/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_config.h" #include "vp9/common/vp9_filter.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_psnr.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_extend.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_segmentation.h" #include "./vp9_rtcd.h" #include "./vpx_scale_rtcd.h" #if CONFIG_POSTPROC #include "vp9/common/vp9_postproc.h" #endif #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_swapyv12buffer.h" #include "vpx_ports/vpx_timer.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/encoder/vp9_mbgraph.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_picklpf.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/encoder/vp9_temporal_filter.h" #include <math.h> #include <stdio.h> #include <limits.h> extern void print_tree_update_probs(); static void set_default_lf_deltas(VP9_COMP *cpi); #define DEFAULT_INTERP_FILTER SWITCHABLE #define SEARCH_BEST_FILTER 0 /* to search exhaustively for best filter */ #define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state before trying each new filter */ #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */ #define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv for altref computation */ #define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision mv. Choose a very high value for now so that HIGH_PRECISION is always chosen */ #if CONFIG_INTERNAL_STATS #include "math.h" extern double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, int lumamask, double *weight); extern double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, double *ssim_y, double *ssim_u, double *ssim_v); #endif // #define OUTPUT_YUV_REC #ifdef OUTPUT_YUV_SRC FILE *yuv_file; #endif #ifdef OUTPUT_YUV_REC FILE *yuv_rec_file; #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif #if 0 extern int skip_true_count; extern int skip_false_count; #endif #ifdef ENTROPY_STATS extern int intra_mode_stats[VP9_KF_BINTRAMODES] [VP9_KF_BINTRAMODES] [VP9_KF_BINTRAMODES]; #endif #ifdef NMV_STATS extern void init_nmvstats(); extern void print_nmvstats(); #endif #if CONFIG_CODE_NONZEROCOUNT #ifdef NZC_STATS extern void init_nzcstats(); extern void print_nzcstats(); #endif #endif #ifdef SPEEDSTATS unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; #endif #if defined(SECTIONBITS_OUTPUT) extern unsigned __int64 Sectionbits[500]; #endif #ifdef MODE_STATS extern int64_t Sectionbits[500]; extern unsigned int y_modes[VP9_YMODES]; extern unsigned int i8x8_modes[VP9_I8X8_MODES]; extern unsigned int uv_modes[VP9_UV_MODES]; extern unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES]; extern unsigned int b_modes[B_MODE_COUNT]; extern unsigned int inter_y_modes[MB_MODE_COUNT]; extern unsigned int inter_uv_modes[VP9_UV_MODES]; extern unsigned int inter_b_modes[B_MODE_COUNT]; #endif extern void vp9_init_quantizer(VP9_COMP *cpi); static int base_skip_false_prob[QINDEX_RANGE][3]; // Tables relating active max Q to active min Q static int kf_low_motion_minq[QINDEX_RANGE]; static int kf_high_motion_minq[QINDEX_RANGE]; static int gf_low_motion_minq[QINDEX_RANGE]; static int gf_high_motion_minq[QINDEX_RANGE]; static int inter_minq[QINDEX_RANGE]; // Functions to compute the active minq lookup table entries based on a // formulaic approach to facilitate easier adjustment of the Q tables. // The formulae were derived from computing a 3rd order polynomial best // fit to the original data (after plotting real maxq vs minq (not q index)) static int calculate_minq_index(double maxq, double x3, double x2, double x1, double c) { int i; const double minqtarget = MIN(((x3 * maxq + x2) * maxq + x1) * maxq + c, maxq); for (i = 0; i < QINDEX_RANGE; i++) { if (minqtarget <= vp9_convert_qindex_to_q(i)) return i; } return QINDEX_RANGE - 1; } static void init_minq_luts(void) { int i; for (i = 0; i < QINDEX_RANGE; i++) { const double maxq = vp9_convert_qindex_to_q(i); kf_low_motion_minq[i] = calculate_minq_index(maxq, 0.000001, -0.0004, 0.15, 0.0); kf_high_motion_minq[i] = calculate_minq_index(maxq, 0.000002, -0.0012, 0.5, 0.0); gf_low_motion_minq[i] = calculate_minq_index(maxq, 0.0000015, -0.0009, 0.33, 0.0); gf_high_motion_minq[i] = calculate_minq_index(maxq, 0.0000021, -0.00125, 0.45, 0.0); inter_minq[i] = calculate_minq_index(maxq, 0.00000271, -0.00113, 0.697, 0.0); } } static void set_mvcost(MACROBLOCK *mb) { if (mb->e_mbd.allow_high_precision_mv) { mb->mvcost = mb->nmvcost_hp; mb->mvsadcost = mb->nmvsadcost_hp; } else { mb->mvcost = mb->nmvcost; mb->mvsadcost = mb->nmvsadcost; } } static void init_base_skip_probs(void) { int i; for (i = 0; i < QINDEX_RANGE; i++) { const double q = vp9_convert_qindex_to_q(i); // Exponential decay caluclation of baseline skip prob with clamping // Based on crude best fit of old table. const int t = (int)(564.25 * pow(2.71828, (-0.012 * q))); base_skip_false_prob[i][1] = clip_prob(t); base_skip_false_prob[i][2] = clip_prob(t * 3 / 4); base_skip_false_prob[i][0] = clip_prob(t * 5 / 4); } } static void update_base_skip_probs(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int k; if (cm->frame_type != KEY_FRAME) { vp9_update_skip_probs(cpi); if (cpi->refresh_alt_ref_frame) { for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k]; cpi->last_skip_probs_q[2] = cm->base_qindex; } else if (cpi->refresh_golden_frame) { for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k]; cpi->last_skip_probs_q[1] = cm->base_qindex; } else { for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k]; cpi->last_skip_probs_q[0] = cm->base_qindex; // update the baseline table for the current q for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->base_skip_false_prob[cm->base_qindex][k] = cm->mbskip_pred_probs[k]; } } } void vp9_initialize_enc() { static int init_done = 0; if (!init_done) { vp9_initialize_common(); vp9_tokenize_initialize(); vp9_init_quant_tables(); vp9_init_me_luts(); init_minq_luts(); init_base_skip_probs(); init_done = 1; } } #ifdef PACKET_TESTING extern FILE *vpxlogc; #endif static void setup_features(VP9_COMP *cpi) { MACROBLOCKD *xd = &cpi->mb.e_mbd; // Set up default state for MB feature flags xd->segmentation_enabled = 0; // Default segmentation disabled xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); vp9_clearall_segfeatures(xd); xd->mode_ref_lf_delta_enabled = 0; xd->mode_ref_lf_delta_update = 0; vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); set_default_lf_deltas(cpi); } static void dealloc_compressor_data(VP9_COMP *cpi) { // Delete last frame MV storage buffers vpx_free(cpi->lfmv); cpi->lfmv = 0; vpx_free(cpi->lf_ref_frame_sign_bias); cpi->lf_ref_frame_sign_bias = 0; vpx_free(cpi->lf_ref_frame); cpi->lf_ref_frame = 0; // Delete sementation map vpx_free(cpi->segmentation_map); cpi->segmentation_map = 0; vpx_free(cpi->common.last_frame_seg_map); cpi->common.last_frame_seg_map = 0; vpx_free(cpi->coding_context.last_frame_seg_map_copy); cpi->coding_context.last_frame_seg_map_copy = 0; vpx_free(cpi->active_map); cpi->active_map = 0; vp9_free_frame_buffers(&cpi->common); vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf); vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer); vp9_lookahead_destroy(cpi->lookahead); vpx_free(cpi->tok); cpi->tok = 0; // Activity mask based per mb zbin adjustments vpx_free(cpi->mb_activity_map); cpi->mb_activity_map = 0; vpx_free(cpi->mb_norm_activity_map); cpi->mb_norm_activity_map = 0; vpx_free(cpi->mb.pip); cpi->mb.pip = 0; vpx_free(cpi->twopass.total_stats); cpi->twopass.total_stats = 0; vpx_free(cpi->twopass.total_left_stats); cpi->twopass.total_left_stats = 0; vpx_free(cpi->twopass.this_frame_stats); cpi->twopass.this_frame_stats = 0; } // Computes a q delta (in "q index" terms) to get from a starting q value // to a target value // target q value static int compute_qdelta(VP9_COMP *cpi, double qstart, double qtarget) { int i; int start_index = cpi->worst_quality; int target_index = cpi->worst_quality; // Convert the average q value to an index. for (i = cpi->best_quality; i < cpi->worst_quality; i++) { start_index = i; if (vp9_convert_qindex_to_q(i) >= qstart) break; } // Convert the q target to an index for (i = cpi->best_quality; i < cpi->worst_quality; i++) { target_index = i; if (vp9_convert_qindex_to_q(i) >= qtarget) break; } return target_index - start_index; } static void configure_static_seg_features(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; int high_q = (int)(cpi->avg_q > 48.0); int qi_delta; // Disable and clear down for KF if (cm->frame_type == KEY_FRAME) { // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; cpi->static_mb_pct = 0; // Disable segmentation vp9_disable_segmentation((VP9_PTR)cpi); // Clear down the segment features. vp9_clearall_segfeatures(xd); } else if (cpi->refresh_alt_ref_frame) { // If this is an alt ref frame // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; cpi->static_mb_pct = 0; // Disable segmentation and individual segment features by default vp9_disable_segmentation((VP9_PTR)cpi); vp9_clearall_segfeatures(xd); // Scan frames from current to arf frame. // This function re-enables segmentation if appropriate. vp9_update_mbgraph_stats(cpi); // If segmentation was enabled set those features needed for the // arf itself. if (xd->segmentation_enabled) { xd->update_mb_segmentation_map = 1; xd->update_mb_segmentation_data = 1; qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875)); vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2)); vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2); vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q); vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF); // Where relevant assume segment data is delta data xd->mb_segment_abs_delta = SEGMENT_DELTADATA; } } // All other frames if segmentation has been enabled else if (xd->segmentation_enabled) { // First normal frame in a valid gf or alt ref group if (cpi->common.frames_since_golden == 0) { // Set up segment features for normal frames in an arf group if (cpi->source_alt_ref_active) { xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 1; xd->mb_segment_abs_delta = SEGMENT_DELTADATA; qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 1.125)); vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2)); vp9_set_segdata(xd, 1, SEG_LVL_ALT_Q, 0); vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_Q); vp9_set_segdata(xd, 1, SEG_LVL_ALT_LF, -2); vp9_enable_segfeature(xd, 1, SEG_LVL_ALT_LF); // Segment coding disabled for compred testing if (high_q || (cpi->static_mb_pct == 100)) { vp9_set_segref(xd, 1, ALTREF_FRAME); vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME); vp9_enable_segfeature(xd, 1, SEG_LVL_SKIP); } } // Disable segmentation and clear down features if alt ref // is not active for this group else { vp9_disable_segmentation((VP9_PTR)cpi); vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; vp9_clearall_segfeatures(xd); } } // Special case where we are coding over the top of a previous // alt ref frame. // Segment coding disabled for compred testing else if (cpi->is_src_frame_alt_ref) { // Enable ref frame features for segment 0 as well vp9_enable_segfeature(xd, 0, SEG_LVL_REF_FRAME); vp9_enable_segfeature(xd, 1, SEG_LVL_REF_FRAME); // All mbs should use ALTREF_FRAME vp9_clear_segref(xd, 0); vp9_set_segref(xd, 0, ALTREF_FRAME); vp9_clear_segref(xd, 1); vp9_set_segref(xd, 1, ALTREF_FRAME); // Skip all MBs if high Q (0,0 mv and skip coeffs) if (high_q) { vp9_enable_segfeature(xd, 0, SEG_LVL_SKIP); vp9_enable_segfeature(xd, 1, SEG_LVL_SKIP); } // Enable data udpate xd->update_mb_segmentation_data = 1; } // All other frames. else { // No updates.. leave things as they are. xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; } } } // DEBUG: Print out the segment id of each MB in the current frame. static void print_seg_map(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int row, col; int map_index = 0; FILE *statsfile = fopen("segmap.stt", "a"); fprintf(statsfile, "%10d\n", cm->current_video_frame); for (row = 0; row < cpi->common.mb_rows; row++) { for (col = 0; col < cpi->common.mb_cols; col++) { fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]); map_index++; } fprintf(statsfile, "\n"); } fprintf(statsfile, "\n"); fclose(statsfile); } static void update_reference_segmentation_map(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int