/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_COMMON_VP9_BLOCKD_H_ #define VP9_COMMON_VP9_BLOCKD_H_ #include "./vpx_config.h" #include "vpx_scale/yv12config.h" #include "vp9/common/vp9_convolve.h" #include "vp9/common/vp9_mv.h" #include "vp9/common/vp9_treecoder.h" #include "vpx_ports/mem.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_enums.h" // #define MODE_STATS #define MAX_MB_SEGMENTS 8 #define MB_SEG_TREE_PROBS (MAX_MB_SEGMENTS-1) #define PREDICTION_PROBS 3 #define DEFAULT_PRED_PROB_0 120 #define DEFAULT_PRED_PROB_1 80 #define DEFAULT_PRED_PROB_2 40 #define MBSKIP_CONTEXTS 3 #define MAX_REF_LF_DELTAS 4 #define MAX_MODE_LF_DELTAS 4 /* Segment Feature Masks */ #define SEGMENT_DELTADATA 0 #define SEGMENT_ABSDATA 1 #define MAX_MV_REFS 9 #define MAX_MV_REF_CANDIDATES 2 typedef enum { PLANE_TYPE_Y_WITH_DC, PLANE_TYPE_UV, } PLANE_TYPE; typedef char ENTROPY_CONTEXT; typedef struct { ENTROPY_CONTEXT y1[4]; ENTROPY_CONTEXT u[2]; ENTROPY_CONTEXT v[2]; } ENTROPY_CONTEXT_PLANES; typedef char PARTITION_CONTEXT; static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a, ENTROPY_CONTEXT b) { return (a != 0) + (b != 0); } typedef enum { KEY_FRAME = 0, INTER_FRAME = 1 } FRAME_TYPE; typedef enum { #if CONFIG_ENABLE_6TAP SIXTAP, #endif EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR, SWITCHABLE /* should be the last one */ } INTERPOLATIONFILTERTYPE; typedef enum { DC_PRED, /* average of above and left pixels */ V_PRED, /* vertical prediction */ H_PRED, /* horizontal prediction */ D45_PRED, /* Directional 45 deg prediction [anti-clockwise from 0 deg hor] */ D135_PRED, /* Directional 135 deg prediction [anti-clockwise from 0 deg hor] */ D117_PRED, /* Directional 112 deg prediction [anti-clockwise from 0 deg hor] */ D153_PRED, /* Directional 157 deg prediction [anti-clockwise from 0 deg hor] */ D27_PRED, /* Directional 22 deg prediction [anti-clockwise from 0 deg hor] */ D63_PRED, /* Directional 67 deg prediction [anti-clockwise from 0 deg hor] */ TM_PRED, /* Truemotion prediction */ I8X8_PRED, /* 8x8 based prediction, each 8x8 has its own mode */ I4X4_PRED, /* 4x4 based prediction, each 4x4 has its own mode */ NEARESTMV, NEARMV, ZEROMV, NEWMV, SPLITMV, MB_MODE_COUNT } MB_PREDICTION_MODE; static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) { return mode >= NEARESTMV && mode <= SPLITMV; } // Segment level features. typedef enum { SEG_LVL_ALT_Q = 0, // Use alternate Quantizer .... SEG_LVL_ALT_LF = 1, // Use alternate loop filter value... SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame SEG_LVL_SKIP = 3, // Optional Segment (0,0) + skip mode SEG_LVL_MAX = 4 // Number of MB level features supported } SEG_LVL_FEATURES; // Segment level features. typedef enum { TX_4X4 = 0, // 4x4 dct transform TX_8X8 = 1, // 8x8 dct transform TX_16X16 = 2, // 16x16 dct transform TX_SIZE_MAX_MB = 3, // Number of different transforms available TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform TX_SIZE_MAX_SB, // Number of transforms available to SBs } TX_SIZE; typedef enum { DCT_DCT = 0, // DCT in both horizontal and vertical ADST_DCT = 1, // ADST in vertical, DCT in horizontal DCT_ADST = 2, // DCT in vertical, ADST in horizontal ADST_ADST = 3 // ADST in both directions } TX_TYPE; #define VP9_YMODES (I4X4_PRED + 1) #define VP9_UV_MODES (TM_PRED + 1) #define VP9_I8X8_MODES (TM_PRED + 1) #define VP9_I32X32_MODES (TM_PRED + 1) #define VP9_MVREFS (1 + SPLITMV - NEARESTMV) #define WHT_UPSCALE_FACTOR 2 typedef enum { B_DC_PRED, /* average of above and left pixels */ B_V_PRED, /* vertical prediction */ B_H_PRED, /* horizontal prediction */ B_D45_PRED, B_D135_PRED, B_D117_PRED, B_D153_PRED, B_D27_PRED, B_D63_PRED, B_TM_PRED, #if CONFIG_NEWBINTRAMODES B_CONTEXT_PRED, #endif