARG_DEF(NULL, "auto-alt-ref", 1, "Enable automatic alt reference frames"); static const arg_def_t arnr_maxframes = ARG_DEF(NULL, "arnr-maxframes", 1, "AltRef Max Frames"); static const arg_def_t arnr_strength = ARG_DEF(NULL, "arnr-strength", 1, "AltRef Strength"); static const arg_def_t arnr_type = ARG_DEF(NULL, "arnr-type", 1, "AltRef Type"); static const struct arg_enum_list tuning_enum[] = { {"psnr", VP8_TUNE_PSNR}, {"ssim", VP8_TUNE_SSIM}, {NULL, 0} }; static const arg_def_t tune_ssim = ARG_DEF_ENUM(NULL, "tune", 1, "Material to favor", tuning_enum); static const arg_def_t cq_level = ARG_DEF(NULL, "cq-level", 1, "Constrained Quality Level"); static const arg_def_t max_intra_rate_pct = ARG_DEF(NULL, "max-intra-rate", 1, "Max I-frame bitrate (pct)"); #if CONFIG_LOSSLESS static const arg_def_t lossless = ARG_DEF(NULL, "lossless", 1, "Lossless mode"); #endif #if CONFIG_VP8_ENCODER static const arg_def_t *vp8_args[] = { &cpu_used, &auto_altref, &noise_sens, &sharpness, &static_thresh, &token_parts, &arnr_maxframes, &arnr_strength, &arnr_type, &tune_ssim, &cq_level, &max_intra_rate_pct, NULL }; static const int vp8_arg_ctrl_map[] = { VP8E_SET_CPUUSED, VP8E_SET_ENABLEAUTOALTREF, VP8E_SET_NOISE_SENSITIVITY, VP8E_SET_SHARPNESS, VP8E_SET_STATIC_THRESHOLD, VP8E_SET_TOKEN_PARTITIONS, VP8E_SET_ARNR_MAXFRAMES, VP8E_SET_ARNR_STRENGTH, VP8E_SET_ARNR_TYPE, VP8E_SET_TUNING, VP8E_SET_CQ_LEVEL, VP8E_SET_MAX_INTRA_BITRATE_PCT, 0 }; #endif #if CONFIG_VP9_ENCODER static const arg_def_t *vp9_args[] = { &cpu_used, &auto_altref, &noise_sens, &sharpness, &static_thresh, &token_parts, &arnr_maxframes, &arnr_strength, &arnr_type, &tune_ssim, &cq_level, &max_intra_rate_pct, #if CONFIG_LOSSLESS &lossless, #endif NULL }; static const int vp9_arg_ctrl_map[] = { VP8E_SET_CPUUSED, VP8E_SET_ENABLEAUTOALTREF, VP8E_SET_NOISE_SENSITIVITY, VP8E_SET_SHARPNESS, VP8E_SET_STATIC_THRESHOLD, VP8E_SET_TOKEN_PARTITIONS, VP8E_SET_ARNR_MAXFRAMES, VP8E_SET_ARNR_STRENGTH, VP8E_SET_ARNR_TYPE, VP8E_SET_TUNING, VP8E_SET_CQ_LEVEL, VP8E_SET_MAX_INTRA_BITRATE_PCT, #if CONFIG_LOSSLESS VP9E_SET_LOSSLESS, #endif 0 }; #endif static const arg_def_t *no_args[] = { NULL }; static void usage_exit() { int i; fprintf(stderr, "Usage: %s -o dst_filename src_filename \n", exec_name); fprintf(stderr, "\nOptions:\n"); arg_show_usage(stdout, main_args); fprintf(stderr, "\nEncoder Global Options:\n"); arg_show_usage(stdout, global_args); fprintf(stderr, "\nRate Control Options:\n"); arg_show_usage(stdout, rc_args); fprintf(stderr, "\nTwopass Rate Control Options:\n"); arg_show_usage(stdout, rc_twopass_args); fprintf(stderr, "\nKeyframe Placement Options:\n"); arg_show_usage(stdout, kf_args); #if CONFIG_VP8_ENCODER fprintf(stderr, "\nVP8 Specific Options:\n"); arg_show_usage(stdout, vp8_args); #endif #if CONFIG_VP9_ENCODER fprintf(stderr, "\nVP9 Specific Options:\n"); arg_show_usage(stdout, vp9_args); #endif fprintf(stderr, "\nStream timebase (--timebase):\n" " The desired precision of timestamps in the output, expressed\n" " in fractional seconds. Default is 1/1000.\n"); fprintf(stderr, "\n" "Included encoders:\n" "\n"); for (i = 0; i < sizeof(codecs) / sizeof(codecs[0]); i++) fprintf(stderr, " %-6s - %s\n", codecs[i].name, vpx_codec_iface_name(codecs[i].iface())); exit(EXIT_FAILURE); } #define HIST_BAR_MAX 40 struct hist_bucket { int low, high, count; }; static int merge_hist_buckets(struct hist_bucket *bucket, int *buckets_, int max_buckets) { int small_bucket = 0, merge_bucket = INT_MAX, big_bucket = 0; int buckets = *buckets_; int i; /* Find the extrema for this list of buckets */ big_bucket = small_bucket = 0; for (i = 0; i < buckets; i++) { if (bucket[i].count < bucket[small_bucket].count) small_bucket = i; if (bucket[i].count > bucket[big_bucket].count) big_bucket = i; } /* If we have too many buckets, merge the smallest with an adjacent * bucket. */ while (buckets > max_buckets) { int last_bucket = buckets - 1; /* merge the small bucket with an adjacent one. */ if (small_bucket == 0) merge_bucket = 1; else if (small_bucket == last_bucket) merge_bucket = last_bucket - 1; else if (bucket[small_bucket - 1].count < bucket[small_bucket + 1].count) merge_bucket = small_bucket - 1; else merge_bucket = small_bucket + 1; assert(abs(merge_bucket - small_bucket) <= 1); assert(small_bucket < buckets); assert(big_bucket < buckets); assert(merge_bucket < buckets); if (merge_bucket < small_bucket) { bucket[merge_bucket].high = bucket[small_bucket].high; bucket[merge_bucket].count += bucket[small_bucket].count; } else { bucket[small_bucket].high = bucket[merge_bucket].high; bucket[small_bucket].count += bucket[merge_bucket].count; merge_bucket = small_bucket; } assert(bucket[merge_bucket].low != bucket[merge_bucket].high); buckets--; /* Remove the merge_bucket from the list, and find the new small * and big buckets while we're at it */ big_bucket = small_bucket = 0; for (i = 0; i < buckets; i++) { if (i > merge_bucket) bucket[i] = bucket[i + 1]; if (bucket[i].count < bucket[small_bucket].count) small_bucket = i; if (bucket[i].count > bucket[big_bucket].count) big_bucket = i; } } *buckets_ = buckets; return bucket[big_bucket].count; } static void show_histogram(const struct hist_bucket *bucket, int buckets, int total, int scale) { const char *pat1, *pat2; int i; switch ((int)(log(bucket[buckets - 1].high) / log(10)) + 1) { case 1: case 2: pat1 = "%4d %2s: "; pat2 = "%4d-%2d: "; break; case 3: pat1 = "%5d %3s: "; pat2 = "%5d-%3d: "; break; case 4: pat1 = "%6d %4s: "; pat2 = "%6d-%4d: "; break; case 5: pat1 = "%7d %5s: "; pat2 = "%7d-%5d: "; break; case 6: pat1 = "%8d %6s: "; pat2 = "%8d-%6d: "; break; case 7: pat1 = "%9d %7s: "; pat2 = "%9d-%7d: "; break; default: pat1 = "%12d %10s: "; pat2 = "%12d-%10d: "; break; } for (i = 0; i < buckets; i++) { int len; int j; float pct; pct = (float)(100.0 * bucket[i].count / total); len = HIST_BAR_MAX * bucket[i].count / scale; if (len < 1) len = 1; assert(len <= HIST_BAR_MAX); if (bucket[i].low == bucket[i].high) fprintf(stderr, pat1, bucket[i].low, ""); else fprintf(stderr, pat2, bucket[i].low, bucket[i].high); for (j = 0; j < HIST_BAR_MAX; j++) fprintf(stderr, j < len ? "=" : " "); fprintf(stderr, "\t%5d (%6.2f%%)\n", bucket[i].count, pct); } } static void show_q_histogram(const int counts[64], int max_buckets) { struct hist_bucket bucket[64]; int buckets = 0; int total = 0; int scale; int i; for (i = 0; i < 64; i++) { if (counts[i]) { bucket[buckets].low = bucket[buckets].high = i; bucket[buckets].count = counts[i]; buckets++; total += counts[i]; } } fprintf(stderr, "\nQuantizer Selection:\n"); scale = merge_hist_buckets(bucket, &buckets, max_buckets); show_histogram(bucket, buckets, total, scale); } #define RATE_BINS (100) struct rate_hist { int64_t *pts; int *sz; int samples; int frames; struct hist_bucket bucket[RATE_BINS]; int total; }; static void init_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, const vpx_rational_t *fps) { int i; /* Determine the number of samples in the buffer. Use the file's framerate * to determine the number of frames in rc_buf_sz milliseconds, with an * adjustment (5/4) to account for alt-refs */ hist->samples = cfg->rc_buf_sz * 5 / 4 * fps->num / fps->den / 1000; /* prevent division by zero */ if (hist->samples == 0) hist->samples = 1; hist->pts = calloc(hist->samples, sizeof(*hist->pts)); hist->sz = calloc(hist->samples, sizeof(*hist->sz)); for (i = 0; i < RATE_BINS; i++) { hist->bucket[i].low = INT_MAX; hist->bucket[i].high = 0; hist->bucket[i].count = 0; } } static void destroy_rate_histogram(struct rate_hist *hist) { free(hist->pts); free(hist->sz); } static void update_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, const vpx_codec_cx_pkt_t *pkt) { int i, idx; int64_t now, then, sum_sz = 0, avg_bitrate; now = pkt->data.frame.pts * 1000 * (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den; idx = hist->frames++ % hist->samples; hist->pts[idx] = now; hist->sz[idx] = (int)pkt->data.frame.sz; if (now < cfg->rc_buf_initial_sz) return; then = now; /* Sum the size over the past rc_buf_sz ms */ for (i = hist->frames; i > 0 && hist->frames - i < hist->samples; i--) { int i_idx = (i - 1) % hist->samples; then = hist->pts[i_idx]; if (now - then > cfg->rc_buf_sz) break; sum_sz += hist->sz[i_idx]; } if (now == then) return; avg_bitrate = sum_sz * 8 * 1000 / (now - then); idx = (int)(avg_bitrate * (RATE_BINS / 2) / (cfg->rc_target_bitrate * 1000)); if (idx < 0) idx = 0; if (idx > RATE_BINS - 1) idx = RATE_BINS - 1; if (hist->bucket[idx].low > avg_bitrate) hist->bucket[idx].low = (int)avg_bitrate; if (hist->bucket[idx].high < avg_bitrate) hist->bucket[idx].high = (int)avg_bitrate; hist->bucket[idx].count++; hist->total++; } static void show_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, int max_buckets) { int i, scale; int buckets = 0; for (i = 0; i < RATE_BINS; i++) { if (hist->bucket[i].low == INT_MAX) continue; hist->bucket[buckets++] = hist->bucket[i]; } fprintf(stderr, "\nRate (over %dms window):\n", cfg->rc_buf_sz); scale = merge_hist_buckets(hist->bucket, &buckets, max_buckets); show_histogram(hist->bucket, buckets, hist->total, scale); } #define mmin(a, b) ((a) < (b) ? (a) : (b)) static void find_mismatch(vpx_image_t *img1, vpx_image_t *img2, int yloc[2], int uloc[2], int vloc[2]) { int match = 1; int i, j; yloc[0] = yloc[1] = -1; for (i = 0, match = 1; match && i < img1->d_h; i+=32) { for (j = 0; match && j < img1->d_w; j+=32) { int k, l; int si = mmin(i + 32, img1->d_h) - i; int sj = mmin(j + 32, img1->d_w) - j; for (k = 0; match && k < si; k++) for (l = 0; match && l < sj; l++) { if (*(img1->planes[VPX_PLANE_Y] + (i + k) * img1->stride[VPX_PLANE_Y] + j + l) != *(img2->planes[VPX_PLANE_Y] + (i + k) * img2->stride[VPX_PLANE_Y] + j + l)) { yloc[0] = i + k; yloc[1] = j + l; match = 0; break; } } } } uloc[0] = uloc[1] = -1; for (i = 0, match = 1; match && i < (img1->d_h + 1) / 2; i+=16) { for (j = 0; j < match && (img1->d_w + 1) / 2; j+=16) { int k, l; int si = mmin(i + 16, (img1->d_h + 1) / 2) - i; int sj = mmin(j + 16, (img1->d_w + 1) / 2) - j; for (k = 0; match && k < si; k++) for (l = 0; match && l < sj; l++) { if (*(img1->planes[VPX_PLANE_U] + (i + k) * img1->stride[VPX_PLANE_U] + j + l) != *(img2->planes[VPX_PLANE_U] + (i + k) * img2->stride[VPX_PLANE_U] + j + l)) { uloc[0] = i + k; uloc[1] = j + l; match = 0; break; } } } } vloc[0] = vloc[1] = -1; for (i = 0, match = 1; match && i < (img1->d_h + 1) / 2; i+=16) { for (j = 0; j < match && (img1->d_w + 1) / 2; j+=16) { int k, l; int si = mmin(i + 16, (img1->d_h + 1) / 2) - i; int sj = mmin(j + 16, (img1->d_w + 1) / 2) - j; for (k = 0; match && k < si; k++) for (l = 0; match && l < sj; l++) { if (*(img1->planes[VPX_PLANE_V] + (i + k) * img1->stride[VPX_PLANE_V] + j + l) != *(img2->planes[VPX_PLANE_V] + (i + k) * img2->stride[VPX_PLANE_V] + j + l)) { vloc[0] = i + k; vloc[1] = j + l; match = 0; break; } } } } } static int compare_img(vpx_image_t *img1, vpx_image_t *img2) { int match = 1; int i; match &= (img1->fmt == img2->fmt); match &= (img1->w == img2->w); match &= (img1->h == img2->h); for (i = 0; i < img1->d_h; i++) match &= (memcmp(img1->planes[VPX_PLANE_Y]+i*img1->stride[VPX_PLANE_Y], img2->planes[VPX_PLANE_Y]+i*img2->stride[VPX_PLANE_Y], img1->d_w) == 0); for (i = 0; i < img1->d_h/2; i++) match &= (memcmp(img1->planes[VPX_PLANE_U]+i*img1->stride[VPX_PLANE_U], img2->planes[VPX_PLANE_U]+i*img2->stride[VPX_PLANE_U], (img1->d_w + 1) / 2) == 0); for (i = 0; i < img1->d_h/2; i++) match &= (memcmp(img1->planes[VPX_PLANE_V]+i*img1->stride[VPX_PLANE_U], img2->planes[VPX_PLANE_V]+i*img2->stride[VPX_PLANE_U], (img1->d_w + 1) / 2) == 0); return match; } #define NELEMENTS(x) (sizeof(x)/sizeof(x[0])) #define MAX(x,y) ((x)>(y)?(x):(y)) #if CONFIG_VP8_ENCODER && !CONFIG_VP9_ENCODER #define ARG_CTRL_CNT_MAX NELEMENTS(vp8_arg_ctrl_map) #elif !CONFIG_VP8_ENCODER && CONFIG_VP9_ENCODER #define ARG_CTRL_CNT_MAX NELEMENTS(vp9_arg_ctrl_map) #else #define ARG_CTRL_CNT_MAX MAX(NELEMENTS(vp8_arg_ctrl_map), \ NELEMENTS(vp9_arg_ctrl_map)) #endif /* Configuration elements common to all streams */ struct global_config { const struct codec_item *codec; int passes; int pass; int usage; int deadline; int use_i420; int quiet; int verbose; int limit; int skip_frames; int show_psnr; int test_decode; int have_framerate; struct vpx_rational framerate; int out_part; int debug; int show_q_hist_buckets; int show_rate_hist_buckets; }; /* Per-stream configuration */ struct stream_config { struct vpx_codec_enc_cfg cfg; const char *out_fn; const char *stats_fn; stereo_format_t stereo_fmt; int arg_ctrls[ARG_CTRL_CNT_MAX][2]; int arg_ctrl_cnt; int write_webm; int have_kf_max_dist; }; struct stream_state { int index; struct stream_state *next; struct stream_config config; FILE *file; struct rate_hist rate_hist; EbmlGlobal ebml; uint32_t hash; uint64_t psnr_sse_total; uint64_t psnr_samples_total; double psnr_totals[4]; int psnr_count; int counts[64]; vpx_codec_ctx_t encoder; unsigned int frames_out; uint64_t cx_time; size_t nbytes; stats_io_t stats; vpx_codec_ctx_t decoder; vpx_ref_frame_t ref_enc; vpx_ref_frame_t ref_dec; int mismatch_seen; }; void validate_positive_rational(const char *msg, struct vpx_rational *rat) { if (rat->den < 0) { rat->num *= -1; rat->den *= -1; } if (rat->num < 0) die("Error: %s must be positive\n", msg); if (!rat->den) die("Error: %s has zero denominator\n", msg); } static void parse_global_config(struct global_config *global, char **argv) { char **argi, **argj; struct arg arg; /* Initialize default parameters */ memset(global, 0, sizeof(*global)); global->codec = codecs; global->passes = 1; global->use_i420 = 1; for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &codecarg, argi)) { int j, k = -1; for (j = 0; j < sizeof(codecs) / sizeof(codecs[0]); j++) if (!strcmp(codecs[j].name, arg.val)) k = j; if (k >= 0) global->codec = codecs + k; else die("Error: Unrecognized argument (%s) to --codec\n", arg.val); } else if (arg_match(&arg, &passes, argi)) { global->passes = arg_parse_uint(&arg); if (global->passes < 1 || global->passes > 2) die("Error: Invalid number of passes (%d)\n", global->passes); } else if (arg_match(&arg, &pass_arg, argi)) { global->pass = arg_parse_uint(&arg); if (global->pass < 1 || global->pass > 2) die("Error: Invalid pass selected (%d)\n", global->pass); } else if (arg_match(&arg, &usage, argi)) global->usage = arg_parse_uint(&arg); else if (arg_match(&arg, &deadline, argi)) global->deadline = arg_parse_uint(&arg); else if (arg_match(&arg, &best_dl, argi)) global->deadline = VPX_DL_BEST_QUALITY; else if (arg_match(&arg, &good_dl, argi)) global->deadline = VPX_DL_GOOD_QUALITY; else if (arg_match(&arg, &rt_dl, argi)) global->deadline = VPX_DL_REALTIME; else if (arg_match(&arg, &use_yv12, argi)) global->use_i420 = 0; else if (arg_match(&arg, &use_i420, argi)) global->use_i420 = 1; else if (arg_match(&arg, &quietarg, argi)) global->quiet = 1; else if (arg_match(&arg, &verbosearg, argi)) global->verbose = 1; else if (arg_match(&arg, &limit, argi)) global->limit = arg_parse_uint(&arg); else if (arg_match(&arg, &skip, argi)) global->skip_frames = arg_parse_uint(&arg); else if (arg_match(&arg, &psnrarg, argi)) global->show_psnr = 1; else if (arg_match(&arg, &recontest, argi)) global->test_decode = 1; else if (arg_match(&arg, &framerate, argi)) { global->framerate = arg_parse_rational(&arg); validate_positive_rational(arg.name, &global->framerate); global->have_framerate = 1; } else if (arg_match(&arg, &out_part, argi)) global->out_part = 1; else if (arg_match(&arg, &debugmode, argi)) global->debug = 1; else if (arg_match(&arg, &q_hist_n, argi)) global->show_q_hist_buckets = arg_parse_uint(&arg); else if (arg_match(&arg, &rate_hist_n, argi)) global->show_rate_hist_buckets = arg_parse_uint(&arg); else argj++; } /* Validate global config */ if (global->pass) { /* DWIM: Assume the user meant passes=2 if pass=2 is specified */ if (global->pass > global->passes) { warn("Assuming --pass=%d implies --passes=%d\n", global->pass, global->pass); global->passes = global->pass; } } } void open_input_file(struct input_state *input) { unsigned int fourcc; /* Parse certain options from the input file, if possible */ input->file = strcmp(input->fn, "-") ? fopen(input->fn, "rb") : set_binary_mode(stdin); if (!input->file) fatal("Failed to open input file"); if (!fseeko(input->file, 0, SEEK_END)) { /* Input file is seekable. Figure out how long it is, so we can get * progress info. */ input->length = ftello(input->file); rewind(input->file); } /* For RAW input sources, these bytes will applied on the first frame * in read_frame(). */ input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file); input->detect.position = 0; if (input->detect.buf_read == 4 && file_is_y4m(input->file, &input->y4m, input->detect.buf)) { if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4) >= 0) { input->file_type = FILE_TYPE_Y4M; input->w = input->y4m.pic_w; input->h = input->y4m.pic_h; input->framerate.num = input->y4m.fps_n; input->framerate.den = input->y4m.fps_d; input->use_i420 = 0; } else fatal("Unsupported Y4M stream."); } else if (input->detect.buf_read == 4 && file_is_ivf(input, &fourcc)) { input->file_type = FILE_TYPE_IVF; switch (fourcc) { case 0x32315659: input->use_i420 = 0; break; case 0x30323449: input->use_i420 = 1; break; default: fatal("Unsupported fourcc (%08x) in IVF", fourcc); } } else { input->file_type = FILE_TYPE_RAW; } } static void close_input_file(struct input_state *input) { fclose(input->file); if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m); } static struct stream_state *new_stream(struct global_config *global, struct stream_state *prev) { struct stream_state *stream; stream = calloc(1, sizeof(*stream)); if (!stream) fatal("Failed to allocate new stream."); if (prev) { memcpy(stream, prev, sizeof(*stream)); stream->index++; prev->next = stream; } else { vpx_codec_err_t res; /* Populate encoder configuration */ res = vpx_codec_enc_config_default(global->codec->iface(), &stream->config.cfg, global->usage); if (res) fatal("Failed to get config: %s\n", vpx_codec_err_to_string(res)); /* Change the default timebase to a high enough value so that the * encoder will always create strictly increasing timestamps. */ stream->config.cfg.g_timebase.den = 1000; /* Never use the library's default resolution, require it be parsed * from the file or set on the command line. */ stream->config.cfg.g_w = 0; stream->config.cfg.g_h = 0; /* Initialize remaining stream parameters */ stream->config.stereo_fmt = STEREO_FORMAT_MONO; stream->config.write_webm = 1; stream->ebml.last_pts_ms = -1; /* Allows removal of the application version from the EBML tags */ stream->ebml.debug = global->debug; } /* Output files must be specified for each stream */ stream->config.out_fn = NULL; stream->next = NULL; return stream; } static int parse_stream_params(struct global_config *global, struct stream_state *stream, char **argv) { char **argi, **argj; struct arg arg; static const arg_def_t **ctrl_args = no_args; static const int *ctrl_args_map = NULL; struct stream_config *config = &stream->config; int eos_mark_found = 0; /* Handle codec specific options */ if (0) { #if CONFIG_VP8_ENCODER } else if (global->codec->iface == vpx_codec_vp8_cx) { ctrl_args = vp8_args; ctrl_args_map = vp8_arg_ctrl_map; #endif #if CONFIG_VP9_ENCODER } else if (global->codec->iface == vpx_codec_vp9_cx) { ctrl_args = vp9_args; ctrl_args_map = vp9_arg_ctrl_map; #endif } for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; /* Once we've found an end-of-stream marker (--) we want to continue * shifting arguments but not consuming them. */ if (eos_mark_found) { argj++; continue; } else if (!strcmp(*argj, "--")) { eos_mark_found = 1; continue; } if (0); else if (arg_match(&arg, &outputfile, argi)) config->out_fn = arg.val; else if (arg_match(&arg, &fpf_name, argi)) config->stats_fn = arg.val; else if (arg_match(&arg, &use_ivf, argi)) config->write_webm = 0; else if (arg_match(&arg, &threads, argi)) config->cfg.g_threads = arg_parse_uint(&arg); else if (arg_match(&arg, &profile, argi)) config->cfg.g_profile = arg_parse_uint(&arg); else if (arg_match(&arg, &width, argi)) config->cfg.g_w = arg_parse_uint(&arg); else if (arg_match(&arg, &height, argi)) config->cfg.g_h = arg_parse_uint(&arg); else if (arg_match(&arg, &stereo_mode, argi)) config->stereo_fmt = arg_parse_enum_or_int(&arg); else if (arg_match(&arg, &timebase, argi)) { config->cfg.g_timebase = arg_parse_rational(&arg); validate_positive_rational(arg.name, &config->cfg.g_timebase); } else if (arg_match(&arg, &error_resilient, argi)) config->cfg.g_error_resilient = arg_parse_uint(&arg); else if (arg_match(&arg, &lag_in_frames, argi)) config->cfg.g_lag_in_frames = arg_parse_uint(&arg); else if (arg_match(&arg, &dropframe_thresh, argi)) config->cfg.rc_dropframe_thresh = arg_parse_uint(&arg); else if (arg_match(&arg, &resize_allowed, argi)) config->cfg.rc_resize_allowed = arg_parse_uint(&arg); else if (arg_match(&arg, &resize_up_thresh, argi)) config->cfg.rc_resize_up_thresh = arg_parse_uint(&arg); else if (arg_match(&arg, &resize_down_thresh, argi)) config->cfg.rc_resize_down_thresh = arg_parse_uint(&arg); else if (arg_match(&arg, &end_usage, argi)) config->cfg.rc_end_usage = arg_parse_enum_or_int(&arg); else if (arg_match(&arg, &target_bitrate, argi)) config->cfg.rc_target_bitrate = arg_parse_uint(&arg); else if (arg_match(&arg, &min_quantizer, argi)) config->cfg.rc_min_quantizer = arg_parse_uint(&arg); else if (arg_match(&arg, &max_quantizer, argi)) config->cfg.rc_max_quantizer = arg_parse_uint(&arg); else if (arg_match(&arg, &undershoot_pct, argi)) config->cfg.rc_undershoot_pct = arg_parse_uint(&arg); else if (arg_match(&arg, &overshoot_pct, argi)) config->cfg.rc_overshoot_pct = arg_parse_uint(&arg); else if (arg_match(&arg, &buf_sz, argi)) config->cfg.rc_buf_sz = arg_parse_uint(&arg); else if (arg_match(&arg, &buf_initial_sz, argi)) config->cfg.rc_buf_initial_sz = arg_parse_uint(&arg); else if (arg_match(&arg, &buf_optimal_sz, argi)) config->cfg.rc_buf_optimal_sz = arg_parse_uint(&arg); else if (arg_match(&arg, &bias_pct, argi)) { config->cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg); if (global->passes < 2) warn("option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &minsection_pct, argi)) { config->cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg); if (global->passes < 2) warn("option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &maxsection_pct, argi)) { config->cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg); if (global->passes < 2) warn("option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &kf_min_dist, argi)) config->cfg.kf_min_dist = arg_parse_uint(&arg); else if (arg_match(&arg, &kf_max_dist, argi)) { config->cfg.kf_max_dist = arg_parse_uint(&arg); config->have_kf_max_dist = 1; } else if (arg_match(&arg, &kf_disabled, argi)) config->cfg.kf_mode = VPX_KF_DISABLED; else { int i, match = 0; for (i = 0; ctrl_args[i]; i++) { if (arg_match(&arg, ctrl_args[i], argi)) { int j; match = 1; /* Point either to the next free element or the first * instance of this control. */ for (j = 0; j < config->arg_ctrl_cnt; j++) if (config->arg_ctrls[j][0] == ctrl_args_map[i]) break; /* Update/insert */ assert(j < ARG_CTRL_CNT_MAX); if (j < ARG_CTRL_CNT_MAX) { config->arg_ctrls[j][0] = ctrl_args_map[i]; config->arg_ctrls[j][1] = arg_parse_enum_or_int(&arg); if (j == config->arg_ctrl_cnt) config->arg_ctrl_cnt++; } } } if (!match) argj++; } } return eos_mark_found; } #define FOREACH_STREAM(func)\ do\ {\ struct stream_state *stream;\ \ for(stream = streams; stream; stream = stream->next)\ func;\ }while(0) static void validate_stream_config(struct stream_state *stream) { struct stream_state *streami; if (!stream->config.cfg.g_w || !stream->config.cfg.g_h) fatal("Stream %d: Specify stream dimensions with --width (-w) " " and --height (-h)", stream->index); for (streami = stream; streami; streami = streami->next) { /* All streams require output files */ if (!streami->config.out_fn) fatal("Stream %d: Output file is required (specify with -o)", streami->index); /* Check for two streams outputting to the same file */ if (streami != stream) { const char *a = stream->config.out_fn; const char *b = streami->config.out_fn; if (!strcmp(a, b) && strcmp(a, "/dev/null") && strcmp(a, ":nul")) fatal("Stream %d: duplicate output file (from stream %d)", streami->index, stream->index); } /* Check for two streams sharing a stats file. */ if (streami != stream) { const char *a = stream->config.stats_fn; const char *b = streami->config.stats_fn; if (a && b && !strcmp(a, b)) fatal("Stream %d: duplicate stats file (from stream %d)", streami->index, stream->index); } } } static void set_stream_dimensions(struct stream_state *stream, unsigned int w, unsigned int h) { if ((stream->config.cfg.g_w && stream->config.cfg.g_w != w) || (stream->config.cfg.g_h && stream->config.cfg.g_h != h)) fatal("Stream %d: Resizing not yet supported", stream->index); stream->config.cfg.g_w = w; stream->config.cfg.g_h = h; } static void set_default_kf_interval(struct stream_state *stream, struct global_config *global) { /* Use a max keyframe interval of 5 seconds, if none was * specified on the command line. */ if (!stream->config.have_kf_max_dist) { double framerate = (double)global->framerate.num / global->framerate.den; if (framerate > 0.0) stream->config.cfg.kf_max_dist = (unsigned int)(5.0 * framerate); } } static void show_stream_config(struct stream_state *stream, struct global_config *global, struct input_state *input) { #define SHOW(field) \ fprintf(stderr, " %-28s = %d\n", #field, stream->config.cfg.field) if (stream->index == 0) { fprintf(stderr, "Codec: %s\n", vpx_codec_iface_name(global->codec->iface())); fprintf(stderr, "Source file: %s Format: %s\n", input->fn, input->use_i420 ? "I420" : "YV12"); } if (stream->next || stream->index) fprintf(stderr, "\nStream Index: %d\n", stream->index); fprintf(stderr, "Destination file: %s\n", stream->config.out_fn); fprintf(stderr, "Encoder parameters:\n"); SHOW(g_usage); SHOW(g_threads); SHOW(g_profile); SHOW(g_w); SHOW(g_h); SHOW(g_timebase.num); SHOW(g_timebase.den); SHOW(g_error_resilient); SHOW(g_pass); SHOW(g_lag_in_frames); SHOW(rc_dropframe_thresh); SHOW(rc_resize_allowed); SHOW(rc_resize_up_thresh); SHOW(rc_resize_down_thresh); SHOW(rc_end_usage); SHOW(rc_target_bitrate); SHOW(rc_min_quantizer); SHOW(rc_max_quantizer); SHOW(rc_undershoot_pct); SHOW(rc_overshoot_pct); SHOW(rc_buf_sz); SHOW(rc_buf_initial_sz); SHOW(rc_buf_optimal_sz); SHOW(rc_2pass_vbr_bias_pct); SHOW(rc_2pass_vbr_minsection_pct); SHOW(rc_2pass_vbr_maxsection_pct); SHOW(kf_mode); SHOW(kf_min_dist); SHOW(kf_max_dist); } static void open_output_file(struct stream_state *stream, struct global_config *global) { const char *fn = stream->config.out_fn; stream->file = strcmp(fn, "-") ? fopen(fn, "wb") : set_binary_mode(stdout); if (!stream->file) fatal("Failed to open output file"); if (stream->config.write_webm && fseek(stream->file, 0, SEEK_CUR)) fatal("WebM output to pipes not supported."); if (stream->config.write_webm) { stream->ebml.stream = stream->file; write_webm_file_header(&stream->ebml, &stream->config.cfg, &global->framerate, stream->config.stereo_fmt, global->codec->fourcc); } else write_ivf_file_header(stream->file, &stream->config.cfg, global->codec->fourcc, 0); } static void close_output_file(struct stream_state *stream, unsigned int fourcc) { if (stream->config.write_webm) { write_webm_file_footer(&stream->ebml, stream->hash); free(stream->ebml.cue_list); stream->ebml.cue_list = NULL; } else { if (!fseek(stream->file, 0, SEEK_SET)) write_ivf_file_header(stream->file, &stream->config.cfg, fourcc, stream->frames_out); } fclose(stream->file); } static void setup_pass(struct stream_state *stream, struct global_config *global, int pass) { if (stream->config.stats_fn) { if (!stats_open_file(&stream->stats, stream->config.stats_fn, pass)) fatal("Failed to open statistics store"); } else { if (!stats_open_mem(&stream->stats, pass)) fatal("Failed to open statistics store"); } stream->config.cfg.g_pass = global->passes == 2 ? pass ? VPX_RC_LAST_PASS : VPX_RC_FIRST_PASS : VPX_RC_ONE_PASS; if (pass) stream->config.cfg.rc_twopass_stats_in = stats_get(&stream->stats); stream->cx_time = 0; stream->nbytes = 0; stream->frames_out = 0; } static void initialize_encoder(struct stream_state *stream, struct global_config *global) { int i; int flags = 0; flags |= global->show_psnr ? VPX_CODEC_USE_PSNR : 0; flags |= global->out_part ? VPX_CODEC_USE_OUTPUT_PARTITION : 0; /* Construct Encoder Context */ vpx_codec_enc_init(&stream->encoder, global->codec->iface(), &stream->config.cfg, flags); ctx_exit_on_error(&stream->encoder, "Failed to initialize encoder"); /* Note that we bypass the vpx_codec_control wrapper macro because * we're being clever to store the control IDs in an array. Real * applications will want to make use of the enumerations directly */ for (i = 0; i < stream->config.arg_ctrl_cnt; i++) { int ctrl = stream->config.arg_ctrls[i][0]; int value = stream->config.arg_ctrls[i][1]; if (vpx_codec_control_(&stream->encoder, ctrl, value)) fprintf(stderr, "Error: Tried to set control %d = %d\n", ctrl, value); ctx_exit_on_error(&stream->encoder, "Failed to control codec"); } #if CONFIG_DECODERS if (global->test_decode) { int width, height; vpx_codec_dec_init(&stream->decoder, global->codec->dx_iface(), NULL, 0); width = (stream->config.cfg.g_w + 15) & ~15; height = (stream->config.cfg.g_h + 15) & ~15; vpx_img_alloc(&stream->ref_enc.img, VPX_IMG_FMT_I420, width, height, 1); vpx_img_alloc(&stream->ref_dec.img, VPX_IMG_FMT_I420, width, height, 1); stream->ref_enc.frame_type = VP8_LAST_FRAME; stream->ref_dec.frame_type = VP8_LAST_FRAME; } #endif } static void encode_frame(struct stream_state *stream, struct global_config *global, struct vpx_image *img, unsigned int frames_in) { vpx_codec_pts_t frame_start, next_frame_start; struct vpx_codec_enc_cfg *cfg = &stream->config.cfg; struct vpx_usec_timer timer; frame_start = (cfg->g_timebase.den * (int64_t)(frames_in - 1) * global->framerate.den) / cfg->g_timebase.num / global->framerate.num; next_frame_start = (cfg->g_timebase.den * (int64_t)(frames_in) * global->framerate.den) / cfg->g_timebase.num / global->framerate.num; vpx_usec_timer_start(&timer); vpx_codec_encode(&stream->encoder, img, frame_start, (unsigned long)(next_frame_start - frame_start), 0, global->deadline); vpx_usec_timer_mark(&timer); stream->cx_time += vpx_usec_timer_elapsed(&timer); ctx_exit_on_error(&stream->encoder, "Stream %d: Failed to encode frame", stream->index); } static void update_quantizer_histogram(struct stream_state *stream) { if (stream->config.cfg.g_pass != VPX_RC_FIRST_PASS) { int q; vpx_codec_control(&stream->encoder, VP8E_GET_LAST_QUANTIZER_64, &q); ctx_exit_on_error(&stream->encoder, "Failed to read quantizer"); stream->counts[q]++; } } static void get_cx_data(struct stream_state *stream, struct global_config *global, int *got_data) { const vpx_codec_cx_pkt_t *pkt; const struct vpx_codec_enc_cfg *cfg = &stream->config.cfg; vpx_codec_iter_t iter = NULL; *got_data = 0; while ((pkt = vpx_codec_get_cx_data(&stream->encoder, &iter))) { static size_t fsize = 0; static off_t ivf_header_pos = 0; switch (pkt->kind) { case VPX_CODEC_CX_FRAME_PKT: if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT)) { stream->frames_out++; } update_rate_histogram(&stream->rate_hist, cfg, pkt); if (stream->config.write_webm) { /* Update the hash */ if (!stream->ebml.debug) stream->hash = murmur(pkt->data.frame.buf, (int)pkt->data.frame.sz, stream->hash); write_webm_block(&stream->ebml, cfg, pkt); } else { if (pkt->data.frame.partition_id <= 0) { ivf_header_pos = ftello(stream->file); fsize = pkt->data.frame.sz; write_ivf_frame_header(stream->file, pkt); } else { fsize += pkt->data.frame.sz; if (!