row, col; MODE_INFO *mi, *mi_ptr = cm->mi; uint8_t *cache_ptr = cm->last_frame_seg_map, *cache; for (row = 0; row < cm->mb_rows; row++) { mi = mi_ptr; cache = cache_ptr; for (col = 0; col < cm->mb_cols; col++, mi++, cache++) cache[0] = mi->mbmi.segment_id; mi_ptr += cm->mode_info_stride; cache_ptr += cm->mb_cols; } } static void set_default_lf_deltas(VP9_COMP *cpi) { cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); // Test of ref frame deltas cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // I4X4_PRED cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv } static void set_rd_speed_thresholds(VP9_COMP *cpi, int mode, int speed) { SPEED_FEATURES *sf = &cpi->sf; int speed_multiplier = speed + 1; int i; // Set baseline threshold values for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = mode == 0 ? -500 : 0; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROG ] = 0; sf->thresh_mult[THR_ZEROA ] = 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTG ] = 0; sf->thresh_mult[THR_NEARESTA ] = 0; sf->thresh_mult[THR_NEARMV ] += speed_multiplier * 1000; sf->thresh_mult[THR_NEARG ] += speed_multiplier * 1000; sf->thresh_mult[THR_NEARA ] += speed_multiplier * 1000; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_TM ] += speed_multiplier * 1000; sf->thresh_mult[THR_V_PRED ] += speed_multiplier * 1000; sf->thresh_mult[THR_H_PRED ] += speed_multiplier * 1000; sf->thresh_mult[THR_D45_PRED ] += speed_multiplier * 1500; sf->thresh_mult[THR_D135_PRED] += speed_multiplier * 1500; sf->thresh_mult[THR_D117_PRED] += speed_multiplier * 1500; sf->thresh_mult[THR_D153_PRED] += speed_multiplier * 1500; sf->thresh_mult[THR_D27_PRED ] += speed_multiplier * 1500; sf->thresh_mult[THR_D63_PRED ] += speed_multiplier * 1500; sf->thresh_mult[THR_B_PRED ] += speed_multiplier * 2500; sf->thresh_mult[THR_I8X8_PRED] += speed_multiplier * 2500; sf->thresh_mult[THR_NEWMV ] += speed_multiplier * 1000; sf->thresh_mult[THR_NEWG ] += speed_multiplier * 1000; sf->thresh_mult[THR_NEWA ] += speed_multiplier * 1000; sf->thresh_mult[THR_SPLITMV ] += speed_multiplier * 2500; sf->thresh_mult[THR_SPLITG ] += speed_multiplier * 2500; sf->thresh_mult[THR_SPLITA ] += speed_multiplier * 2500; sf->thresh_mult[THR_COMP_ZEROLG ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_ZEROLA ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_ZEROGA ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEARESTLG] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEARESTLA] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEARESTGA] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEARLG ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEARLA ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEARGA ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_NEWLG ] += speed_multiplier * 2000; sf->thresh_mult[THR_COMP_NEWLA ] += speed_multiplier * 2000; sf->thresh_mult[THR_COMP_NEWGA ] += speed_multiplier * 2000; sf->thresh_mult[THR_COMP_SPLITLA ] += speed_multiplier * 4500; sf->thresh_mult[THR_COMP_SPLITGA ] += speed_multiplier * 4500; sf->thresh_mult[THR_COMP_SPLITLG ] += speed_multiplier * 4500; #if CONFIG_COMP_INTERINTRA_PRED sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] += speed_multiplier * 1500; sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] += speed_multiplier * 2000; sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] += speed_multiplier * 2000; sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] += speed_multiplier * 2000; #endif /* disable frame modes if flags not set */ if (!(cpi->ref_frame_flags & VP9_LAST_FLAG)) { sf->thresh_mult[THR_NEWMV ] = INT_MAX; sf->thresh_mult[THR_NEARESTMV] = INT_MAX; sf->thresh_mult[THR_ZEROMV ] = INT_MAX; sf->thresh_mult[THR_NEARMV ] = INT_MAX; sf->thresh_mult[THR_SPLITMV ] = INT_MAX; #if CONFIG_COMP_INTERINTRA_PRED sf->thresh_mult[THR_COMP_INTERINTRA_ZEROL ] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTL] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEARL ] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEWL ] = INT_MAX; #endif } if (!(cpi->ref_frame_flags & VP9_GOLD_FLAG)) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; sf->thresh_mult[THR_SPLITG ] = INT_MAX; #if CONFIG_COMP_INTERINTRA_PRED sf->thresh_mult[THR_COMP_INTERINTRA_ZEROG ] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTG] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEARG ] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEWG ] = INT_MAX; #endif } if (!(cpi->ref_frame_flags & VP9_ALT_FLAG)) { sf->thresh_mult[THR_NEARESTA ] = INT_MAX; sf->thresh_mult[THR_ZEROA ] = INT_MAX; sf->thresh_mult[THR_NEARA ] = INT_MAX; sf->thresh_mult[THR_NEWA ] = INT_MAX; sf->thresh_mult[THR_SPLITA ] = INT_MAX; #if CONFIG_COMP_INTERINTRA_PRED sf->thresh_mult[THR_COMP_INTERINTRA_ZEROA ] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEARESTA] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEARA ] = INT_MAX; sf->thresh_mult[THR_COMP_INTERINTRA_NEWA ] = INT_MAX; #endif } if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) != (VP9_LAST_FLAG | VP9_GOLD_FLAG)) { sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX; sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX; sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP9_LAST_FLAG | VP9_ALT_FLAG)) != (VP9_LAST_FLAG | VP9_ALT_FLAG)) { sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX; sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) != (VP9_GOLD_FLAG | VP9_ALT_FLAG)) { sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX; sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX; } } void vp9_set_speed_features(VP9_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; int mode = cpi->compressor_speed; int speed = cpi->Speed; int i; // Only modes 0 and 1 supported for now in experimental code basae if (mode > 1) mode = 1; // Initialise default mode frequency sampling variables for (i = 0; i < MAX_MODES; i ++) { cpi->mode_check_freq[i] = 0; cpi->mode_test_hit_counts[i] = 0; cpi->mode_chosen_counts[i] = 0; } // best quality defaults sf->RD = 1; sf->search_method = NSTEP; sf->auto_filter = 1; sf->recode_loop = 1; sf->quarter_pixel_search = 1; sf->half_pixel_search = 1; sf->iterative_sub_pixel = 1; sf->no_skip_block4x4_search = 1; sf->optimize_coefficients = !cpi->oxcf.lossless; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; #if CONFIG_MULTIPLE_ARF // Switch segmentation off. sf->static_segmentation = 0; #else sf->static_segmentation = 1; #endif sf->splitmode_breakout = 0; sf->mb16_breakout = 0; switch (mode) { case 0: // best quality mode sf->search_best_filter = SEARCH_BEST_FILTER; break; case 1: #if CONFIG_MULTIPLE_ARF // Switch segmentation off. sf->static_segmentation = 0; #else sf->static_segmentation = 1; #endif sf->splitmode_breakout = 1; sf->mb16_breakout = 0; if (speed > 0) { /* Disable coefficient optimization above speed 0 */ sf->optimize_coefficients = 0; sf->no_skip_block4x4_search = 0; sf->first_step = 1; cpi->mode_check_freq[THR_SPLITG] = 2; cpi->mode_check_freq[THR_SPLITA] = 2; cpi->mode_check_freq[THR_SPLITMV] = 0; cpi->mode_check_freq[THR_COMP_SPLITGA] = 2; cpi->mode_check_freq[THR_COMP_SPLITLG] = 2; cpi->mode_check_freq[THR_COMP_SPLITLA] = 0; } if (speed > 1) { cpi->mode_check_freq[THR_SPLITG] = 4; cpi->mode_check_freq[THR_SPLITA] = 4; cpi->mode_check_freq[THR_SPLITMV] = 2; cpi->mode_check_freq[THR_COMP_SPLITGA] = 4; cpi->mode_check_freq[THR_COMP_SPLITLG] = 4; cpi->mode_check_freq[THR_COMP_SPLITLA] = 2; } if (speed > 2) { cpi->mode_check_freq[THR_SPLITG] = 15; cpi->mode_check_freq[THR_SPLITA] = 15; cpi->mode_check_freq[THR_SPLITMV] = 7; cpi->mode_check_freq[THR_COMP_SPLITGA] = 15; cpi->mode_check_freq[THR_COMP_SPLITLG] = 15; cpi->mode_check_freq[THR_COMP_SPLITLA] = 7; // Only do recode loop on key frames, golden frames and // alt ref frames sf->recode_loop = 2; } break; }; /* switch */ // Set rd thresholds based on mode and speed setting set_rd_speed_thresholds(cpi, mode, speed); // Slow quant, dct and trellis not worthwhile for first pass // so make sure they are always turned off. if (cpi->pass == 1) { sf->optimize_coefficients = 0; } cpi->mb.fwd_txm16x16 = vp9_short_fdct16x16; cpi->mb.fwd_txm8x8 = vp9_short_fdct8x8; cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4; cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4; if (cpi->oxcf.lossless || cpi->mb.e_mbd.lossless) { cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4; cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4; } cpi->mb.quantize_b_4x4 = vp9_regular_quantize_b_4x4; cpi->mb.quantize_b_4x4_pair = vp9_regular_quantize_b_4x4_pair; cpi->mb.quantize_b_8x8 = vp9_regular_quantize_b_8x8; cpi->mb.quantize_b_16x16 = vp9_regular_quantize_b_16x16; vp9_init_quantizer(cpi); if (cpi->sf.iterative_sub_pixel == 1) { cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step_iteratively; } else if (cpi->sf.quarter_pixel_search) { cpi->find_fractional_mv_step = vp9_find_best_sub_pixel_step; } else if (cpi->sf.half_pixel_search) { cpi->find_fractional_mv_step = vp9_find_best_half_pixel_step; } cpi->mb.optimize = cpi->sf.optimize_coefficients == 1 && cpi->pass != 1; #ifdef SPEEDSTATS frames_at_speed[cpi->Speed]++; #endif } static void alloc_raw_frame_buffers(VP9_COMP *cpi) { cpi->lookahead = vp9_lookahead_init(cpi->oxcf.width, cpi->oxcf.height, cpi->oxcf.lag_in_frames); if (!cpi->lookahead) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate lag buffers"); if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, cpi->oxcf.width, cpi->oxcf.height, VP9BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); } static int alloc_partition_data(VP9_COMP *cpi) { vpx_free(cpi->mb.pip); cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1), sizeof(PARTITION_INFO)); if (!cpi->mb.pip) return 1; cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; return 0; } void vp9_alloc_compressor_data(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; if (vp9_alloc_frame_buffers(cm, cm->width, cm->height)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); if (alloc_partition_data(cpi)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate partition data"); if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, VP9BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, VP9BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); vpx_free(cpi->tok); { unsigned int tokens = cm->mb_rows * cm->mb_cols * (24 * 16 + 1); CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); } // Data used for real time vc mode to see if gf needs refreshing cpi->inter_zz_count = 0; cpi->gf_bad_count = 0; cpi->gf_update_recommended = 0; vpx_free(cpi->mb_activity_map); CHECK_MEM_ERROR(cpi->mb_activity_map, vpx_calloc(sizeof(unsigned int), cm->mb_rows * cm->mb_cols)); vpx_free(cpi->mb_norm_activity_map); CHECK_MEM_ERROR(cpi->mb_norm_activity_map, vpx_calloc(sizeof(unsigned int), cm->mb_rows * cm->mb_cols)); vpx_free(cpi->twopass.total_stats); cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS)); vpx_free(cpi->twopass.total_left_stats); cpi->twopass.total_left_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS)); vpx_free(cpi->twopass.this_frame_stats); cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS)); if (!cpi->twopass.total_stats || !cpi->twopass.total_left_stats || !cpi->twopass.this_frame_stats) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate firstpass stats"); } static void update_frame_size(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; const int aligned_width = multiple16(cm->width); const int aligned_height = multiple16(cm->height); cm->mb_rows = aligned_height >> 4; cm->mb_cols = aligned_width >> 4; cm->MBs = cm->mb_rows * cm->mb_cols; cm->mode_info_stride = cm->mb_cols + 1; memset(cm->mip, 0, (cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO)); vp9_update_mode_info_border(cm, cm->mip); cm->mi = cm->mip + cm->mode_info_stride + 1; cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1; vp9_update_mode_info_in_image(cm, cm->mi); // Update size of buffers local to this frame if (vp8_yv12_realloc_frame_buffer(&cpi->last_frame_uf, cm->width, cm->height, VP9BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to reallocate last frame buffer"); if (vp8_yv12_realloc_frame_buffer(&cpi->scaled_source, cm->width, cm->height, VP9BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to reallocate scaled source