LEFT4X4, ABOVE4X4, ZERO4X4, NEW4X4, B_MODE_COUNT } B_PREDICTION_MODE; #define VP9_BINTRAMODES (LEFT4X4) #define VP9_SUBMVREFS (1 + NEW4X4 - LEFT4X4) #if CONFIG_NEWBINTRAMODES /* The number of I4X4_PRED intra modes that are replaced by B_CONTEXT_PRED */ #define CONTEXT_PRED_REPLACEMENTS 0 #define VP9_KF_BINTRAMODES (VP9_BINTRAMODES - 1) #define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES - CONTEXT_PRED_REPLACEMENTS) #else #define VP9_KF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */ #define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */ #endif typedef enum { PARTITIONING_16X8 = 0, PARTITIONING_8X16, PARTITIONING_8X8, PARTITIONING_4X4, NB_PARTITIONINGS, } SPLITMV_PARTITIONING_TYPE; /* For keyframes, intra block modes are predicted by the (already decoded) modes for the Y blocks to the left and above us; for interframes, there is a single probability table. */ union b_mode_info { struct { B_PREDICTION_MODE first; #if CONFIG_NEWBINTRAMODES B_PREDICTION_MODE context; #endif } as_mode; int_mv as_mv[2]; // first, second inter predictor motion vectors }; typedef enum { NONE = -1, INTRA_FRAME = 0, LAST_FRAME = 1, GOLDEN_FRAME = 2, ALTREF_FRAME = 3, MAX_REF_FRAMES = 4 } MV_REFERENCE_FRAME; static INLINE int mb_width_log2(BLOCK_SIZE_TYPE sb_type) { switch (sb_type) { case BLOCK_SIZE_MB16X16: case BLOCK_SIZE_SB16X32: return 0; case BLOCK_SIZE_SB32X16: case BLOCK_SIZE_SB32X64: case BLOCK_SIZE_SB32X32: return 1; case BLOCK_SIZE_SB64X32: case BLOCK_SIZE_SB64X64: return 2; default: assert(0); } } static INLINE int mb_height_log2(BLOCK_SIZE_TYPE sb_type) { switch (sb_type) { case BLOCK_SIZE_MB16X16: case BLOCK_SIZE_SB32X16: return 0; case BLOCK_SIZE_SB16X32: case BLOCK_SIZE_SB64X32: case BLOCK_SIZE_SB32X32: return 1; case BLOCK_SIZE_SB32X64: case BLOCK_SIZE_SB64X64: return 2; default: assert(0); } } // parse block dimension in the unit of 4x4 blocks static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) { return mb_width_log2(sb_type) + 2; } static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) { return mb_height_log2(sb_type) + 2; } typedef struct { MB_PREDICTION_MODE mode, uv_mode; #if CONFIG_COMP_INTERINTRA_PRED MB_PREDICTION_MODE interintra_mode, interintra_uv_mode; #endif MV_REFERENCE_FRAME ref_frame, second_ref_frame; TX_SIZE txfm_size; int_mv mv[2]; // for each reference frame used int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; int_mv best_mv, best_second_mv; int mb_mode_context[MAX_REF_FRAMES]; SPLITMV_PARTITIONING_TYPE partitioning; unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */ unsigned char need_to_clamp_mvs; unsigned char need_to_clamp_secondmv; unsigned char segment_id; // Segment id for current frame // Flags used for prediction status of various bistream signals unsigned char seg_id_predicted; unsigned char ref_predicted; // Indicates if the mb is part of the image (1) vs border (0) // This can be useful in determining whether the MB provides // a valid predictor unsigned char mb_in_image; INTERPOLATIONFILTERTYPE interp_filter; BLOCK_SIZE_TYPE sb_type; } MB_MODE_INFO; typedef struct { MB_MODE_INFO mbmi; union b_mode_info bmi[16]; } MODE_INFO; struct scale_factors { int x_num; int x_den; int x_offset_q4; int x_step_q4; int y_num; int y_den; int y_offset_q4; int y_step_q4; int (*scale_value_x)(int val, const struct scale_factors *scale); int (*scale_value_y)(int val, const struct scale_factors *scale); void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col); int_mv32 (*scale_motion_vector_q3_to_q4)(const int_mv *src_mv, const struct scale_factors *scale); int32_t (*scale_motion_vector_component_q4)(int mv_q4, int num, int den, int offset_q4); convolve_fn_t predict[2][2][2]; // horiz, vert, avg }; enum { MAX_MB_PLANE = 3 }; struct