/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/common/vp9_reconintra.h" #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9_rtcd.h" void vp9_subtract_b_c(BLOCK *be, BLOCKD *bd, int pitch) { unsigned char *src_ptr = (*(be->base_src) + be->src); short *diff_ptr = be->src_diff; unsigned char *pred_ptr = bd->predictor; int src_stride = be->src_stride; int r, c; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { diff_ptr[c] = src_ptr[c] - pred_ptr[c]; } diff_ptr += pitch; pred_ptr += pitch; src_ptr += src_stride; } } void vp9_subtract_4b_c(BLOCK *be, BLOCKD *bd, int pitch) { unsigned char *src_ptr = (*(be->base_src) + be->src); short *diff_ptr = be->src_diff; unsigned char *pred_ptr = bd->predictor; int src_stride = be->src_stride; int r, c; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { diff_ptr[c] = src_ptr[c] - pred_ptr[c]; } diff_ptr += pitch; pred_ptr += pitch; src_ptr += src_stride; } } void vp9_subtract_mbuv_s_c(short *diff, const unsigned char *usrc, const unsigned char *vsrc, int src_stride, const unsigned char *upred, const unsigned char *vpred, int dst_stride) { short *udiff = diff + 256; short *vdiff = diff + 320; int r, c; for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { udiff[c] = usrc[c] - upred[c]; } udiff += 8; upred += dst_stride; usrc += src_stride; } for (r = 0; r < 8; r++) { for (c = 0; c < 8; c++) { vdiff[c] = vsrc[c] - vpred[c]; } vdiff += 8; vpred += dst_stride; vsrc += src_stride; } } void vp9_subtract_mbuv_c(short *diff, unsigned char *usrc, unsigned char *vsrc, unsigned char *pred, int stride) { unsigned char *upred = pred + 256; unsigned char *vpred = pred + 320; vp9_subtract_mbuv_s_c(diff, usrc, vsrc, stride, upred, vpred, 8); } void vp9_subtract_mby_s_c(short *diff, const unsigned char *src, int src_stride, const unsigned char *pred, int dst_stride) { int r, c; for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { diff[c] = src[c] - pred[c]; } diff += 16; pred += dst_stride; src += src_stride; } } #if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS void vp9_subtract_sby_s_c(short *diff, const unsigned char *src, int src_stride, const unsigned char *pred, int dst_stride) { int r, c; for (r = 0; r < 32; r++) { for (c = 0; c < 32; c++) { diff[c] = src[c] - pred[c]; } diff += 32; pred += dst_stride; src += src_stride; } } void vp9_subtract_sbuv_s_c(short *diff, const unsigned char *usrc, const unsigned char *vsrc, int src_stride, const unsigned char *upred, const unsigned char *vpred, int dst_stride) { short *udiff = diff + 1024; short *vdiff = diff + 1024 + 256; int r, c; for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { udiff[c] = usrc[c] - upred[c]; } udiff += 16; upred += dst_stride; usrc += src_stride; } for (r = 0; r < 16; r++) { for (c = 0; c < 16; c++) { vdiff[c] = vsrc[c] - vpred[c]; } vdiff += 16; vpred += dst_stride; vsrc += src_stride; } } #endif void vp9_subtract_mby_c(short *diff, unsigned char *src, unsigned char *pred, int stride) { vp9_subtract_mby_s_c(diff, src, stride, pred, 16); } static void subtract_mb(MACROBLOCK *x) { BLOCK *b = &x->block[0]; vp9_subtract_mby(x->src_diff, *(b->base_src), x->e_mbd.predictor, b->src_stride); vp9_subtract_mbuv(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); } static void build_dcblock_4x4(MACROBLOCK *x) { short *src_diff_ptr = &x->src_diff[384]; int i; for (i = 0; i < 16; i++) { src_diff_ptr[i] = x->coeff[i * 16]; x->coeff[i * 16] = 0; } } void vp9_transform_mby_4x4(MACROBLOCK *x) { int i; MACROBLOCKD *xd = &x->e_mbd; int has_2nd_order = get_2nd_order_usage(xd); for (i = 0; i < 16; i++) { BLOCK *b = &x->block[i]; TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[i]); if (tx_type != DCT_DCT) { assert(has_2nd_order == 0); vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 4); } else { x->vp9_short_fdct4x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } } if (has_2nd_order) { // build dc block from 16 y dc values build_dcblock_4x4(x); // do 2nd order transform on the dc block x->short_walsh4x4(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } else { vpx_memset(x->block[24].coeff, 0, 16 * sizeof(x->block[24].coeff[0])); } } void vp9_transform_mbuv_4x4(MACROBLOCK *x) { int i; for (i = 16; i < 24; i += 2) { x->vp9_short_fdct8x4(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } } static void transform_mb_4x4(MACROBLOCK *x) { vp9_transform_mby_4x4(x); vp9_transform_mbuv_4x4(x); } static void build_dcblock_8x8(MACROBLOCK *x) { int16_t *src_diff_ptr = x->block[24].src_diff; int i; for (i = 0; i < 16; i++) { src_diff_ptr[i] = 0; } src_diff_ptr[0] = x->coeff[0 * 16]; src_diff_ptr[1] = x->coeff[4 * 16]; src_diff_ptr[4] = x->coeff[8 * 16]; src_diff_ptr[8] = x->coeff[12 * 16]; x->coeff[0 * 16] = 0; x->coeff[4 * 16] = 0; x->coeff[8 * 16] = 0; x->coeff[12 * 16] = 0; } void vp9_transform_mby_8x8(MACROBLOCK *x) { int i; MACROBLOCKD *xd = &x->e_mbd; TX_TYPE tx_type; int has_2nd_order = get_2nd_order_usage(xd); for (i = 0; i < 9; i += 8) { BLOCK *b = &x->block[i]; tx_type = get_tx_type_8x8(xd, &xd->block[i]); if (tx_type != DCT_DCT) { assert(has_2nd_order == 0); vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 8); } else { x->vp9_short_fdct8x8(&x->block[i].src_diff[0], &x->block[i].coeff[0], 32); } } for (i = 2; i < 11; i += 8) { BLOCK *b = &x->block[i]; tx_type = get_tx_type_8x8(xd, &xd->block[i]); if (tx_type != DCT_DCT) { assert(has_2nd_order == 0); vp9_fht_c(b->src_diff, 32, (b + 2)->coeff, tx_type, 8); } else { x->vp9_short_fdct8x8(&x->block[i].src_diff[0], &x->block[i + 2].coeff[0], 32); } } if (has_2nd_order) { // build dc block from 2x2 y dc values build_dcblock_8x8(x); // do 2nd order transform on the dc block x->short_fhaar2x2(&x->block[24].src_diff[0], &x->block[24].coeff[0], 8); } else { vpx_memset(x->block[24].coeff, 0, 16 * sizeof(x->block[24].coeff[0])); } } void vp9_transform_mbuv_8x8(MACROBLOCK *x) { int i; for (i = 16; i < 24; i += 4) { x->vp9_short_fdct8x8(&x->block[i].src_diff[0], &x->block[i].coeff[0], 16); } } void vp9_transform_mb_8x8(MACROBLOCK *x) { vp9_transform_mby_8x8(x); vp9_transform_mbuv_8x8(x); } void vp9_transform_mby_16x16(MACROBLOCK *x) { MACROBLOCKD *xd = &x->e_mbd; BLOCK *b = &x->block[0]; TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]); vp9_clear_system_state(); if (tx_type != DCT_DCT) { vp9_fht_c(b->src_diff, 32, b->coeff, tx_type, 16); } else { x->vp9_short_fdct16x16(&x->block[0].src_diff[0], &x->block[0].coeff[0], 32); } } void vp9_transform_mb_16x16(MACROBLOCK *x) { vp9_transform_mby_16x16(x); vp9_transform_mbuv_8x8(x); } #if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS void vp9_transform_sby_32x32(MACROBLOCK *x) { SUPERBLOCK * const x_sb = &x->sb_coeff_data; vp9_short_fdct32x32(x_sb->src_diff, x_sb->coeff, 64); } void vp9_transform_sbuv_16x16(MACROBLOCK *x) { SUPERBLOCK * const x_sb = &x->sb_coeff_data; vp9_clear_system_state(); x->vp9_short_fdct16x16(x_sb->src_diff + 1024, x_sb->coeff + 1024, 32); x->vp9_short_fdct16x16(x_sb->src_diff + 1280, x_sb->coeff + 1280, 32); } #endif #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) #define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp9_token_state vp9_token_state; struct vp9_token_state { int rate; int error; int next; signed char token; short qc; }; // TODO: experiments to find optimal multiple numbers #define Y1_RD_MULT 4 #define UV_RD_MULT 2 #define Y2_RD_MULT 4 static const int plane_rd_mult[4] = { Y1_RD_MULT, Y2_RD_MULT, UV_RD_MULT, Y1_RD_MULT }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } static void optimize_b(MACROBLOCK *mb, int i, PLANE_TYPE type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int tx_size) { BLOCK *b = &mb->block[i]; BLOCKD *d = &mb->e_mbd.block[i]; vp9_token_state tokens[257][2]; unsigned best_index[257][2]; const short *dequant_ptr = d->dequant, *coeff_ptr = b->coeff; short *qcoeff_ptr = d->qcoeff; short *dqcoeff_ptr = d->dqcoeff; int eob = d->eob, final_eob, sz = 0; int i0 = (type == PLANE_TYPE_Y_NO_DC); int rc, x, next; int64_t rdmult, rddiv, rd_cost0, rd_cost1; int rate0, rate1, error0, error1, t0, t1; int best, band, pt; int err_mult = plane_rd_mult[type]; int default_eob; int const *scan, *bands; switch (tx_size) { default: case TX_4X4: scan = vp9_default_zig_zag1d; bands = vp9_coef_bands; default_eob = 16; // TODO: this isn't called (for intra4x4 modes), but will be left in // since it could be used later { TX_TYPE tx_type = get_tx_type_4x4(&mb->e_mbd, d); if (tx_type != DCT_DCT) { switch (tx_type) { case ADST_DCT: scan = vp9_row_scan; break; case DCT_ADST: scan = vp9_col_scan; break; default: scan = vp9_default_zig_zag1d; break; } } else { scan = vp9_default_zig_zag1d; } } break; case TX_8X8: scan = vp9_default_zig_zag1d_8x8; bands = vp9_coef_bands_8x8; default_eob = 64; break; case TX_16X16: scan = vp9_default_zig_zag1d_16x16; bands = vp9_coef_bands_16x16; default_eob = 256; break; } /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) rdmult = (rdmult * 9) >> 4; rddiv = mb->rddiv; memset(best_index, 0, sizeof(best_index)); /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = eob; i-- > i0;) { int base_bits, d2, dx; rc = scan[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp9_dct_value_tokens_ptr + x)->Token; /* Consider both possible successor states. */ if (next < default_eob) { band = bands[i + 1]; pt = vp9_prev_token_class[t0]; rate0 += mb->token_costs[tx_size][type][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][band][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); dx = dqcoeff_ptr[rc] - coeff_ptr[rc]; d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc])) && (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0 = t1 = (vp9_dct_value_tokens_ptr + x)->Token; } if (next < default_eob) { band = bands[i + 1]; if (t0 != DCT_EOB_TOKEN) { pt = vp9_prev_token_class[t0]; rate0 += mb->token_costs[tx_size][type][band][pt][ tokens[next][0].token]; } if (t1 != DCT_EOB_TOKEN) { pt = vp9_prev_token_class[t1]; rate1 += mb->token_costs[tx_size][type][band][pt][ tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); if (shortcut) { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = bands[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = bands[i + 1]; VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][band][pt][t0]; rate1 += mb->token_costs[tx_size][type][band][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = i0 - 1; for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) final_eob = i; rc = scan[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]); next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; d->eob = final_eob; *a = *l = (d->eob > !type); } /************************************************************************** our inverse hadamard transform effectively is weighted sum of all 16 inputs with weight either 1 or -1. It has a last stage scaling of (sum+1)>>2. And dc only idct is (dc+16)>>5. So if all the sums are between -65 and 63 the output after inverse wht and idct will be all zero. A sum of absolute value smaller than 65 guarantees all 16 different (+1/-1) weighted sums in wht fall between -65 and +65. **************************************************************************/ #define SUM_2ND_COEFF_THRESH 65 static void check_reset_2nd_coeffs(MACROBLOCKD *xd, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int sum = 0; int i; BLOCKD *bd = &xd->block[24]; if (bd->dequant[0] >= SUM_2ND_COEFF_THRESH && bd->dequant[1] >= SUM_2ND_COEFF_THRESH) return; for (i = 0; i < bd->eob; i++) { int coef = bd->dqcoeff[vp9_default_zig_zag1d[i]]; sum += (coef >= 0) ? coef : -coef; if (sum >= SUM_2ND_COEFF_THRESH) return; } if (sum < SUM_2ND_COEFF_THRESH) { for (i = 0; i < bd->eob; i++) { int rc = vp9_default_zig_zag1d[i]; bd->qcoeff[rc] = 0; bd->dqcoeff[rc] = 0; } bd->eob = 0; *a = *l = (bd->eob != 0); } } #define SUM_2ND_COEFF_THRESH_8X8 32 static void check_reset_8x8_2nd_coeffs(MACROBLOCKD *xd, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int sum = 0; BLOCKD *bd = &xd->block[24]; int coef; coef = bd->dqcoeff[0]; sum += (coef >= 0) ? coef : -coef; coef = bd->dqcoeff[1]; sum += (coef >= 0) ? coef : -coef; coef = bd->dqcoeff[4]; sum += (coef >= 0) ? coef : -coef; coef = bd->dqcoeff[8]; sum += (coef >= 0) ? coef : -coef; if (sum < SUM_2ND_COEFF_THRESH_8X8) { bd->qcoeff[0] = 0; bd->dqcoeff[0] = 0; bd->qcoeff[1] = 0; bd->dqcoeff[1] = 0; bd->qcoeff[4] = 0; bd->dqcoeff[4] = 0; bd->qcoeff[8] = 0; bd->dqcoeff[8] = 0; bd->eob = 0; *a = *l = (bd->eob != 0); } } void vp9_optimize_mby_4x4(MACROBLOCK *x) { int b; PLANE_TYPE type; int has_2nd_order; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; has_2nd_order = get_2nd_order_usage(&x->e_mbd); type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; for (b = 0; b < 16; b++) { optimize_b(x, b, type, ta + vp9_block2above[b], tl + vp9_block2left[b], TX_4X4); } if (has_2nd_order) { b = 24; optimize_b(x, b, PLANE_TYPE_Y2, ta + vp9_block2above[b], tl + vp9_block2left[b], TX_4X4); check_reset_2nd_coeffs(&x->e_mbd, ta + vp9_block2above[b], tl + vp9_block2left[b]); } } void vp9_optimize_mbuv_4x4(MACROBLOCK *x) { int b; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b++) { optimize_b(x, b, PLANE_TYPE_UV, ta + vp9_block2above[b], tl + vp9_block2left[b], TX_4X4); } } static void optimize_mb_4x4(MACROBLOCK *x) { vp9_optimize_mby_4x4(x); vp9_optimize_mbuv_4x4(x); } void vp9_optimize_mby_8x8(MACROBLOCK *x) { int b; PLANE_TYPE type; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; int has_2nd_order = get_2nd_order_usage(&x->e_mbd); if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; type = has_2nd_order ? PLANE_TYPE_Y_NO_DC : PLANE_TYPE_Y_WITH_DC; for (b = 0; b < 16; b += 4) { optimize_b(x, b, type, ta + vp9_block2above_8x8[b], tl + vp9_block2left_8x8[b], TX_8X8); ta[vp9_block2above_8x8[b] + 1] = ta[vp9_block2above_8x8[b]]; tl[vp9_block2left_8x8[b] + 1] = tl[vp9_block2left_8x8[b]]; } // 8x8 always have 2nd roder haar block if (has_2nd_order) { check_reset_8x8_2nd_coeffs(&x->e_mbd, ta + vp9_block2above_8x8[24], tl + vp9_block2left_8x8[24]); } } void vp9_optimize_mbuv_8x8(MACROBLOCK *x) { int b; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b += 4) { optimize_b(x, b, PLANE_TYPE_UV, ta + vp9_block2above_8x8[b], tl + vp9_block2left_8x8[b], TX_8X8); ta[vp9_block2above_8x8[b] + 1] = ta[vp9_block2above_8x8[b]]; tl[vp9_block2left_8x8[b] + 1] = tl[vp9_block2left_8x8[b]]; } } static void optimize_mb_8x8(MACROBLOCK *x) { vp9_optimize_mby_8x8(x); vp9_optimize_mbuv_8x8(x); } void vp9_optimize_mby_16x16(MACROBLOCK *x) { ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; if (!x->e_mbd.above_context || !x->e_mbd.left_context) return; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; optimize_b(x, 0, PLANE_TYPE_Y_WITH_DC, ta, tl, TX_16X16); } static void optimize_mb_16x16(MACROBLOCK *x) { vp9_optimize_mby_16x16(x); vp9_optimize_mbuv_8x8(x); } void vp9_fidct_mb(MACROBLOCK *x) { MACROBLOCKD *const xd = &x->e_mbd; TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; if (tx_size == TX_16X16) { vp9_transform_mb_16x16(x); vp9_quantize_mb_16x16(x); if (x->optimize) optimize_mb_16x16(x); vp9_inverse_transform_mb_16x16(xd); } else if (tx_size == TX_8X8) { if (xd->mode_info_context->mbmi.mode == SPLITMV) { assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4); vp9_transform_mby_8x8(x); vp9_transform_mbuv_4x4(x); vp9_quantize_mby_8x8(x); vp9_quantize_mbuv_4x4(x); if (x->optimize) { vp9_optimize_mby_8x8(x); vp9_optimize_mbuv_4x4(x); } vp9_inverse_transform_mby_8x8(xd); vp9_inverse_transform_mbuv_4x4(xd); } else { vp9_transform_mb_8x8(x); vp9_quantize_mb_8x8(x); if (x->optimize) optimize_mb_8x8(x); vp9_inverse_transform_mb_8x8(xd); } } else { transform_mb_4x4(x); vp9_quantize_mb_4x4(x); if (x->optimize) optimize_mb_4x4(x); vp9_inverse_transform_mb_4x4(xd); } } void vp9_encode_inter16x16(MACROBLOCK *x) { MACROBLOCKD *const xd = &x->e_mbd; vp9_build_inter_predictors_mb(xd); subtract_mb(x); vp9_fidct_mb(x); vp9_recon_mb(xd); } /* this function is used by first pass only */ void vp9_encode_inter16x16y(MACROBLOCK *x) { MACROBLOCKD *xd = &x->e_mbd; BLOCK *b = &x->block[0]; #if CONFIG_PRED_FILTER // Disable the prediction filter for firstpass xd->mode_info_context->mbmi.pred_filter_enabled = 0; #endif vp9_build_1st_inter16x16_predictors_mby(xd, xd->predictor, 16, 0); vp9_subtract_mby(x->src_diff, *(b->base_src), xd->predictor, b->src_stride); vp9_transform_mby_4x4(x); vp9_quantize_mby_4x4(x); vp9_inverse_transform_mby_4x4(xd); vp9_recon_mby(xd); }