buffer"); { int y_stride = cpi->scaled_source.y_stride; if (cpi->sf.search_method == NSTEP) { vp9_init3smotion_compensation(&cpi->mb, y_stride); } else if (cpi->sf.search_method == DIAMOND) { vp9_init_dsmotion_compensation(&cpi->mb, y_stride); } } } // TODO perhaps change number of steps expose to outside world when setting // max and min limits. Also this will likely want refining for the extended Q // range. // // Table that converts 0-63 Q range values passed in outside to the Qindex // range used internally. static const int q_trans[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, }; int vp9_reverse_trans(int x) { int i; for (i = 0; i < 64; i++) if (q_trans[i] >= x) return i; return 63; }; void vp9_new_frame_rate(VP9_COMP *cpi, double framerate) { if (framerate < 0.1) framerate = 30; cpi->oxcf.frame_rate = framerate; cpi->output_frame_rate = cpi->oxcf.frame_rate; cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); cpi->min_frame_bandwidth = MAX(cpi->min_frame_bandwidth, FRAME_OVERHEAD_BITS); // Set Maximum gf/arf interval cpi->max_gf_interval = 16; // Extended interval for genuinely static scenes cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; // Special conditions when alt ref frame enabled in lagged compress mode if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; } if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval; } static int64_t rescale(int val, int64_t num, int denom) { int64_t llnum = num; int64_t llden = denom; int64_t llval = val; return (llval * llnum / llden); } static void set_tile_limits(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int min_log2_tiles, max_log2_tiles; cm->log2_tile_columns = cpi->oxcf.tile_columns; cm->log2_tile_rows = cpi->oxcf.tile_rows; vp9_get_tile_n_bits(cm, &min_log2_tiles, &max_log2_tiles); max_log2_tiles += min_log2_tiles; cm->log2_tile_columns = clamp(cm->log2_tile_columns, min_log2_tiles, max_log2_tiles); cm->tile_columns = 1 << cm->log2_tile_columns; cm->tile_rows = 1 << cm->log2_tile_rows; } static void init_config(VP9_PTR ptr, VP9_CONFIG *oxcf) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *const cm = &cpi->common; int i; cpi->oxcf = *oxcf; cpi->goldfreq = 7; cm->version = oxcf->version; vp9_setup_version(cm); cm->width = oxcf->width; cm->height = oxcf->height; // change includes all joint functionality vp9_change_config(ptr, oxcf); // Initialize active best and worst q and average q values. cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; cpi->active_best_quality = cpi->oxcf.best_allowed_q; cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; // Initialise the starting buffer levels cpi->buffer_level = cpi->oxcf.starting_buffer_level; cpi->bits_off_target = cpi->oxcf.starting_buffer_level; cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->total_actual_bits = 0; cpi->total_target_vs_actual = 0; cpi->static_mb_pct = 0; cpi->lst_fb_idx = 0; cpi->gld_fb_idx = 1; cpi->alt_fb_idx = 2; set_tile_limits(cpi); cpi->fixed_divide[0] = 0; for (i = 1; i < 512; i++) cpi->fixed_divide[i] = 0x80000 / i; } void vp9_change_config(VP9_PTR ptr, VP9_CONFIG *oxcf) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *const cm = &cpi->common; if (!cpi || !oxcf) return; if (cm->version != oxcf->version) { cm->version = oxcf->version; vp9_setup_version(cm); } cpi->oxcf = *oxcf; switch (cpi->oxcf.Mode) { // Real time and one pass deprecated in test code base case MODE_FIRSTPASS: cpi->pass = 1; cpi->compressor_speed = 1; break; case MODE_SECONDPASS: cpi->pass = 2; cpi->compressor_speed = 1; cpi->oxcf.cpu_used = clamp(cpi->oxcf.cpu_used, -5, 5); break; case MODE_SECONDPASS_BEST: cpi->pass = 2; cpi->compressor_speed = 0; break; } cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; cpi->oxcf.lossless = oxcf->lossless; if (cpi->oxcf.lossless) { cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1; cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4; } else { cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1; cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4; } cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; // cpi->use_golden_frame_only = 0; // cpi->use_last_frame_only = 0; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 1; cm->refresh_entropy_probs = 1; setup_features(cpi); cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation set_mvcost(&cpi->mb); { int i; for (i = 0; i < MAX_MB_SEGMENTS; i++) cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } // At the moment the first order values may not be > MAXQ cpi->oxcf.fixed_q = MIN(cpi->oxcf.fixed_q, MAXQ); // local file playback mode == really big buffer if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { cpi->oxcf.starting_buffer_level = 60000; cpi->oxcf.optimal_buffer_level = 60000; cpi->oxcf.maximum_buffer_size = 240000; } // Convert target bandwidth from Kbit/s to Bit/s cpi->oxcf.target_bandwidth *= 1000; cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); // Set or reset optimal and maximum buffer levels. if (cpi->oxcf.optimal_buffer_level == 0) cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.maximum_buffer_size == 0) cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size, cpi->oxcf.target_bandwidth, 1000); // Set up frame rate and related parameters rate control values. vp9_new_frame_rate(cpi, cpi->oxcf.frame_rate); // Set absolute upper and lower quality limits cpi->worst_quality = cpi->oxcf.worst_allowed_q; cpi->best_quality = cpi->oxcf.best_allowed_q; // active values should only be modified if out of new range cpi->active_worst_quality = clamp(cpi->active_worst_quality, cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q); cpi->active_best_quality = clamp(cpi->active_best_quality, cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q); cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0; cpi->cq_target_quality = cpi->oxcf.cq_level; cm->mcomp_filter_type = cm->use_bilinear_mc_filter ? BILINEAR : DEFAULT_INTERP_FILTER; cpi->target_bandwidth = cpi->oxcf.target_bandwidth; cm->display_width = cpi->oxcf.width; cm->display_height = cpi->oxcf.height; // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) cpi->oxcf.Sharpness = MIN(7, cpi->oxcf.Sharpness); cm->sharpness_level = cpi->oxcf.Sharpness; // Increasing the size of the frame beyond the first seen frame, or some // otherwise signalled maximum size, is not supported. // TODO(jkoleszar): exit gracefully. if (!cpi->initial_width) { alloc_raw_frame_buffers(cpi); vp9_alloc_compressor_data(cpi); cpi->initial_width = cm->width; cpi->initial_height = cm->height; } assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); if (cpi->oxcf.fixed_q >= 0) { cpi->last_q[0] = cpi->oxcf.fixed_q; cpi->last_q[1] = cpi->oxcf.fixed_q; cpi->last_boosted_qindex = cpi->oxcf.fixed_q; } cpi->Speed = cpi->oxcf.cpu_used; if (cpi->oxcf.lag_in_frames == 0) { // force to allowlag to 0 if lag_in_frames is 0; cpi->oxcf.allow_lag = 0; } else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) { // Limit on lag buffers as these are not currently dynamically allocated cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; } // YX Temp #if CONFIG_MULTIPLE_ARF vp9_zero(cpi->alt_ref_source); #else cpi->alt_ref_source = NULL; #endif cpi->is_src_frame_alt_ref = 0; #if 0 // Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif set_tile_limits(cpi); } #define M_LOG2_E 0.693147180559945309417 #define log2f(x) (log (x) / (float) M_LOG2_E) static void cal_nmvjointsadcost(int *mvjointsadcost) { mvjointsadcost[0] = 600; mvjointsadcost[1] = 300; mvjointsadcost[2] = 300; mvjointsadcost[0] = 300; } static void cal_nmvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { int i = 1; mvsadcost[0][0] = 0; mvsadcost[1][0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost[0][i] = (int)z; mvsadcost[1][i] = (int)z; mvsadcost[0][-i] = (int)z; mvsadcost[1][-i] = (int)z; } while (++i <= MV_MAX); } VP9_PTR vp9_create_compressor(VP9_CONFIG *oxcf) { int i; volatile union { VP9_COMP *cpi; VP9_PTR ptr; } ctx; VP9_COMP *cpi; VP9_COMMON *cm; cpi = ctx.cpi = vpx_memalign(32, sizeof(VP9_COMP)); // Check that the CPI instance is valid if (!cpi) return 0; cm = &cpi->common; vpx_memset(cpi, 0, sizeof(VP9_COMP)); if (setjmp(cm->error.jmp)) { VP9_PTR ptr = ctx.ptr; ctx.cpi->common.error.setjmp = 0; vp9_remove_compressor(&ptr); return 0; } cpi->common.error.setjmp = 1; CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); vp9_create_common(&cpi->common); init_config((VP9_PTR)cpi, oxcf); memcpy(cpi->base_skip_false_prob, base_skip_false_prob, sizeof(base_skip_false_prob)); cpi->common.current_video_frame = 0; cpi->kf_overspend_bits = 0; cpi->kf_bitrate_adjustment = 0; cpi->frames_till_gf_update_due = 0; cpi->gf_overspend_bits = 0; cpi->non_gf_bitrate_adjustment = 0; cm->prob_last_coded = 128; cm->prob_gf_coded = 128; cm->prob_intra_coded = 63; for (i = 0; i < COMP_PRED_CONTEXTS; i++) cm->prob_comppred[i] = 128; for (i = 0; i < TX_SIZE_MAX_SB - 1; i++) cm->prob_tx[i] = 128; // Prime the recent reference frame usage counters. // Hereafter they will be maintained as a sort of moving average cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; // Set reference frame sign bias for ALTREF frame to 1 (for now) cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->gold_is_last = 0; cpi->alt_is_last = 0; cpi->gold_is_alt = 0; // allocate memory for storing last frame's MVs for MV prediction. CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int_mv))); CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int))); CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int))); // Create the encoder segmentation map and set all entries to 0 CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); // And a copy in common for temporal coding CHECK_MEM_ERROR(cm->last_frame_seg_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); // And a place holder structure is the coding context // for use if we want to save and restore it CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); vpx_memset(cpi->active_map, 1, (cpi->common.mb_rows * cpi->common.mb_cols)); cpi->active_map_enabled = 0; for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); i++) { CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); } #ifdef ENTROPY_STATS if (cpi->pass != 1) init_context_counters(); #endif #ifdef MODE_STATS vp9_zero(y_modes); vp9_zero(i8x8_modes); vp9_zero(uv_modes); vp9_zero(uv_modes_y); vp9_zero(b_modes); vp9_zero(inter_y_modes); vp9_zero(inter_uv_modes); vp9_zero(inter_b_modes); #endif #ifdef NMV_STATS init_nmvstats(); #endif #if CONFIG_CODE_NONZEROCOUNT #ifdef NZC_STATS init_nzcstats(); #endif #endif /*Initialize the feed-forward activity masking.