buf_2d { uint8_t *buf; int stride; }; struct macroblockd_plane { DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]); DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]); DECLARE_ALIGNED(16, uint16_t, eobs[256]); DECLARE_ALIGNED(16, int16_t, diff[64 * 64]); PLANE_TYPE plane_type; int subsampling_x; int subsampling_y; struct buf_2d dst; struct buf_2d pre[2]; int16_t *dequant; }; #define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n)) #define MB_SUBBLOCK_FIELD(x, field, i) (\ ((i) < 16) ? BLOCK_OFFSET((x)->plane[0].field, (i), 16) : \ ((i) < 20) ? BLOCK_OFFSET((x)->plane[1].field, ((i) - 16), 16) : \ BLOCK_OFFSET((x)->plane[2].field, ((i) - 20), 16)) typedef struct macroblockd { struct macroblockd_plane plane[MAX_MB_PLANE]; struct scale_factors scale_factor[2]; struct scale_factors scale_factor_uv[2]; MODE_INFO *prev_mode_info_context; MODE_INFO *mode_info_context; int mode_info_stride; FRAME_TYPE frame_type; int up_available; int left_available; int right_available; /* Y,U,V */ ENTROPY_CONTEXT_PLANES *above_context; ENTROPY_CONTEXT_PLANES *left_context; // partition contexts PARTITION_CONTEXT *above_seg_context; PARTITION_CONTEXT *left_seg_context; /* 0 indicates segmentation at MB level is not enabled. Otherwise the individual bits indicate which features are active. */ unsigned char segmentation_enabled; /* 0 (do not update) 1 (update) the macroblock segmentation map. */ unsigned char update_mb_segmentation_map; #if CONFIG_IMPLICIT_SEGMENTATION unsigned char allow_implicit_segment_update; #endif /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ unsigned char update_mb_segmentation_data; /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ unsigned char mb_segment_abs_delta; /* Per frame flags that define which MB level features (such as quantizer or loop filter level) */ /* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */ // Probability Tree used to code Segment number vp9_prob mb_segment_tree_probs[MB_SEG_TREE_PROBS]; // Segment features signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX]; unsigned int segment_feature_mask[MAX_MB_SEGMENTS]; /* mode_based Loop filter adjustment */ unsigned char mode_ref_lf_delta_enabled; unsigned char mode_ref_lf_delta_update; /* Delta values have the range +/- MAX_LOOP_FILTER */ /* 0 = Intra, Last, GF, ARF */ signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */ signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */ signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = I4X4_PRED, ZERO_MV, MV, SPLIT */ signed char mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* Distance of MB away from frame edges */ int mb_to_left_edge; int mb_to_right_edge; int mb_to_top_edge; int mb_to_bottom_edge; unsigned int frames_since_golden; unsigned int frames_till_alt_ref_frame; int lossless; /* Inverse transform function pointers. */ void (*inv_txm4x4_1)(int16_t *input, int16_t *output, int pitch); void (*inv_txm4x4)(int16_t *input, int16_t *output, int pitch); void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob); void (*itxm_add_y_block)(int16_t *q, uint8_t *dst, int stride, struct macroblockd *xd); void (*itxm_add_uv_block)(int16_t *q, uint8_t *dst, int stride, uint16_t *eobs); struct subpix_fn_table subpix; int allow_high_precision_mv; int corrupted; int sb_index; int mb_index; // Index of the MB in the SB (0..3) int q_index; } MACROBLOCKD; static INLINE void update_partition_context(MACROBLOCKD *xd, BLOCK_SIZE_TYPE sb_type, BLOCK_SIZE_TYPE sb_size) { int bsl = mb_width_log2(sb_size), bs = 1 << bsl; int bwl = mb_width_log2(sb_type); int bhl = mb_height_log2(sb_type); int boffset = mb_width_log2(BLOCK_SIZE_SB64X64) - bsl; int i; // skip macroblock partition if (bsl == 