(pkt->data.frame.flags & VPX_FRAME_IS_FRAGMENT)) { off_t currpos = ftello(stream->file); fseeko(stream->file, ivf_header_pos, SEEK_SET); write_ivf_frame_size(stream->file, fsize); fseeko(stream->file, currpos, SEEK_SET); } } (void) fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, stream->file); } stream->nbytes += pkt->data.raw.sz; *got_data = 1; #if CONFIG_DECODERS if (global->test_decode) { vpx_codec_decode(&stream->decoder, pkt->data.frame.buf, pkt->data.frame.sz, NULL, 0); ctx_exit_on_error(&stream->decoder, "Failed to decode frame"); } #endif break; case VPX_CODEC_STATS_PKT: stream->frames_out++; stats_write(&stream->stats, pkt->data.twopass_stats.buf, pkt->data.twopass_stats.sz); stream->nbytes += pkt->data.raw.sz; break; case VPX_CODEC_PSNR_PKT: if (global->show_psnr) { int i; stream->psnr_sse_total += pkt->data.psnr.sse[0]; stream->psnr_samples_total += pkt->data.psnr.samples[0]; for (i = 0; i < 4; i++) { stream->psnr_totals[i] += pkt->data.psnr.psnr[i]; } stream->psnr_count++; } break; default: break; } } } static void show_psnr(struct stream_state *stream) { int i; double ovpsnr; if (!stream->psnr_count) return; fprintf(stderr, "Stream %d PSNR (Overall/Avg/Y/U/V)", stream->index); ovpsnr = vp8_mse2psnr((double)stream->psnr_samples_total, 255.0, (double)stream->psnr_sse_total); fprintf(stderr, " %.3f", ovpsnr); for (i = 0; i < 4; i++) { fprintf(stderr, " %.3f", stream->psnr_totals[i] / stream->psnr_count); } fprintf(stderr, "\n"); } static float usec_to_fps(uint64_t usec, unsigned int frames) { return (float)(usec > 0 ? frames * 1000000.0 / (float)usec : 0); } static void test_decode(struct stream_state *stream) { vpx_codec_control(&stream->encoder, VP8_COPY_REFERENCE, &stream->ref_enc); ctx_exit_on_error(&stream->encoder, "Failed to get encoder reference frame"); vpx_codec_control(&stream->decoder, VP8_COPY_REFERENCE, &stream->ref_dec); ctx_exit_on_error(&stream->decoder, "Failed to get decoder reference frame"); if (!stream->mismatch_seen && !compare_img(&stream->ref_enc.img, &stream->ref_dec.img)) { /* TODO(jkoleszar): make fatal. */ int y[2], u[2], v[2]; find_mismatch(&stream->ref_enc.img, &stream->ref_dec.img, y, u, v); warn("Stream %d: Encode/decode mismatch on frame %d" " at Y[%d, %d], U[%d, %d], V[%d, %d]", stream->index, stream->frames_out, y[0], y[1], u[0], u[1], v[0], v[1]); stream->mismatch_seen = stream->frames_out; } } static void print_time(const char *label, int64_t etl) { int hours, mins, secs; if (etl >= 0) { hours = etl / 3600; etl -= hours * 3600; mins = etl / 60; etl -= mins * 60; secs = etl; fprintf(stderr, "[%3s %2d:%02d:%02d] ", label, hours, mins, secs); } else { fprintf(stderr, "[%3s unknown] ", label); } } int main(int argc, const char **argv_) { int pass; vpx_image_t raw; int frame_avail, got_data; struct input_state input = {0}; struct global_config global; struct stream_state *streams = NULL; char **argv, **argi; unsigned long cx_time = 0; int stream_cnt = 0; exec_name = argv_[0]; if (argc < 3) usage_exit(); /* Setup default input stream settings */ input.framerate.num = 30; input.framerate.den = 1; input.use_i420 = 1; /* First parse the global configuration values, because we want to apply * other parameters on top of the default configuration provided by the * codec. */ argv = argv_dup(argc - 1, argv_ + 1); parse_global_config(&global, argv); { /* Now parse each stream's parameters. Using a local scope here * due to the use of 'stream' as loop variable in FOREACH_STREAM * loops */ struct stream_state *stream = NULL; do { stream = new_stream(&global, stream); stream_cnt++; if (!streams) streams = stream; } while (parse_stream_params(&global, stream, argv)); } /* Check for unrecognized options */ for (argi = argv; *argi; argi++) if (argi[0][0] == '-' && argi[0][1]) die("Error: Unrecognized option %s\n", *argi); /* Handle non-option arguments */ input.fn = argv[0]; if (!input.fn) usage_exit(); for (pass = global.pass ? global.pass - 1 : 0; pass < global.passes; pass++) { int frames_in = 0; int64_t estimated_time_left = -1; int64_t average_rate = -1; off_t lagged_count = 0; open_input_file(&input); /* If the input file doesn't specify its w/h (raw files), try to get * the data from the first stream's configuration. */ if (!input.w || !input.h) FOREACH_STREAM( { if (stream->config.cfg.g_w && stream->config.cfg.g_h) { input.w = stream->config.cfg.g_w; input.h = stream->config.cfg.g_h; break; } }); /* Update stream configurations from the input file's parameters */ FOREACH_STREAM(set_stream_dimensions(stream, input.w, input.h)); FOREACH_STREAM(validate_stream_config(stream)); /* Ensure that --passes and --pass are consistent. If --pass is set and * --passes=2, ensure --fpf was set. */ if (global.pass && global.passes == 2) FOREACH_STREAM( { if (!stream->config.stats_fn) die("Stream %d: Must specify --fpf when --pass=%d" " and --passes=2\n", stream->index, global.pass); }); /* Use the frame rate from the file only if none was specified * on the command-line. */ if (!global.have_framerate) global.framerate = input.framerate; FOREACH_STREAM(set_default_kf_interval(stream, &global)); /* Show configuration */ if (global.verbose && pass == 0) FOREACH_STREAM(show_stream_config(stream, &global, &input)); if (pass == (global.pass ? global.pass - 1 : 0)) { if (input.file_type == FILE_TYPE_Y4M) /*The Y4M reader does its own allocation. Just initialize this here to avoid problems if we never read any frames.*/ memset(&raw, 0, sizeof(raw)); else vpx_img_alloc(&raw, input.use_i420 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_YV12, input.w, input.h, 32); FOREACH_STREAM(init_rate_histogram(&stream->rate_hist, &stream->config.cfg, &global.framerate)); } FOREACH_STREAM(open_output_file(stream, &global)); FOREACH_STREAM(setup_pass(stream, &global, pass)); FOREACH_STREAM(initialize_encoder(stream, &global)); frame_avail = 1; got_data = 0; while (frame_avail || got_data) { struct vpx_usec_timer timer; if (!global.limit || frames_in < global.limit) { frame_avail = read_frame(&input, &raw); if (frame_avail) frames_in++; if (!global.quiet) { float fps = usec_to_fps(cx_time, frames_in); fprintf(stderr, "\rPass %d/%d ", pass + 1, global.passes); if (stream_cnt == 1) fprintf(stderr, "frame %4d/%-4d %7"PRId64"B ", frames_in, streams->frames_out, (int64_t)streams->nbytes); else fprintf(stderr, "frame %4d ", frames_in); fprintf(stderr, "%7lu %s %.2f %s ", cx_time > 9999999 ? cx_time / 1000 : cx_time, cx_time > 9999999 ? "ms" : "us", fps >= 1.0 ? fps : 1000.0 / fps, fps >= 1.0 ? "fps" : "ms/f"); print_time("ETA", estimated_time_left); fprintf(stderr, "\033[K"); } } else frame_avail = 0; if (frames_in > global.skip_frames) { vpx_usec_timer_start(&timer); FOREACH_STREAM(encode_frame(stream, &global, frame_avail ? &raw : NULL, frames_in)); vpx_usec_timer_mark(&timer); cx_time += (unsigned long)vpx_usec_timer_elapsed(&timer); FOREACH_STREAM(update_quantizer_histogram(stream)); got_data = 0; FOREACH_STREAM(get_cx_data(stream, &global, &got_data)); if (!got_data && input.length && !streams->frames_out) { lagged_count = global.limit ? frames_in : ftello(input.file); } else if (got_data && input.length) { int64_t remaining; int64_t rate; if (global.limit) { int frame_in_lagged = (frames_in - lagged_count) * 1000; rate = cx_time ? frame_in_lagged * (int64_t)1000000 / cx_time : 0; remaining = 1000 * (global.limit - frames_in + lagged_count); } else { off_t input_pos = ftello(input.file); off_t input_pos_lagged = input_pos - lagged_count; int64_t limit = input.length; rate = cx_time ? input_pos_lagged * (int64_t)1000000 / cx_time : 0; remaining = limit - input_pos + lagged_count; } average_rate = (average_rate <= 0) ? rate : (average_rate * 7 + rate) / 8; estimated_time_left = average_rate ? remaining / average_rate : -1; } if (got_data && global.test_decode) FOREACH_STREAM(test_decode(stream)); } fflush(stdout); } if (stream_cnt > 1) fprintf(stderr, "\n"); if (!global.quiet) FOREACH_STREAM(fprintf( stderr, "\rPass %d/%d frame %4d/%-4d %7"PRId64"B %7lub/f %7"PRId64"b/s" " %7"PRId64" %s (%.2f fps)\033[K\n", pass + 1, global.passes, frames_in, stream->frames_out, (int64_t)stream->nbytes, frames_in ? (unsigned long)(stream->nbytes * 8 / frames_in) : 0, frames_in ? (int64_t)stream->nbytes * 8 * (int64_t)global.framerate.num / global.framerate.den / frames_in : 0, stream->cx_time > 9999999 ? stream->cx_time / 1000 : stream->cx_time, stream->cx_time > 9999999 ? "ms" : "us", usec_to_fps(stream->cx_time, frames_in)); ); if (global.show_psnr) FOREACH_STREAM(show_psnr(stream)); FOREACH_STREAM(vpx_codec_destroy(&stream->encoder)); if (global.test_decode) { FOREACH_STREAM(vpx_codec_destroy(&stream->decoder)); FOREACH_STREAM(vpx_img_free(&stream->ref_enc.img)); FOREACH_STREAM(vpx_img_free(&stream->ref_dec.img)); } close_input_file(&input); FOREACH_STREAM(close_output_file(stream, global.codec->fourcc)); FOREACH_STREAM(stats_close(&stream->stats, global.passes - 1)); if (global.pass) break; } if (global.show_q_hist_buckets) FOREACH_STREAM(show_q_histogram(stream->counts, global.show_q_hist_buckets)); if (global.show_rate_hist_buckets) FOREACH_STREAM(show_rate_histogram(&stream->rate_hist, &stream->config.cfg, global.show_rate_hist_buckets)); FOREACH_STREAM(destroy_rate_histogram(&stream->rate_hist)); #if CONFIG_INTERNAL_STATS /* TODO(jkoleszar): This doesn't belong in this executable. Do it for now, * to match some existing utilities. */ FOREACH_STREAM({ FILE *f = fopen("opsnr.stt", "a"); if (stream->mismatch_seen) { fprintf(f, "First mismatch occurred in frame %d\n", stream->mismatch_seen); } else { fprintf(f, "No mismatch detected in recon buffers\n"); } fclose(f); }); #endif vpx_img_free(&raw); free(argv); free(streams); return EXIT_SUCCESS; }