*/ cpi->activity_avg = 90 << 12; cpi->frames_since_key = 8; // Give a sensible default for the first frame. cpi->key_frame_frequency = cpi->oxcf.key_freq; cpi->this_key_frame_forced = 0; cpi->next_key_frame_forced = 0; cpi->source_alt_ref_pending = 0; cpi->source_alt_ref_active = 0; cpi->refresh_alt_ref_frame = 0; #if CONFIG_MULTIPLE_ARF // Turn multiple ARF usage on/off. This is a quick hack for the initial test // version. It should eventually be set via the codec API. cpi->multi_arf_enabled = 1; if (cpi->multi_arf_enabled) { cpi->sequence_number = 0; cpi->frame_coding_order_period = 0; vp9_zero(cpi->frame_coding_order); vp9_zero(cpi->arf_buffer_idx); } #endif cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; #if CONFIG_INTERNAL_STATS cpi->b_calculate_ssimg = 0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_sq_error = 0.0; cpi->total_sq_error2 = 0.0; cpi->total_y = 0.0; cpi->total_u = 0.0; cpi->total_v = 0.0; cpi->total = 0.0; cpi->totalp_y = 0.0; cpi->totalp_u = 0.0; cpi->totalp_v = 0.0; cpi->totalp = 0.0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; cpi->summedp_quality = 0; cpi->summedp_weights = 0; } if (cpi->b_calculate_ssimg) { cpi->total_ssimg_y = 0; cpi->total_ssimg_u = 0; cpi->total_ssimg_v = 0; cpi->total_ssimg_all = 0; } #endif cpi->first_time_stamp_ever = INT64_MAX; cpi->frames_till_gf_update_due = 0; cpi->key_frame_count = 1; cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; cpi->ni_tot_qi = 0; cpi->ni_frames = 0; cpi->tot_q = 0.0; cpi->avg_q = vp9_convert_qindex_to_q(cpi->oxcf.worst_allowed_q); cpi->total_byte_count = 0; cpi->rate_correction_factor = 1.0; cpi->key_frame_rate_correction_factor = 1.0; cpi->gf_rate_correction_factor = 1.0; cpi->twopass.est_max_qcorrection_factor = 1.0; cal_nmvjointsadcost(cpi->mb.nmvjointsadcost); cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX]; cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX]; cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX]; cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX]; cal_nmvsadcosts(cpi->mb.nmvsadcost); cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX]; cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX]; cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX]; cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX]; cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp); for (i = 0; i < KEY_FRAME_CONTEXT; i++) cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate; #ifdef OUTPUT_YUV_SRC yuv_file = fopen("bd.yuv", "ab"); #endif #ifdef OUTPUT_YUV_REC yuv_rec_file = fopen("rec.yuv", "wb"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif cpi->output_pkt_list = oxcf->output_pkt_list; if (cpi->pass == 1) { vp9_init_first_pass(cpi); } else if (cpi->pass == 2) { size_t packet_sz = sizeof(FIRSTPASS_STATS); int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz); cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; cpi->twopass.stats_in = cpi->twopass.stats_in_start; cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz); vp9_init_second_pass(cpi); } vp9_set_speed_features(cpi); // Set starting values of RD threshold multipliers (128 = *1) for (i = 0; i < MAX_MODES; i++) cpi->rd_thresh_mult[i] = 128; #define BFP(BT, SDF, VF, SVF, SVFHH, SVFHV, SVFHHV, SDX3F, SDX8F, SDX4DF) \ cpi->fn_ptr[BT].sdf = SDF; \ cpi->fn_ptr[BT].vf = VF; \ cpi->fn_ptr[BT].svf = SVF; \ cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \ cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \ cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \ cpi->fn_ptr[BT].sdx3f = SDX3F; \ cpi->fn_ptr[BT].sdx8f = SDX8F; \ cpi->fn_ptr[BT].sdx4df = SDX4DF; #if CONFIG_SBSEGMENT BFP(BLOCK_32X16, vp9_sad32x16, vp9_variance32x16, vp9_sub_pixel_variance32x16, NULL, NULL, NULL, NULL, NULL, vp9_sad32x16x4d) BFP(BLOCK_16X32, vp9_sad16x32, vp9_variance16x32, vp9_sub_pixel_variance16x32, NULL, NULL, NULL, NULL, NULL, vp9_sad16x32x4d) BFP(BLOCK_64X32, vp9_sad64x32, vp9_variance64x32, vp9_sub_pixel_variance64x32, NULL, NULL, NULL, NULL, NULL, vp9_sad64x32x4d) BFP(BLOCK_32X64, vp9_sad32x64, vp9_variance32x64, vp9_sub_pixel_variance32x64, NULL, NULL, NULL, NULL, NULL, vp9_sad32x64x4d) #endif BFP(BLOCK_32X32, vp9_sad32x32, vp9_variance32x32, vp9_sub_pixel_variance32x32, vp9_variance_halfpixvar32x32_h, vp9_variance_halfpixvar32x32_v, vp9_variance_halfpixvar32x32_hv, vp9_sad32x32x3, vp9_sad32x32x8, vp9_sad32x32x4d) BFP(BLOCK_64X64, vp9_sad64x64, vp9_variance64x64, vp9_sub_pixel_variance64x64, vp9_variance_halfpixvar64x64_h, vp9_variance_halfpixvar64x64_v, vp9_variance_halfpixvar64x64_hv, vp9_sad64x64x3, vp9_sad64x64x8, vp9_sad64x64x4d) BFP(BLOCK_16X16, vp9_sad16x16, vp9_variance16x16, vp9_sub_pixel_variance16x16, vp9_variance_halfpixvar16x16_h, vp9_variance_halfpixvar16x16_v, vp9_variance_halfpixvar16x16_hv, vp9_sad16x16x3, vp9_sad16x16x8, vp9_sad16x16x4d) BFP(BLOCK_16X8, vp9_sad16x8, vp9_variance16x8, vp9_sub_pixel_variance16x8, NULL, NULL, NULL, vp9_sad16x8x3, vp9_sad16x8x8, vp9_sad16x8x4d) BFP(BLOCK_8X16, vp9_sad8x16, vp9_variance8x16, vp9_sub_pixel_variance8x16, NULL, NULL, NULL, vp9_sad8x16x3, vp9_sad8x16x8, vp9_sad8x16x4d) BFP(BLOCK_8X8, vp9_sad8x8, vp9_variance8x8, vp9_sub_pixel_variance8x8, NULL, NULL, NULL, vp9_sad8x8x3, vp9_sad8x8x8, vp9_sad8x8x4d) BFP(BLOCK_4X4, vp9_sad4x4, vp9_variance4x4, vp9_sub_pixel_variance4x4, NULL, NULL, NULL, vp9_sad4x4x3, vp9_sad4x4x8, vp9_sad4x4x4d) cpi->full_search_sad = vp9_full_search_sad; cpi->diamond_search_sad = vp9_diamond_search_sad; cpi->refining_search_sad = vp9_refining_search_sad; // make sure frame 1 is okay cpi->error_bins[0] = cpi->common.MBs; /* vp9_init_quantizer() is first called here. Add check in * vp9_frame_init_quantizer() so that vp9_init_quantizer is only * called later when needed. This will avoid unnecessary calls of * vp9_init_quantizer() for every frame. */ vp9_init_quantizer(cpi); vp9_loop_filter_init(cm); cpi->common.error.setjmp = 0; vp9_zero(cpi->y_uv_mode_count) #if CONFIG_CODE_NONZEROCOUNT vp9_zero(cm->fc.nzc_counts_4x4); vp9_zero(cm->fc.nzc_counts_8x8); vp9_zero(cm->fc.nzc_counts_16x16); vp9_zero(cm->fc.nzc_counts_32x32); vp9_zero(cm->fc.nzc_pcat_counts); #endif return (VP9_PTR) cpi; } void vp9_remove_compressor(VP9_PTR *ptr) { VP9_COMP *cpi = (VP9_COMP *)(*ptr); int i; if (!cpi) return; if (cpi && (cpi->common.current_video_frame > 0)) { if (cpi->pass == 2) { vp9_end_second_pass(cpi); } #ifdef ENTROPY_STATS if (cpi->pass != 1) { print_context_counters(); print_tree_update_probs(); print_mode_context(&cpi->common); } #endif #ifdef NMV_STATS if (cpi->pass != 1) print_nmvstats(); #endif #if CONFIG_CODE_NONZEROCOUNT #ifdef NZC_STATS if (cpi->pass != 1) print_nzcstats(); #endif #endif #if CONFIG_INTERNAL_STATS vp9_clear_system_state(); // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count); if (cpi->pass != 1) { FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / 10000000.000; double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; #if defined(MODE_STATS) print_mode_contexts(&cpi->common); #endif if (cpi->b_calculate_psnr) { YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.ref_frame_map[cpi->lst_fb_idx]]; double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height; double total_psnr = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error); double total_psnr2 = vp9_mse2psnr(samples, 255.0, cpi->total_sq_error2); double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); double total_ssimp = 100 * pow(cpi->summedp_quality / cpi->summedp_weights, 8.0); fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\t" "VPXSSIM\tVPSSIMP\t Time(ms)\n"); fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n", dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim, total_ssimp, total_encode_time); // fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n", // dr, cpi->total / cpi->count, total_psnr, // cpi->totalp / cpi->count, total_psnr2, total_ssim, // total_encode_time, cpi->tot_recode_hits); } if (cpi->b_calculate_ssimg) { fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n"); fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); // fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr, // cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, // cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits); } fclose(f); } #endif #ifdef MODE_STATS { extern int count_mb_seg[4]; char modes_stats_file[250]; FILE *f; double dr = (double)cpi->oxcf.frame_rate * (double)cpi->bytes * (double)8 / (double)cpi->count / (double)1000; sprintf(modes_stats_file, "modes_q%03d.stt", cpi->common.base_qindex); f = fopen(modes_stats_file, "w"); fprintf(f, "intra_mode in Intra Frames:\n"); { int i; fprintf(f, "Y: "); for (i = 0; i < VP9_YMODES; i++) fprintf(f, " %8d,", y_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "I8: "); for (i = 0; i < VP9_I8X8_MODES; i++) fprintf(f, " %8d,", i8x8_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "UV: "); for (i = 0; i < VP9_UV_MODES; i++) fprintf(f, " %8d,", uv_modes[i]); fprintf(f, "\n"); } { int i, j; fprintf(f, "KeyFrame Y-UV:\n"); for (i = 0; i < VP9_YMODES; i++) { fprintf(f, "%2d:", i); for (j = 0; j < VP9_UV_MODES; j++) fprintf(f, "%8d, ", uv_modes_y[i][j]); fprintf(f, "\n"); } } { int i, j; fprintf(f, "Inter Y-UV:\n"); for (i = 0; i < VP9_YMODES; i++) { fprintf(f, "%2d:", i); for (j = 0; j < VP9_UV_MODES; j++) fprintf(f, "%8d, ", cpi->y_uv_mode_count[i][j]); fprintf(f, "\n"); } } { int i; fprintf(f, "B: "); for (i = 0; i < VP9_NKF_BINTRAMODES; i++) fprintf(f, "%8d, ", b_modes[i]); fprintf(f, "\n"); } fprintf(f, "Modes in Inter Frames:\n"); { int i; fprintf(f, "Y: "); for (i = 0; i < MB_MODE_COUNT; i++) fprintf(f, " %8d,", inter_y_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "UV: "); for (i = 0; i < VP9_UV_MODES; i++) fprintf(f, " %8d,", inter_uv_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "B: "); for (i = 0; i < B_MODE_COUNT; i++) fprintf(f, "%8d, ", inter_b_modes[i]); fprintf(f, "\n"); } fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]); fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]); fclose(f); } #endif #ifdef ENTROPY_STATS { int i, j, k; FILE *fmode = fopen("vp9_modecontext.c", "w"); fprintf(fmode, "\n#include \"vp9_entropymode.h\"\n\n"); fprintf(fmode, "const unsigned int vp9_kf_default_bmode_counts "); fprintf(fmode, "[VP9_KF_BINTRAMODES][VP9_KF_BINTRAMODES]" "[VP9_KF_BINTRAMODES] =\n{\n"); for (i = 0; i < VP9_KF_BINTRAMODES; i++) { fprintf(fmode, " { // Above Mode : %d\n", i); for (j = 0; j < VP9_KF_BINTRAMODES; j++) { fprintf(fmode, " {"); for (k = 0; k < VP9_KF_BINTRAMODES; k++) { if (!intra_mode_stats[i][j][k]) fprintf(fmode, " %5d, ", 1); else fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); } fprintf(fmode, "}, // left_mode %d\n", j); } fprintf(fmode, " },\n"); } fprintf(fmode, "};\n"); fclose(fmode); } #endif #if defined(SECTIONBITS_OUTPUT) if (0) { int i; FILE *f = fopen("tokenbits.stt", "a"); for (i = 0; i < 28; i++) fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); fprintf(f, "\n"); fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif } dealloc_compressor_data(cpi); vpx_free(cpi->mb.ss); vpx_free(cpi->tok); for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) { vpx_free(cpi->mbgraph_stats[i].mb_stats); } vp9_remove_common(&cpi->common); vpx_free(cpi); *ptr = 0; #ifdef OUTPUT_YUV_SRC fclose(yuv_file); #endif #ifdef OUTPUT_YUV_REC fclose(yuv_rec_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static uint64_t calc_plane_error(uint8_t *orig, int orig_stride, uint8_t *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row + 16 <= rows; row += 16) { for (col = 0; col + 16 <= cols; col += 16) { unsigned int sse; vp9_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); total_sse += sse; } /* Handle odd-sized width */ if (col < cols) { unsigned int border_row, border_col; uint8_t *border_orig = orig; uint8_t *border_recon = recon; for (border_row = 0; border_row < 16; border_row++) { for (border_col = col; border_col < cols; border_col++) { diff = border_orig[border_col] - border_recon[border_col]; total_sse += diff * diff; } border_orig += orig_stride; border_recon += recon_stride; } } orig += orig_stride * 16; recon += recon_stride * 16; } /* Handle odd-sized height */ for (; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } static void generate_psnr_packet(VP9_COMP *cpi) { YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; struct vpx_codec_cx_pkt pkt; uint64_t sse; int i; unsigned int width = cpi->common.width; unsigned int height = cpi->common.height; pkt.kind = VPX_CODEC_PSNR_PKT; sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, width, height); pkt.data.psnr.sse[0] = sse; pkt.data.psnr.sse[1] = sse; pkt.data.psnr.samples[0] = width * height; pkt.data.psnr.samples[1] = width * height; width = (width + 1) / 2; height = (height + 1) / 2; sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, width, height); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[2] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[2] = width * height; sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, width, height); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[3] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[3] = width * height; for (i = 0; i < 4; i++) pkt.data.psnr.psnr[i] = vp9_mse2psnr(pkt.data.psnr.samples[i], 255.0, (double)pkt.data.psnr.sse[i]); vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int vp9_use_as_reference(VP9_PTR ptr, int ref_frame_flags) { VP9_COMP *cpi = (VP9_COMP *)(ptr); if (ref_frame_flags > 7) return -1; cpi->ref_frame_flags = ref_frame_flags; return 0; } int vp9_update_reference(VP9_PTR ptr, int ref_frame_flags) { VP9_COMP *cpi = (VP9_COMP *)(ptr); if (ref_frame_flags > 7) return -1; cpi->refresh_golden_frame = 0; cpi->refresh_alt_ref_frame = 0; cpi->refresh_last_frame = 0; if (ref_frame_flags & VP9_LAST_FLAG) cpi->refresh_last_frame = 1; if (ref_frame_flags & VP9_GOLD_FLAG) cpi->refresh_golden_frame = 1; if (ref_frame_flags & VP9_ALT_FLAG) cpi->refresh_alt_ref_frame = 1; return 0; } int