0) return; // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. if ((bwl == bsl) && (bhl == bsl)) { for (i = 0; i < bs; i++) xd->left_seg_context[i] = ~(0xf << boffset); for (i = 0; i < bs; i++) xd->above_seg_context[i] = ~(0xf << boffset); } else if ((bwl == bsl) && (bhl < bsl)) { for (i = 0; i < bs; i++) xd->left_seg_context[i] = ~(0xe << boffset); for (i = 0; i < bs; i++) xd->above_seg_context[i] = ~(0xf << boffset); } else if ((bwl < bsl) && (bhl == bsl)) { for (i = 0; i < bs; i++) xd->left_seg_context[i] = ~(0xf << boffset); for (i = 0; i < bs; i++) xd->above_seg_context[i] = ~(0xe << boffset); } else if ((bwl < bsl) && (bhl < bsl)) { for (i = 0; i < bs; i++) xd->left_seg_context[i] = ~(0xe << boffset); for (i = 0; i < bs; i++) xd->above_seg_context[i] = ~(0xe << boffset); } else { assert(0); } } static INLINE int partition_plane_context(MACROBLOCKD *xd, BLOCK_SIZE_TYPE sb_type) { int bsl = mb_width_log2(sb_type), bs = 1 << bsl; int above = 0, left = 0, i; int boffset = mb_width_log2(BLOCK_SIZE_SB64X64) - bsl; assert(mb_width_log2(sb_type) == mb_height_log2(sb_type)); assert(bsl >= 0); assert(boffset >= 0); for (i = 0; i < bs; i++) above |= (xd->above_seg_context[i] & (1 << boffset)); for (i = 0; i < bs; i++) left |= (xd->left_seg_context[i] & (1 << boffset)); above = (above > 0); left = (left > 0); return (left * 2 + above) + (bsl - 1) * PARTITION_PLOFFSET; } #define ACTIVE_HT 110 // quantization stepsize threshold #define ACTIVE_HT8 300 #define ACTIVE_HT16 300 // convert MB_PREDICTION_MODE to B_PREDICTION_MODE static B_PREDICTION_MODE pred_mode_conv(MB_PREDICTION_MODE mode) { switch (mode) { case DC_PRED: return B_DC_PRED; case V_PRED: return B_V_PRED; case H_PRED: return B_H_PRED; case TM_PRED: return B_TM_PRED; case D45_PRED: return B_D45_PRED; case D135_PRED: return B_D135_PRED; case D117_PRED: return B_D117_PRED; case D153_PRED: return B_D153_PRED; case D27_PRED: return B_D27_PRED; case D63_PRED: return B_D63_PRED; default: assert(0); return B_MODE_COUNT; // Dummy value } } // transform mapping static TX_TYPE txfm_map(B_PREDICTION_MODE bmode) { switch (bmode) { case B_TM_PRED : case B_D135_PRED : return ADST_ADST; case B_V_PRED : case B_D117_PRED : return ADST_DCT; case B_H_PRED : case B_D153_PRED : case B_D27_PRED : return DCT_ADST; #if CONFIG_NEWBINTRAMODES case B_CONTEXT_PRED: assert(0); break; #endif default: return DCT_DCT; } } extern const uint8_t vp9_block2left[TX_SIZE_MAX_MB][24]; extern const uint8_t vp9_block2above[TX_SIZE_MAX_MB][24]; extern const uint8_t vp9_block2left_sb[TX_SIZE_MAX_SB][96]; extern const uint8_t vp9_block2above_sb[TX_SIZE_MAX_SB][96]; extern const uint8_t vp9_block2left_sb64[TX_SIZE_MAX_SB][384]; extern const uint8_t vp9_block2above_sb64[TX_SIZE_MAX_SB][384]; extern const uint8_t vp9_block2left_sb16x32[TX_SIZE_MAX_MB][48]; extern const uint8_t vp9_block2above_sb16x32[TX_SIZE_MAX_MB][48]; extern const uint8_t vp9_block2left_sb32x16[TX_SIZE_MAX_MB][48]; extern const uint8_t vp9_block2above_sb32x16[TX_SIZE_MAX_MB][48]; extern const uint8_t vp9_block2left_sb32x64[TX_SIZE_MAX_SB][192]; extern const uint8_t vp9_block2above_sb32x64[TX_SIZE_MAX_SB][192]; extern const uint8_t vp9_block2left_sb64x32[TX_SIZE_MAX_SB][192]; extern const uint8_t vp9_block2above_sb64x32[TX_SIZE_MAX_SB][192]; #define USE_ADST_FOR_I16X16_8X8 1 #define USE_ADST_FOR_I16X16_4X4 1 #define USE_ADST_FOR_I8X8_4X4 1 #define USE_ADST_PERIPHERY_ONLY 1 #define USE_ADST_FOR_SB 1 #define USE_ADST_FOR_REMOTE_EDGE 0 static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) { // TODO(debargha): explore different patterns for ADST usage when blocksize // is smaller than the prediction size TX_TYPE tx_type = DCT_DCT; const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type); #if !USE_ADST_FOR_SB if (sb_type > BLOCK_SIZE_MB16X16) return tx_type; #endif if (ib >= (1 << (wb + hb))) // no chroma adst return tx_type; if (xd->lossless) return DCT_DCT; if (xd->mode_info_context->mbmi.mode == I4X4_PRED && xd->q_index < ACTIVE_HT) { tx_type = txfm_map( #if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[ib].as_mode.first == B_CONTEXT_PRED ? xd->mode_info_context->bmi[ib].as_mode.context : #endif xd->mode_info_context->bmi[ib].as_mode.first); } else if (xd->mode_info_context->mbmi.mode == I8X8_PRED && xd->q_index < ACTIVE_HT) { const int ic = (ib & 10); #if USE_ADST_FOR_I8X8_4X4 #if USE_ADST_PERIPHERY_ONLY // Use ADST for periphery blocks only const int inner = ib & 5; tx_type = txfm_map(pred_mode_conv( (MB_PREDICTION_MODE)xd->mode_info_context->bmi[ic].as_mode.first)); #if USE_ADST_FOR_REMOTE_EDGE if (inner == 5) tx_type = DCT_DCT; #else if (inner == 1) { if (tx_type == ADST_ADST) tx_type = ADST_DCT; else if (tx_type == DCT_ADST) tx_type = DCT_DCT; } else if (inner == 4) { if (tx_type == ADST_ADST) tx_type = DCT_ADST; else if (tx_type == ADST_DCT) tx_type = DCT_DCT; } else if (inner == 5) { tx_type = DCT_DCT; } #endif #else // Use ADST b += ic - ib; tx_type = txfm_map(pred_mode_conv( (MB_PREDICTION_MODE)b->bmi.as_mode.first)); #endif #else // Use 2D DCT tx_type = DCT_DCT; #endif } else if (xd->mode_info_context->mbmi.mode < I8X8_PRED && xd->q_index < ACTIVE_HT) { #if USE_ADST_FOR_I16X16_4X4 #if USE_ADST_PERIPHERY_ONLY const int hmax = 1 << wb; tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #if USE_ADST_FOR_REMOTE_EDGE if ((ib & (hmax - 1)) != 0 && ib >= hmax) tx_type = DCT_DCT; #else if (ib >= 1 && ib < hmax) { if (tx_type == ADST_ADST) tx_type = ADST_DCT; else if (tx_type == DCT_ADST) tx_type = DCT_DCT; } else if (ib >= 1 && (ib & (hmax - 1)) == 0) { if (tx_type == ADST_ADST) tx_type = DCT_ADST; else if (tx_type == ADST_DCT) tx_type = DCT_DCT; } else if (ib != 0) { tx_type = DCT_DCT; } #endif #else // Use ADST tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #endif #else // Use 2D DCT tx_type = DCT_DCT; #endif } return tx_type; } static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, int ib) { // TODO(debargha): explore different patterns for ADST usage when blocksize // is smaller than the prediction size TX_TYPE tx_type = DCT_DCT; const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type); #if !USE_ADST_FOR_SB if (sb_type > BLOCK_SIZE_MB16X16) return tx_type; #endif if (ib >= (1 << (wb + hb))) // no chroma adst return tx_type; if (xd->mode_info_context->mbmi.mode == I8X8_PRED && xd->q_index < ACTIVE_HT8) { // TODO(rbultje): MB_PREDICTION_MODE / B_PREDICTION_MODE should be merged // or the relationship otherwise modified to address this type conversion. tx_type = txfm_map(pred_mode_conv( (MB_PREDICTION_MODE)xd->mode_info_context->bmi[ib].as_mode.first)); } else if (xd->mode_info_context->mbmi.mode < I8X8_PRED && xd->q_index < ACTIVE_HT8) { #if USE_ADST_FOR_I16X16_8X8 #if USE_ADST_PERIPHERY_ONLY const int hmax = 1 << wb; tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #if USE_ADST_FOR_REMOTE_EDGE if ((ib & (hmax - 1)) != 0 && ib >= hmax) tx_type = DCT_DCT; #else if (ib >= 1 && ib < hmax) { if (tx_type == ADST_ADST) tx_type = ADST_DCT; else if (tx_type == DCT_ADST) tx_type = DCT_DCT; } else if (ib >= 1 && (ib & (hmax - 1)) == 0) { if (tx_type == ADST_ADST) tx_type = DCT_ADST; else if (tx_type == ADST_DCT) tx_type = DCT_DCT; } else if (ib != 0) { tx_type = DCT_DCT; } #endif #else // Use ADST tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #endif #else // Use 2D DCT tx_type = DCT_DCT; #endif } return tx_type; } static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, int ib) { TX_TYPE tx_type = DCT_DCT; const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int wb = b_width_log2(sb_type), hb = b_height_log2(sb_type); #if !USE_ADST_FOR_SB if (sb_type > BLOCK_SIZE_MB16X16) return tx_type; #endif if (ib >= (1 << (wb + hb))) return tx_type; if (xd->mode_info_context->mbmi.mode < I8X8_PRED && xd->q_index < ACTIVE_HT16) { tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #if USE_ADST_PERIPHERY_ONLY if (sb_type > BLOCK_SIZE_MB16X16) { const int hmax = 1 << wb; #if USE_ADST_FOR_REMOTE_EDGE if ((ib & (hmax - 1)) != 0 && ib >= hmax) tx_type = DCT_DCT; #else if (ib >= 1 && ib < hmax) { if (tx_type == ADST_ADST) tx_type = ADST_DCT; else if (tx_type == DCT_ADST) tx_type = DCT_DCT; } else if (ib >= 1 && (ib & (hmax - 1)) == 0) { if (tx_type == ADST_ADST) tx_type = DCT_ADST; else if (tx_type == ADST_DCT) tx_type = DCT_DCT; } else if (ib != 0) { tx_type = DCT_DCT; } #endif } #endif } return tx_type; } void vp9_setup_block_dptrs(MACROBLOCKD *xd); static TX_SIZE get_uv_tx_size(const MACROBLOCKD *xd) { MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; const TX_SIZE size = mbmi->txfm_size; const MB_PREDICTION_MODE mode = mbmi->mode; switch (mbmi->sb_type) { case BLOCK_SIZE_SB64X64: return size; case BLOCK_SIZE_SB64X32: case BLOCK_SIZE_SB32X64: case BLOCK_SIZE_SB32X32: if (size == TX_32X32) return TX_16X16; else return size; default: if (size == TX_16X16) return TX_8X8; else if (size == TX_8X8 && (mode == I8X8_PRED || mode == SPLITMV)) return TX_4X4; else return size; } return size; } struct plane_block_idx { int plane; int block; }; // TODO(jkoleszar): returning a struct so it can be used in a const context, // expect to refactor this further later. static INLINE struct plane_block_idx plane_block_idx(int y_blocks, int b_idx) { const int v_offset = y_blocks * 5 / 4; struct plane_block_idx res; if (b_idx < y_blocks) { res.plane = 0; res.block = b_idx; } else if (b_idx < v_offset) { res.plane = 1; res.block = b_idx - y_blocks; } else { assert(b_idx < y_blocks * 3 / 2); res.plane = 2; res.block = b_idx - v_offset; } return res; } /* TODO(jkoleszar): Probably best to remove instances that require this, * as the data likely becomes per-plane and stored in the per-plane structures. * This is a stub to work with the existing code. */ static INLINE int old_block_idx_4x4(MACROBLOCKD* const xd, int block_size_b, int plane, int i) { const int luma_blocks = 1 << block_size_b; assert(xd->plane[0].subsampling_x == 0); assert(xd->plane[0].subsampling_y == 0); assert(xd->plane[1].subsampling_x == 1); assert(xd->plane[1].subsampling_y == 1); assert(xd->plane[2].subsampling_x == 1); assert(xd->plane[2].subsampling_y == 1); return plane == 0 ? i : plane == 1 ? luma_blocks + i : luma_blocks * 5 / 4 + i; } typedef void (*foreach_transformed_block_visitor)(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg); static INLINE void foreach_transformed_block_in_plane( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane, int is_split, foreach_transformed_block_visitor visit, void *arg) { const int bw = b_width_log2(bsize), bh = b_height_log2(bsize); // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; const int block_size_b = bw + bh; const int txfrm_size_b = tx_size * 2; // subsampled size of the block const int ss_sum = xd->plane[plane].subsampling_x + xd->plane[plane].subsampling_y; const int ss_block_size = block_size_b - ss_sum; // size of the transform to use. scale the transform down if it's larger // than the size of the subsampled data, or forced externally by the mb mode. const int ss_max = MAX(xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); const int ss_txfrm_size = txfrm_size_b > ss_block_size || is_split ? txfrm_size_b - ss_max * 2 : txfrm_size_b; const int step = 1 << ss_txfrm_size; int i; assert(txfrm_size_b <= block_size_b); assert(ss_txfrm_size <= ss_block_size); for (i = 0; i < (1 << ss_block_size); i += step) { visit(plane, i, bsize, ss_txfrm_size, arg); } } static INLINE void foreach_transformed_block( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_transformed_block_visitor visit, void *arg) { const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; const int is_split = xd->mode_info_context->mbmi.txfm_size == TX_8X8 && (mode == I8X8_PRED || mode == SPLITMV); int plane; for (plane = 0; plane < MAX_MB_PLANE; plane++) { const int is_split_chroma = is_split && xd->plane[plane].plane_type == PLANE_TYPE_UV; foreach_transformed_block_in_plane(xd, bsize, plane, is_split_chroma, visit, arg); } } static INLINE void foreach_transformed_block_uv( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_transformed_block_visitor visit, void *arg) { const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; const int is_split = xd->mode_info_context->mbmi.txfm_size == TX_8X8 && (mode == I8X8_PRED || mode == SPLITMV); int plane; for (plane = 1; plane < MAX_MB_PLANE; plane++) { foreach_transformed_block_in_plane(xd, bsize, plane, is_split, visit, arg); } } // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could // calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for // sizes smaller than 16x16 yet. typedef void (*foreach_predicted_block_visitor)(int plane, int block, BLOCK_SIZE_TYPE bsize, int pred_w, int pred_h, void *arg); static INLINE void foreach_predicted_block_in_plane( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane, foreach_predicted_block_visitor visit, void *arg) { int i, x, y; const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; // block sizes in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // subsampled size of the block const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int bh = b_height_log2(bsize) - xd->plane[plane].subsampling_y; // size of the predictor to use. int pred_w, pred_h; if (mode == SPLITMV) { // 4x4 or 8x8 const int is_4x4 = (xd->mode_info_context->mbmi.partitioning == PARTITIONING_4X4); pred_w = is_4x4 ? 0 : 1 >> xd->plane[plane].subsampling_x; pred_h = is_4x4 ? 0 : 1 >> xd->plane[plane].subsampling_y; } else { pred_w = bw; pred_h = bh; } assert(pred_w <= bw); assert(pred_h <= bh); // visit each subblock in raster order i = 0; for (y = 0; y < 1 << bh; y += 1 << pred_h) { for (x = 0; x < 1 << bw; x += 1 << pred_w) { visit(plane, i, bsize, pred_w, pred_h, arg); i += 1 << pred_w; } i -= 1 << bw; i += 1 << (bw + pred_h); } } static INLINE void foreach_predicted_block( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_predicted_block_visitor visit, void *arg) { int plane; for (plane = 0; plane < MAX_MB_PLANE; plane++) { foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg); } } static INLINE void foreach_predicted_block_uv( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_predicted_block_visitor visit, void *arg) { int plane; for (plane = 1; plane < MAX_MB_PLANE; plane++) { foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg); } } static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, int stride) { const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1)); return y * stride + x; } static int16_t* raster_block_offset_int16(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, int16_t *base) { const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int stride = 4 << bw; return base + raster_block_offset(xd, bsize, plane, block, stride); } static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, uint8_t *base, int stride) { return base + raster_block_offset(xd, bsize, plane, block, stride); } #if CONFIG_CODE_ZEROGROUP static int get_zpc_used(TX_SIZE tx_size) { return (tx_size >= TX_16X16); } #endif #endif // VP9_COMMON_VP9_BLOCKD_H_