vp9_copy_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP9_LAST_FLAG) ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx]; else if (ref_frame_flag == VP9_GOLD_FLAG) ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx]; else if (ref_frame_flag == VP9_ALT_FLAG) ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx]; else return -1; vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd); return 0; } int vp9_get_reference_enc(VP9_PTR ptr, int index, YV12_BUFFER_CONFIG **fb) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *cm = &cpi->common; if (index < 0 || index >= NUM_REF_FRAMES) return -1; *fb = &cm->yv12_fb[cm->ref_frame_map[index]]; return 0; } int vp9_set_reference_enc(VP9_PTR ptr, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP9_COMP *cpi = (VP9_COMP *)(ptr); VP9_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP9_LAST_FLAG) ref_fb_idx = cm->ref_frame_map[cpi->lst_fb_idx]; else if (ref_frame_flag == VP9_GOLD_FLAG) ref_fb_idx = cm->ref_frame_map[cpi->gld_fb_idx]; else if (ref_frame_flag == VP9_ALT_FLAG) ref_fb_idx = cm->ref_frame_map[cpi->alt_fb_idx]; else return -1; vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]); return 0; } int vp9_update_entropy(VP9_PTR comp, int update) { VP9_COMP *cpi = (VP9_COMP *) comp; VP9_COMMON *cm = &cpi->common; cm->refresh_entropy_probs = update; return 0; } #ifdef OUTPUT_YUV_SRC void vp9_write_yuv_frame(YV12_BUFFER_CONFIG *s) { uint8_t *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, yuv_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); } #endif #ifdef OUTPUT_YUV_REC void vp9_write_yuv_rec_frame(VP9_COMMON *cm) { YV12_BUFFER_CONFIG *s = cm->frame_to_show; uint8_t *src = s->y_buffer; int h = cm->height; do { fwrite(src, s->y_width, 1, yuv_rec_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = (cm->height + 1) / 2; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = (cm->height + 1) / 2; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); fflush(yuv_rec_file); } #endif static void scale_and_extend_frame(YV12_BUFFER_CONFIG *src_fb, YV12_BUFFER_CONFIG *dst_fb) { const int in_w = src_fb->y_crop_width; const int in_h = src_fb->y_crop_height; const int out_w = dst_fb->y_crop_width; const int out_h = dst_fb->y_crop_height; int x, y; for (y = 0; y < out_h; y += 16) { for (x = 0; x < out_w; x += 16) { int x_q4 = x * 16 * in_w / out_w; int y_q4 = y * 16 * in_h / out_h; uint8_t *src = src_fb->y_buffer + y * in_h / out_h * src_fb->y_stride + x * in_w / out_w; uint8_t *dst = dst_fb->y_buffer + y * dst_fb->y_stride + x; int src_stride = src_fb->y_stride; int dst_stride = dst_fb->y_stride; vp9_convolve8(src, src_stride, dst, dst_stride, vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w, vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h, 16, 16); x_q4 >>= 1; y_q4 >>= 1; src_stride = src_fb->uv_stride; dst_stride = dst_fb->uv_stride; src = src_fb->u_buffer + y / 2 * in_h / out_h * src_fb->uv_stride + x / 2 * in_w / out_w; dst = dst_fb->u_buffer + y / 2 * dst_fb->uv_stride + x / 2; vp9_convolve8(src, src_stride, dst, dst_stride, vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w, vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h, 8, 8); src = src_fb->v_buffer + y / 2 * in_h / out_h * src_fb->uv_stride + x / 2 * in_w / out_w; dst = dst_fb->v_buffer + y / 2 * dst_fb->uv_stride + x / 2; vp9_convolve8(src, src_stride, dst, dst_stride, vp9_sub_pel_filters_8[x_q4 & 0xf], 16 * in_w / out_w, vp9_sub_pel_filters_8[y_q4 & 0xf], 16 * in_h / out_h, 8, 8); } } vp8_yv12_extend_frame_borders(dst_fb); } static void update_alt_ref_frame_stats(VP9_COMP *cpi) { // this frame refreshes means next frames don't unless specified by user cpi->common.frames_since_golden = 0; #if CONFIG_MULTIPLE_ARF if (!cpi->multi_arf_enabled) #endif // Clear the alternate reference update pending flag. cpi->source_alt_ref_pending = 0; // Set the alternate reference frame active flag cpi->source_alt_ref_active = 1; } static void update_golden_frame_stats(VP9_COMP *cpi) { // Update the Golden frame usage counts. if (cpi->refresh_golden_frame) { // this frame refreshes means next frames don't unless specified by user cpi->refresh_golden_frame = 0; cpi->common.frames_since_golden = 0; // if ( cm->frame_type == KEY_FRAME ) // { cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; // } // else // { // // Carry a portion of count over to beginning of next gf sequence // cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5; // cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5; // cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5; // cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5; // } // ******** Fixed Q test code only ************ // If we are going to use the ALT reference for the next group of frames set a flag to say so. if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate && !cpi->refresh_alt_ref_frame) { cpi->source_alt_ref_pending = 1; cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; } if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = 0; // Decrement count down till next gf if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; } else if (!cpi->refresh_alt_ref_frame) { // Decrement count down till next gf if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; if (cpi->common.frames_till_alt_ref_frame) cpi->common.frames_till_alt_ref_frame--; cpi->common.frames_since_golden++; if (cpi->common.frames_since_golden > 1) { cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME]; cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME]; cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]; cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; } } } static int find_fp_qindex() { int i; for (i = 0; i < QINDEX_RANGE; i++) { if (vp9_convert_qindex_to_q(i) >= 30.0) { break; } } if (i == QINDEX_RANGE) i--; return i; } static void Pass1Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { (void) size; (void) dest; (void) frame_flags; vp9_set_quantizer(cpi, find_fp_qindex()); vp9_first_pass(cpi); } #define WRITE_RECON_BUFFER 0 #if WRITE_RECON_BUFFER void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { // write the frame FILE *yframe; int i; char filename[255]; sprintf(filename, "cx\\y%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->y_height; i++) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\u%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\v%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); } #endif static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) { #define EDGE_THRESH 128 int i, j; int num_edge_pels = 0; int num_pels = (frame->y_height - 2) * (frame->y_width - 2); uint8_t *prev = frame->y_buffer + 1; uint8_t *curr = frame->y_buffer + 1 + frame->y_stride; uint8_t *next = frame->y_buffer + 1 + 2 * frame->y_stride; for (i = 1; i < frame->y_height - 1; i++) { for (j = 1; j < frame->y_width - 1; j++) { /* Sobel hor and ver gradients */ int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]); int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]); h = (h < 0 ? -h : h); v = (v < 0 ? -v : v); if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++; curr++; prev++; next++; } curr += frame->y_stride - frame->y_width + 2; prev += frame->y_stride - frame->y_width + 2; next += frame->y_stride - frame->y_width + 2; } return (double)num_edge_pels / num_pels; } // Function to test for conditions that indicate we should loop // back and recode a frame. static int recode_loop_test(VP9_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { int force_recode = 0; VP9_COMMON *cm = &cpi->common; // Is frame recode allowed at all // Yes if either recode mode 1 is selected or mode two is selected // and the frame is a key frame. golden frame or alt_ref_frame if ((cpi->sf.recode_loop == 1) || ((cpi->sf.recode_loop == 2) && ((cm->frame_type == KEY_FRAME) || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { // General over and under shoot tests if (((cpi->projected_frame_size > high_limit) && (q < maxq)) || ((cpi->projected_frame_size < low_limit) && (q > minq))) { force_recode = 1; } // Special Constrained quality tests else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { // Undershoot and below auto cq level if (q > cpi->cq_target_quality && cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3)) { force_recode = 1; } else if (q > cpi->oxcf.cq_level && cpi->projected_frame_size < cpi->min_frame_bandwidth && cpi->active_best_quality > cpi->oxcf.cq_level) { // Severe undershoot and between auto and user cq level force_recode = 1; cpi->active_best_quality = cpi->oxcf.cq_level; } } } return force_recode; } static void update_reference_frames(VP9_COMP * const cpi) { VP9_COMMON * const cm = &cpi->common; // At this point the new frame has been encoded. // If any buffer copy / swapping is signaled it should be done here. if (cm->frame_type == KEY_FRAME) { ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); } #if CONFIG_MULTIPLE_ARF else if (!cpi->multi_arf_enabled && cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { #else else if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { #endif /* Preserve the previously existing golden frame and update the frame in * the alt ref slot instead. This is highly specific to the current use of * alt-ref as a forward reference, and this needs to be generalized as * other uses are implemented (like RTC/temporal scaling) * * The update to the buffer in the alt ref slot was signaled in * vp9_pack_bitstream(), now swap the buffer pointers so that it's treated * as the golden frame next time. */ int tmp; ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->ref_frame_map[cpi->alt_fb_idx], cm->new_fb_idx); tmp = cpi->alt_fb_idx; cpi->alt_fb_idx = cpi->gld_fb_idx; cpi->gld_fb_idx = tmp; } else { /* For non key/golden frames */ if (cpi->refresh_alt_ref_frame) { int arf_idx = cpi->alt_fb_idx; #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { arf_idx = cpi->arf_buffer_idx[cpi->sequence_number + 1]; } #endif ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->ref_frame_map[arf_idx], cm->new_fb_idx); } if (cpi->refresh_golden_frame) { ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->ref_frame_map[cpi->gld_fb_idx], cm->new_fb_idx); } } if (cpi->refresh_last_frame) { ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->ref_frame_map[cpi->lst_fb_idx], cm->new_fb_idx); } } static void loopfilter_frame(VP9_COMP *cpi, VP9_COMMON *cm) { if (cm->no_lpf || cpi->mb.e_mbd.lossless) { cm->filter_level = 0; } else { struct vpx_usec_timer timer; vp9_clear_system_state(); vpx_usec_timer_start(&timer); vp9_pick_filter_level(cpi->Source, cpi); vpx_usec_timer_mark(&timer); cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); } if (cm->filter_level > 0) { vp9_set_alt_lf_level(cpi, cm->filter_level); vp9_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level, 0, cm->dering_enabled); } vp8_yv12_extend_frame_borders(cm->frame_to_show); } void vp9_select_interp_filter_type(VP9_COMP *cpi) { int i; int high_filter_index = 0; unsigned int thresh; unsigned int high_count = 0; unsigned int count_sum = 0; unsigned int *hist = cpi->best_switchable_interp_count; if (DEFAULT_INTERP_FILTER != SWITCHABLE) { cpi->common.mcomp_filter_type = DEFAULT_INTERP_FILTER; return; } // TODO(agrange): Look at using RD criteria to select the interpolation // filter to use for the next frame rather than this simpler counting scheme. // Select the interpolation filter mode for the next frame // based on the selection frequency seen in the current frame. for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { unsigned int count = hist[i]; count_sum += count; if (count > high_count) { high_count = count; high_filter_index = i; } } thresh = (unsigned int)(0.80 * count_sum); if (high_count > thresh) { // One filter accounts for 80+% of cases so force the next // frame to use this filter exclusively using frame-level flag. cpi->common.mcomp_filter_type = vp9_switchable_interp[high_filter_index]; } else { // Use a MB-level switchable filter selection strategy. cpi->common.mcomp_filter_type = SWITCHABLE; } } #if CONFIG_COMP_INTERINTRA_PRED static void select_interintra_mode(VP9_COMP *cpi) { static const double threshold = 0.01; VP9_COMMON *cm = &cpi->common; // FIXME(debargha): Make this RD based int sum = cpi->interintra_select_count[1] + cpi->interintra_select_count[0]; if (sum) { double fraction = (double) cpi->interintra_select_count[1] / sum; // printf("fraction: %f\n", fraction); cm->use_interintra = (fraction > threshold); } } #endif static void scale_references(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int i; for (i = 0; i < 3; i++) { YV12_BUFFER_CONFIG *ref = &cm->yv12_fb[cm->ref_frame_map[i]]; if (ref->y_crop_width != cm->width || ref->y_crop_height != cm->height) { int new_fb = get_free_fb(cm); vp8_yv12_realloc_frame_buffer(&cm->yv12_fb[new_fb], cm->width, cm->height, VP9BORDERINPIXELS); scale_and_extend_frame(ref, &cm->yv12_fb[new_fb]); cpi->scaled_ref_idx[i] = new_fb; } else { cpi->scaled_ref_idx[i] = cm->ref_frame_map[i]; cm->fb_idx_ref_cnt[cm->ref_frame_map[i]]++; } } } static void release_scaled_references(VP9_COMP *cpi) { VP9_COMMON *cm = &cpi->common; int i; for (i = 0; i < 3; i++) cm->fb_idx_ref_cnt[cpi->scaled_ref_idx[i]]--; } static void encode_frame_to_data_rate(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; int q; int frame_over_shoot_limit; int frame_under_shoot_limit; int loop = 0; int loop_count; int q_low; int q_high; int top_index; int bottom_index; int active_worst_qchanged = 0; int overshoot_seen = 0; int undershoot_seen = 0; SPEED_FEATURES *sf = &cpi->sf; #if RESET_FOREACH_FILTER int q_low0; int q_high0; int Q0; int active_best_quality0; int active_worst_quality0; double rate_correction_factor0; double gf_rate_correction_factor0; #endif /* list of filters to search over */ int mcomp_filters_to_search[] = { #if CONFIG_ENABLE_6TAP EIGHTTAP, EIGHTTAP_SHARP, SIXTAP, SWITCHABLE #else EIGHTTAP, EIGHTTAP_SHARP, EIGHTTAP_SMOOTH, SWITCHABLE #endif }; int mcomp_filters = sizeof(mcomp_filters_to_search) / sizeof(*mcomp_filters_to_search); int mcomp_filter_index = 0; int64_t mcomp_filter_cost[4]; /* Scale the source buffer, if required */ if (cm->mb_cols * 16 != cpi->un_scaled_source->y_width || cm->mb_rows * 16 != cpi->un_scaled_source->y_height) { scale_and_extend_frame(cpi->un_scaled_source, &cpi->scaled_source); cpi->Source = &cpi->scaled_source; } else { cpi->Source = cpi->un_scaled_source; } scale_references(cpi); // Clear down mmx registers to allow floating point in what follows vp9_clear_system_state(); // For an alt ref frame in 2 pass we skip the call to the second // pass function that sets the target bandwidth so must set it here if (cpi->refresh_alt_ref_frame) { // Per frame bit target for the alt ref frame cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // per second target bitrate cpi->target_bandwidth = (int)(cpi->twopass.gf_bits * cpi->output_frame_rate); } // Clear zbin over-quant value and mode boost values. cpi->zbin_mode_boost = 0; // Enable or disable mode based tweaking of the zbin // For 2 Pass Only used where GF/ARF prediction quality // is above a threshold cpi->zbin_mode_boost = 0; // if (cpi->oxcf.lossless) cpi->zbin_mode_boost_enabled = 0; // else // cpi->zbin_mode_boost_enabled = 1; // Current default encoder behaviour for the altref sign bias cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = cpi->source_alt_ref_active; // Check to see if a key frame is signaled // For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass. if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) || (cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) { // Key frame from VFW/auto-keyframe/first frame cm->frame_type = KEY_FRAME; } // Set default state for segment based loop filter update flags xd->mode_ref_lf_delta_update = 0; // Set various flags etc to special state if it is a key frame if (cm->frame_type == KEY_FRAME) { int i; // Reset the loop filter deltas and segmentation map setup_features(cpi); // If segmentation is enabled force a map update for key frames if (xd->segmentation_enabled) { xd->update_mb_segmentation_map = 1; xd->update_mb_segmentation_data = 1; } // The alternate reference frame cannot be active for a key frame cpi->source_alt_ref_active = 0; // Reset the RD threshold multipliers to default of * 1 (128) for (i = 0; i < MAX_MODES; i++) cpi->rd_thresh_mult[i] = 128; cm->error_resilient_mode = (cpi->oxcf.error_resilient_mode != 0); cm->frame_parallel_decoding_mode = (cpi->oxcf.frame_parallel_decoding_mode != 0); if (cm->error_resilient_mode) { cm->frame_parallel_decoding_mode = 1; cm->refresh_entropy_probs = 0; } } // Configure use of segmentation for enhanced coding of static regions. // Only allowed for now in second pass of two pass (as requires lagged coding) // and if the relevant speed feature flag is set. if ((cpi->pass == 2) && (cpi->sf.static_segmentation)) { configure_static_seg_features(cpi); } // Decide how big to make the frame vp9_pick_frame_size(cpi); vp9_clear_system_state(); // Set an active best quality and if necessary active worst quality q = cpi->active_worst_quality; if (cm->frame_type == KEY_FRAME) { #if !CONFIG_MULTIPLE_ARF // Special case for key frames forced because we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping if (cpi->this_key_frame_forced) { int delta_qindex; int qindex = cpi->last_boosted_qindex; double last_boosted_q = vp9_convert_qindex_to_q(qindex); delta_qindex = compute_qdelta(cpi, last_boosted_q, (last_boosted_q * 0.75)); cpi->active_best_quality = MAX(qindex + delta_qindex, cpi->best_quality); } else { int high = 5000; int low = 400; double q_adj_factor = 1.0; double q_val; // Baseline value derived from cpi->active_worst_quality and kf boost if (cpi->kf_boost > high) { cpi->active_best_quality = kf_low_motion_minq[q]; } else if (cpi->kf_boost < low) { cpi->active_best_quality = kf_high_motion_minq[q]; } else { const int gap = high - low; const int offset = high - cpi->kf_boost; const int qdiff = kf_high_motion_minq[q] - kf_low_motion_minq[q]; const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; cpi->active_best_quality = kf_low_motion_minq[q] + adjustment; } // Allow somewhat lower kf minq with small image formats. if ((cm->width * cm->height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Make a further adjustment based on the kf zero motion measure. q_adj_factor += 0.05 - (0.001 * (double)cpi->kf_zeromotion_pct); // Convert the adjustment factor to a qindex delta on active_best_quality. q_val = vp9_convert_qindex_to_q(cpi->active_best_quality); cpi->active_best_quality += compute_qdelta(cpi, q_val, (q_val * q_adj_factor)); } #else double current_q; // Force the KF quantizer to be 30% of the active_worst_quality. current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality); cpi->active_best_quality = cpi->active_worst_quality + compute_qdelta(cpi, current_q, current_q * 0.3); #endif } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { int high = 2000; int low = 400; // Use the lower of cpi->active_worst_quality and recent // average Q as basis for GF/ARF Q limit unless last frame was // a key frame. if (cpi->frames_since_key > 1 && cpi->avg_frame_qindex < cpi->active_worst_quality) { q = cpi->avg_frame_qindex; } // For constrained quality dont allow Q less than the cq level if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < cpi->cq_target_quality) { q = cpi->cq_target_quality; } if (cpi->gfu_boost > high) { cpi->active_best_quality = gf_low_motion_minq[q]; } else if (cpi->gfu_boost < low) { cpi->active_best_quality = gf_high_motion_minq[q]; } else { const int gap = high - low; const int offset = high - cpi->gfu_boost; const int qdiff = gf_high_motion_minq[q] - gf_low_motion_minq[q]; const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; cpi->active_best_quality = gf_low_motion_minq[q] + adjustment; } // Constrained quality use slightly lower active best. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) cpi->active_best_quality = cpi->active_best_quality * 15 / 16; } else { #ifdef ONE_SHOT_Q_ESTIMATE #ifdef STRICT_ONE_SHOT_Q cpi->active_best_quality = q; #else cpi->active_best_quality = inter_minq[q]; #endif #else cpi->active_best_quality = inter_minq[q]; #endif // For the constant/constrained quality mode we don't want // q to fall below the cq level. if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (cpi->active_best_quality < cpi->cq_target_quality)) { // If we are strongly undershooting the target rate in the last // frames then use the user passed in cq value not the auto // cq value. if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) cpi->active_best_quality = cpi->oxcf.cq_level; else cpi->active_best_quality = cpi->cq_target_quality; } } // Clip the active best and worst quality values to limits if (cpi->active_worst_quality > cpi->worst_quality) cpi->active_worst_quality = cpi->worst_quality; if (cpi->active_best_quality < cpi->best_quality) cpi->active_best_quality = cpi->best_quality; if (cpi->active_best_quality > cpi->worst_quality) cpi->active_best_quality = cpi->worst_quality; if (cpi->active_worst_quality < cpi->active_best_quality) cpi->active_worst_quality = cpi->active_best_quality; // Special case code to try and match quality with forced key frames if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { q = cpi->last_boosted_qindex; } else { // Determine initial Q to try q = vp9_regulate_q(cpi, cpi->this_frame_target); } vp9_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); #if CONFIG_MULTIPLE_ARF // Force the quantizer determined by the coding order pattern. if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME)) { double new_q; double current_q = vp9_convert_qindex_to_q(cpi->active_worst_quality); int level = cpi->this_frame_weight; assert(level >= 0); // Set quantizer steps at 10% increments. new_q = current_q * (1.0 - (0.2 * (cpi->max_arf_level - level))); q = cpi->active_worst_quality + compute_qdelta(cpi, current_q, new_q); bottom_index = q; top_index = q; q_low = q; q_high = q; printf("frame:%d q:%d\n", cm->current_video_frame, q); } else { #endif // Limit Q range for the adaptive loop. bottom_index = cpi->active_best_quality; top_index = cpi->active_worst_quality; q_low = cpi->active_best_quality; q_high = cpi->active_worst_quality; #if CONFIG_MULTIPLE_ARF } #endif loop_count = 0; if (cm->frame_type != KEY_FRAME) { /* TODO: Decide this more intelligently */ if (sf->search_best_filter) { cm->mcomp_filter_type = mcomp_filters_to_search[0]; mcomp_filter_index = 0; } else { cm->mcomp_filter_type = DEFAULT_INTERP_FILTER; } /* TODO: Decide this more intelligently */ xd->allow_high_precision_mv = q < HIGH_PRECISION_MV_QTHRESH; set_mvcost(&cpi->mb); } #if CONFIG_COMP_INTERINTRA_PRED if (cm->current_video_frame == 0) { cm->use_interintra = 1; } #endif #if CONFIG_POSTPROC if (cpi->oxcf.noise_sensitivity > 0) { int l = 0; switch (cpi->oxcf.noise_sensitivity) { case 1: l = 20; break; case 2: l = 40; break; case 3: l = 60; break; case 4: case 5: l = 100; break; case 6: l = 150; break; } vp9_denoise(cpi->Source, cpi->Source, l, 1, 0); } #endif #ifdef OUTPUT_YUV_SRC vp9_write_yuv_frame(cpi->Source); #endif #if RESET_FOREACH_FILTER if (sf->search_best_filter) { q_low0 = q_low; q_high0 = q_high; Q0 = Q; rate_correction_factor0 = cpi->rate_correction_factor; gf_rate_correction_factor0 = cpi->gf_rate_correction_factor; active_best_quality0 = cpi->active_best_quality; active_worst_quality0 = cpi->active_worst_quality; } #endif do { vp9_clear_system_state(); // __asm emms; vp9_set_quantizer(cpi, q); if (loop_count == 0) { int k; // setup skip prob for costing in mode/mv decision for (k = 0; k < MBSKIP_CONTEXTS; k++) cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[q][k]; if (cm->frame_type != KEY_FRAME) { if (cpi->refresh_alt_ref_frame) { for (k = 0; k < MBSKIP_CONTEXTS; k++) { if (cpi->last_skip_false_probs[2][k] != 0) cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k]; } } else if (cpi->refresh_golden_frame) { for (k = 0; k < MBSKIP_CONTEXTS; k++) { if (cpi->last_skip_false_probs[1][k] != 0) cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k]; } } else { int k; for (k = 0; k < MBSKIP_CONTEXTS; k++) { if (cpi->last_skip_false_probs[0][k] != 0) cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k]; } } // as this is for cost estimate, let's make sure it does not // get extreme either way { int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) { cm->mbskip_pred_probs[k] = clamp(cm->mbskip_pred_probs[k], 5, 250); if (cpi->is_src_frame_alt_ref) cm->mbskip_pred_probs[k] = 1; } } } // Set up entropy depending on frame type. if (cm->frame_type == KEY_FRAME) { /* Choose which entropy context to use. When using a forward reference * frame, it immediately follows the keyframe, and thus benefits from * using the same entropy context established by the keyframe. * Otherwise, use the default context 0. */ cm->frame_context_idx = cpi->oxcf.play_alternate; vp9_setup_key_frame(cpi); } else { /* Choose which entropy context to use. Currently there are only two * contexts used, one for normal frames and one for alt ref frames. */ cpi->common.frame_context_idx = cpi->refresh_alt_ref_frame; vp9_setup_inter_frame(cpi); } } // transform / motion compensation build reconstruction frame #if CONFIG_MODELCOEFPROB if (cm->frame_type == KEY_FRAME) { vp9_default_coef_probs(cm); } #endif vp9_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. update_base_skip_probs(cpi); vp9_clear_system_state(); // __asm emms; // Dummy pack of the bitstream using up to date stats to get an // accurate estimate of output frame size to determine if we need // to recode. vp9_save_coding_context(cpi); cpi->dummy_packing = 1; vp9_pack_bitstream(cpi, dest, size); cpi->projected_frame_size = (*size) << 3; vp9_restore_coding_context(cpi); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; active_worst_qchanged = 0; // Special case handling for forced key frames if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { int last_q = q; int kf_err = vp9_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); int high_err_target = cpi->ambient_err; int low_err_target = cpi->ambient_err >> 1; // Prevent possible divide by zero error below for perfect KF kf_err += !kf_err; // The key frame is not good enough or we can afford // to make it better without undue risk of popping. if ((kf_err > high_err_target && cpi->projected_frame_size <= frame_over_shoot_limit) || (kf_err > low_err_target && cpi->projected_frame_size <= frame_under_shoot_limit)) { // Lower q_high q_high = q > q_low ? q - 1 : q_low; // Adjust Q q = (q * high_err_target) / kf_err; q = MIN(q, (q_high + q_low) >> 1); } else if (kf_err < low_err_target && cpi->projected_frame_size >= frame_under_shoot_limit) { // The key frame is much better than the previous frame // Raise q_low q_low = q < q_high ? q + 1 : q_high; // Adjust Q q = (q * low_err_target) / kf_err; q = MIN(q, (q_high + q_low + 1) >> 1); } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } // Is the projected frame size out of range and are we allowed to attempt to recode. else if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, q, top_index, bottom_index)) { int last_q = q; int retries = 0; // Frame size out of permitted range: // Update correction factor & compute new Q to try... // Frame is too large if (cpi->projected_frame_size > cpi->this_frame_target) { // Raise Qlow as to at least the current value q_low = q < q_high ? q + 1 : q_high; if (undershoot_seen || loop_count > 1) { // Update rate_correction_factor unless cpi->active_worst_quality // has changed. if (!active_worst_qchanged) vp9_update_rate_correction_factors(cpi, 1); q = (q_high + q_low + 1) / 2; } else { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp9_update_rate_correction_factors(cpi, 0); q = vp9_regulate_q(cpi, cpi->this_frame_target); while (q < q_low && retries < 10) { vp9_update_rate_correction_factors(cpi, 0); q = vp9_regulate_q(cpi, cpi->this_frame_target); retries++; } } overshoot_seen = 1; } else { // Frame is too small q_high = q > q_low ? q - 1 : q_low; if (overshoot_seen || loop_count > 1) { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp9_update_rate_correction_factors(cpi, 1); q = (q_high + q_low) / 2; } else { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp9_update_rate_correction_factors(cpi, 0); q = vp9_regulate_q(cpi, cpi->this_frame_target); // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && q < q_low) { q_low = q; } while (q > q_high && retries < 10) { vp9_update_rate_correction_factors(cpi, 0); q = vp9_regulate_q(cpi, cpi->this_frame_target); retries++; } } undershoot_seen = 1; } // Clamp Q to upper and lower limits: q = clamp(q, q_low, q_high); loop = q != last_q; } else { loop = 0; } if (cpi->is_src_frame_alt_ref) loop = 0; if (!loop && cm->frame_type != KEY_FRAME && sf->search_best_filter) { if (mcomp_filter_index < mcomp_filters) { int64_t err = vp9_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); int64_t rate = cpi->projected_frame_size << 8; mcomp_filter_cost[mcomp_filter_index] = (RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err)); mcomp_filter_index++; if (mcomp_filter_index < mcomp_filters) { cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index]; loop_count = -1; loop = 1; } else { int f; int64_t best_cost = mcomp_filter_cost[0]; int mcomp_best_filter = mcomp_filters_to_search[0]; for (f = 1; f < mcomp_filters; f++) { if (mcomp_filter_cost[f] < best_cost) { mcomp_best_filter = mcomp_filters_to_search[f]; best_cost = mcomp_filter_cost[f]; } } if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) { loop_count = -1; loop = 1; cm->mcomp_filter_type = mcomp_best_filter; } /* printf(" best filter = %d, ( ", mcomp_best_filter); for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]); printf(")\n"); */ } #if RESET_FOREACH_FILTER if (loop) { overshoot_seen = 0; undershoot_seen = 0; q_low = q_low0; q_high = q_high0; q = Q0; cpi->rate_correction_factor = rate_correction_factor0; cpi->gf_rate_correction_factor = gf_rate_correction_factor0; cpi->active_best_quality = active_best_quality0; cpi->active_worst_quality = active_worst_quality0; } #endif } } if (loop) { loop_count++; #if CONFIG_INTERNAL_STATS cpi->tot_recode_hits++; #endif } } while (loop); // Special case code to reduce pulsing when key frames are forced at a // fixed interval. Note the reconstruction error if it is the frame before // the force key frame if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) { cpi->ambient_err = vp9_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); } // This frame's MVs are saved and will be used in next frame's MV // prediction. Last frame has one more line(add to bottom) and one // more column(add to right) than cm->mip. The edge elements are // initialized to 0. if (cm->show_frame) { // do not save for altref frame int mb_row; int mb_col; MODE_INFO *tmp = cm->mip; if (cm->frame_type != KEY_FRAME) { for (mb_row = 0; mb_row < cm->mb_rows + 1; mb_row ++) { for (mb_col = 0; mb_col < cm->mb_cols + 1; mb_col ++) { if (tmp->mbmi.ref_frame != INTRA_FRAME) cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int = tmp->mbmi.mv[0].as_int; cpi->lf_ref_frame_sign_bias[mb_col + mb_row * (cm->mode_info_stride + 1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame]; cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] = tmp->mbmi.ref_frame; tmp++; } } } } if (cm->frame_type == KEY_FRAME) cpi->refresh_last_frame = 1; cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; #if WRITE_RECON_BUFFER if (cm->show_frame) write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame); else write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 1000); #endif // Pick the loop filter level for the frame. loopfilter_frame(cpi, cm); // build the bitstream cpi->dummy_packing = 0; vp9_pack_bitstream(cpi, dest, size); if (cpi->mb.e_mbd.update_mb_segmentation_map) update_reference_segmentation_map(cpi); release_scaled_references(cpi); update_reference_frames(cpi); vp9_copy(cpi->common.fc.coef_counts_4x4, cpi->coef_counts_4x4); vp9_copy(cpi->common.fc.coef_counts_8x8, cpi->coef_counts_8x8); vp9_copy(cpi->common.fc.coef_counts_16x16, cpi->coef_counts_16x16); vp9_copy(cpi->common.fc.coef_counts_32x32, cpi->coef_counts_32x32); if (!cpi->common.error_resilient_mode && !cpi->common.frame_parallel_decoding_mode) { vp9_adapt_coef_probs(&cpi->common); #if CONFIG_CODE_NONZEROCOUNT vp9_adapt_nzc_probs(&cpi->common); #endif } if (cpi->common.frame_type != KEY_FRAME) { vp9_copy(cpi->common.fc.sb_ymode_counts, cpi->sb_ymode_count); vp9_copy(cpi->common.fc.ymode_counts, cpi->ymode_count); vp9_copy(cpi->common.fc.uv_mode_counts, cpi->y_uv_mode_count); vp9_copy(cpi->common.fc.bmode_counts, cpi->bmode_count); vp9_copy(cpi->common.fc.i8x8_mode_counts, cpi->i8x8_mode_count); vp9_copy(cpi->common.fc.sub_mv_ref_counts, cpi->sub_mv_ref_count); vp9_copy(cpi->common.fc.mbsplit_counts, cpi->mbsplit_count); vp9_copy(cpi->common.fc.partition_counts, cpi->partition_count); #if CONFIG_COMP_INTERINTRA_PRED vp9_copy(cpi->common.fc.interintra_counts, cpi->interintra_count); #endif cpi->common.fc.NMVcount = cpi->NMVcount; if (!cpi->common.error_resilient_mode && !cpi->common.frame_parallel_decoding_mode) { vp9_adapt_mode_probs(&cpi->common); vp9_adapt_mode_context(&cpi->common); vp9_adapt_nmv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv); } } #if CONFIG_COMP_INTERINTRA_PRED if (cm->frame_type != KEY_FRAME) select_interintra_mode(cpi); #endif /* Move storing frame_type out of the above loop since it is also * needed in motion search besides loopfilter */ cm->last_frame_type = cm->frame_type; // Update rate control heuristics cpi->total_byte_count += (*size); cpi->projected_frame_size = (*size) << 3; if (!active_worst_qchanged) vp9_update_rate_correction_factors(cpi, 2); cpi->last_q[cm->frame_type] = cm->base_qindex; // Keep record of last boosted (KF/KF/ARF) Q value. // If the current frame is coded at a lower Q then we also update it. // If all mbs in this group are skipped only update if the Q value is // better than that already stored. // This is used to help set quality in forced key frames to reduce popping if ((cm->base_qindex < cpi->last_boosted_qindex) || ((cpi->static_mb_pct < 100) && ((cm->frame_type == KEY_FRAME) || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) { cpi->last_boosted_qindex = cm->base_qindex; } if (cm->frame_type == KEY_FRAME) { vp9_adjust_key_frame_context(cpi); } // Keep a record of ambient average Q. if (cm->frame_type != KEY_FRAME) cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; // Keep a record from which we can calculate the average Q excluding GF updates and key frames if (cm->frame_type != KEY_FRAME && !cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { cpi->ni_frames++; cpi->tot_q += vp9_convert_qindex_to_q(q); cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames; // Calculate the average Q for normal inter frames (not key or GFU frames). cpi->ni_tot_qi += q; cpi->ni_av_qi = cpi->ni_tot_qi / cpi->ni_frames; } // Update the buffer level variable. // Non-viewable frames are a special case and are treated as pure overhead. if (!cm->show_frame) cpi->bits_off_target -= cpi->projected_frame_size; else cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size; // Clip the buffer level at the maximum buffer size if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; // Rolling monitors of whether we are over or underspending used to help // regulate min and Max Q in two pass. if (cm->frame_type != KEY_FRAME) { cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32; } // Actual bits spent cpi->total_actual_bits += cpi->projected_frame_size; // Debug stats cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size); cpi->buffer_level = cpi->bits_off_target; // Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames if (cm->frame_type == KEY_FRAME) { cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; cpi->twopass.kf_group_bits = MAX(cpi->twopass.kf_group_bits, 0); } else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) { cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; cpi->twopass.gf_group_bits = MAX(cpi->twopass.gf_group_bits, 0); } // Update the skip mb flag probabilities based on the distribution seen // in this frame. update_base_skip_probs(cpi); #if 0 && CONFIG_INTERNAL_STATS { FILE *f = fopen("tmp.stt", "a"); int recon_err; vp9_clear_system_state(); // __asm emms; recon_err = vp9_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); if (cpi->twopass.total_left_stats->coded_error != 0.0) fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d" "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f" "%6d %6d %5d %5d %5d %8.2f %10d %10.3f" "%10.3f %8d %10d %10d %10d\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, 0, //loop_size_estimate, (cpi->projected_frame_size - cpi->this_frame_target), (int)cpi->total_target_vs_actual, (int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target), (int)cpi->total_actual_bits, vp9_convert_qindex_to_q(cm->base_qindex), (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0, vp9_convert_qindex_to_q(cpi->active_best_quality), vp9_convert_qindex_to_q(cpi->active_worst_quality), cpi->avg_q, vp9_convert_qindex_to_q(cpi->ni_av_qi), vp9_convert_qindex_to_q(cpi->cq_target_quality), cpi->refresh_last_frame, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left, cpi->twopass.total_left_stats->coded_error, (double)cpi->twopass.bits_left / cpi->twopass.total_left_stats->coded_error, cpi->tot_recode_hits, recon_err, cpi->kf_boost, cpi->kf_zeromotion_pct); else fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d" "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f" "%5d %5d %5d %8d %8d %8.2f %10d %10.3f" "%8d %10d %10d %10d\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, 0, //loop_size_estimate, (cpi->projected_frame_size - cpi->this_frame_target), (int)cpi->total_target_vs_actual, (int)(cpi->oxcf.starting_buffer_level - cpi->bits_off_target), (int)cpi->total_actual_bits, vp9_convert_qindex_to_q(cm->base_qindex), (double)vp9_dc_quant(cm->base_qindex, 0) / 4.0, vp9_convert_qindex_to_q(cpi->active_best_quality), vp9_convert_qindex_to_q(cpi->active_worst_quality), cpi->avg_q, vp9_convert_qindex_to_q(cpi->ni_av_qi), vp9_convert_qindex_to_q(cpi->cq_target_quality), cpi->refresh_last_frame, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left, cpi->twopass.total_left_stats->coded_error, cpi->tot_recode_hits, recon_err, cpi->kf_boost, cpi->kf_zeromotion_pct); fclose(f); if (0) { FILE *fmodes = fopen("Modes.stt", "a"); int i; fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cpi->refresh_golden_frame, cpi->refresh_alt_ref_frame); for (i = 0; i < MAX_MODES; i++) fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif #if 0 // Debug stats for segment feature experiments. print_seg_map(cpi); #endif // If this was a kf or Gf note the Q if ((cm->frame_type == KEY_FRAME) || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) cm->last_kf_gf_q = cm->base_qindex; if (cpi->refresh_golden_frame == 1) cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; else cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN; if (cpi->refresh_alt_ref_frame == 1) cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; else cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF; if (cpi->refresh_last_frame & cpi->refresh_golden_frame) cpi->gold_is_last = 1; else if (cpi->refresh_last_frame ^ cpi->refresh_golden_frame) cpi->gold_is_last = 0; if (cpi->refresh_last_frame & cpi->refresh_alt_ref_frame) cpi->alt_is_last = 1; else if (cpi->refresh_last_frame ^ cpi->refresh_alt_ref_frame) cpi->alt_is_last = 0; if (cpi->refresh_alt_ref_frame & cpi->refresh_golden_frame) cpi->gold_is_alt = 1; else if (cpi->refresh_alt_ref_frame ^ cpi->refresh_golden_frame) cpi->gold_is_alt = 0; cpi->ref_frame_flags = VP9_ALT_FLAG | VP9_GOLD_FLAG | VP9_LAST_FLAG; if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP9_GOLD_FLAG; if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP9_ALT_FLAG; if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP9_ALT_FLAG; if (cpi->oxcf.play_alternate && cpi->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME)) // Update the alternate reference frame stats as appropriate. update_alt_ref_frame_stats(cpi); else // Update the Golden frame stats as appropriate. update_golden_frame_stats(cpi); if (cm->frame_type == KEY_FRAME) { // Tell the caller that the frame was coded as a key frame *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; #if CONFIG_MULTIPLE_ARF // Reset the sequence number. if (cpi->multi_arf_enabled) { cpi->sequence_number = 0; cpi->frame_coding_order_period = cpi->new_frame_coding_order_period; cpi->new_frame_coding_order_period = -1; } #endif // As this frame is a key frame the next defaults to an inter frame. cm->frame_type = INTER_FRAME; } else { *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY; #if CONFIG_MULTIPLE_ARF /* Increment position in the coded frame sequence. */ if (cpi->multi_arf_enabled) { ++cpi->sequence_number; if (cpi->sequence_number >= cpi->frame_coding_order_period) { cpi->sequence_number = 0; cpi->frame_coding_order_period = cpi->new_frame_coding_order_period; cpi->new_frame_coding_order_period = -1; } cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; assert(cpi->this_frame_weight >= 0); } #endif } // Clear the one shot update flags for segmentation map and mode/ref loop filter deltas. xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; xd->mode_ref_lf_delta_update = 0; // keep track of the last coded dimensions cm->last_width = cm->width; cm->last_height = cm->height; // Don't increment frame counters if this was an altref buffer // update not a real frame if (cm->show_frame) { ++cm->current_video_frame; ++cpi->frames_since_key; } // reset to normal state now that we are done. #if 0 { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); recon_file = fopen(filename, "wb"); fwrite(cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].buffer_alloc, cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]].frame_size, 1, recon_file); fclose(recon_file); } #endif #ifdef OUTPUT_YUV_REC vp9_write_yuv_rec_frame(cm); #endif if (cm->show_frame) { vpx_memcpy(cm->prev_mip, cm->mip, (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); } else { vpx_memset(cm->prev_mip, 0, (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); } } static void Pass2Encode(VP9_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { if (!cpi->refresh_alt_ref_frame) vp9_second_pass(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); #ifdef DISABLE_RC_LONG_TERM_MEM cpi->twopass.bits_left -= cpi->this_frame_target; #else cpi->twopass.bits_left -= 8 * *size; #endif if (!cpi->refresh_alt_ref_frame) { double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); if (two_pass_min_rate < lower_bounds_min_rate) two_pass_min_rate = lower_bounds_min_rate; cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate); } } int vp9_receive_raw_frame(VP9_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { VP9_COMP *cpi = (VP9_COMP *) ptr; VP9_COMMON *cm = &cpi->common; struct vpx_usec_timer timer; int res = 0; vpx_usec_timer_start(&timer); if (vp9_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL)) res = -1; cm->clr_type = sd->clrtype; vpx_usec_timer_mark(&timer); cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); return res; } static int frame_is_reference(const VP9_COMP *cpi) { const VP9_COMMON *cm = &cpi->common; const MACROBLOCKD *mb = &cpi->mb.e_mbd; return cm->frame_type == KEY_FRAME || cpi->refresh_last_frame || cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame || cm->refresh_entropy_probs || mb->mode_ref_lf_delta_update || mb->update_mb_segmentation_map || mb->update_mb_segmentation_data; } #if CONFIG_MULTIPLE_ARF int is_next_frame_arf(VP9_COMP *cpi) { // Negative entry in frame_coding_order indicates an ARF at this position. return cpi->frame_coding_order[cpi->sequence_number + 1] < 0 ? 1 : 0; } #endif int vp9_get_compressed_data(VP9_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, int64_t *time_stamp, int64_t *time_end, int flush) { VP9_COMP *cpi = (VP9_COMP *) ptr; VP9_COMMON *cm = &cpi->common; struct vpx_usec_timer cmptimer; YV12_BUFFER_CONFIG *force_src_buffer = NULL; int i; // FILE *fp_out = fopen("enc_frame_type.txt", "a"); if (!cpi) return -1; vpx_usec_timer_start(&cmptimer); cpi->source = NULL; cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV; set_mvcost(&cpi->mb); // Should we code an alternate reference frame. if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) { int frames_to_arf; #if CONFIG_MULTIPLE_ARF assert(!cpi->multi_arf_enabled || cpi->frame_coding_order[cpi->sequence_number] < 0); if (cpi->multi_arf_enabled && (cpi->pass == 2)) frames_to_arf = (-cpi->frame_coding_order[cpi->sequence_number]) - cpi->next_frame_in_order; else #endif frames_to_arf = cpi->frames_till_gf_update_due; assert(frames_to_arf < cpi->twopass.frames_to_key); if ((cpi->source = vp9_lookahead_peek(cpi->lookahead, frames_to_arf))) { #if CONFIG_MULTIPLE_ARF cpi->alt_ref_source[cpi->arf_buffered] = cpi->source; #else cpi->alt_ref_source = cpi->source; #endif if (cpi->oxcf.arnr_max_frames > 0) { // Produce the filtered ARF frame. // TODO(agrange) merge these two functions. configure_arnr_filter(cpi, cm->current_video_frame + frames_to_arf, cpi->gfu_boost); vp9_temporal_filter_prepare(cpi, frames_to_arf); force_src_buffer = &cpi->alt_ref_buffer; } cm->show_frame = 0; cpi->refresh_alt_ref_frame = 1; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 0; cpi->is_src_frame_alt_ref = 0; // TODO(agrange) This needs to vary depending on where the next ARF is. cm->frames_till_alt_ref_frame = frames_to_arf; #if CONFIG_MULTIPLE_ARF if (!cpi->multi_arf_enabled) #endif cpi->source_alt_ref_pending = 0; // Clear Pending altf Ref flag. } } if (!cpi->source) { #if CONFIG_MULTIPLE_ARF int i; #endif if ((cpi->source = vp9_lookahead_pop(cpi->lookahead, flush))) { cm->show_frame = 1; #if CONFIG_MULTIPLE_ARF // Is this frame the ARF overlay. cpi->is_src_frame_alt_ref = 0; for (i = 0; i < cpi->arf_buffered; ++i) { if (cpi->source == cpi->alt_ref_source[i]) { cpi->is_src_frame_alt_ref = 1; cpi->refresh_golden_frame = 1; break; } } #else cpi->is_src_frame_alt_ref = cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source); #endif if (cpi->is_src_frame_alt_ref) { // Current frame is an ARF overlay frame. #if CONFIG_MULTIPLE_ARF cpi->alt_ref_source[i] = NULL; #else cpi->alt_ref_source = NULL; #endif // Don't refresh the last buffer for an ARF overlay frame. It will // become the GF so preserve last as an alternative prediction option. cpi->refresh_last_frame = 0; } #if CONFIG_MULTIPLE_ARF ++cpi->next_frame_in_order; #endif } } if (cpi->source) { cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img; *time_stamp = cpi->source->ts_start; *time_end = cpi->source->ts_end; *frame_flags = cpi->source->flags; // fprintf(fp_out, " Frame:%d", cm->current_video_frame); #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { // fprintf(fp_out, " seq_no:%d this_frame_weight:%d", // cpi->sequence_number, cpi->this_frame_weight); } else { // fprintf(fp_out, "\n"); } #else // fprintf(fp_out, "\n"); #endif #if CONFIG_MULTIPLE_ARF if ((cm->frame_type != KEY_FRAME) && (cpi->pass == 2)) cpi->source_alt_ref_pending = is_next_frame_arf(cpi); #endif } else { *size = 0; if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) { vp9_end_first_pass(cpi); /* get last stats packet */ cpi->twopass.first_pass_done = 1; } // fclose(fp_out); return -1; } if (cpi->source->ts_start < cpi->first_time_stamp_ever) { cpi->first_time_stamp_ever = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_start; } // adjust frame rates based on timestamps given if (!cpi->refresh_alt_ref_frame) { int64_t this_duration; int step = 0; if (cpi->source->ts_start == cpi->first_time_stamp_ever) { this_duration = cpi->source->ts_end - cpi->source->ts_start; step = 1; } else { int64_t last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; // do a step update if the duration changes by 10% if (last_duration) step = (int)((this_duration - last_duration) * 10 / last_duration); } if (this_duration) { if (step) { vp9_new_frame_rate(cpi, 10000000.0 / this_duration); } else { // Average this frame's rate into the last second's average // frame rate. If we haven't seen 1 second yet, then average // over the whole interval seen. const double interval = MIN((double)(cpi->source->ts_end - cpi->first_time_stamp_ever), 10000000.0); double avg_duration = 10000000.0 / cpi->oxcf.frame_rate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; vp9_new_frame_rate(cpi, 10000000.0 / avg_duration); } } cpi->last_time_stamp_seen = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_end; } // start with a 0 size frame *size = 0; // Clear down mmx registers vp9_clear_system_state(); // __asm emms; /* find a free buffer for the new frame, releasing the reference previously * held. */ cm->fb_idx_ref_cnt[cm->new_fb_idx]--; cm->new_fb_idx = get_free_fb(cm); #if CONFIG_MULTIPLE_ARF /* Set up the correct ARF frame. */ if (cpi->refresh_alt_ref_frame) { ++cpi->arf_buffered; } if (cpi->multi_arf_enabled && (cm->frame_type != KEY_FRAME) && (cpi->pass == 2)) { cpi->alt_fb_idx = cpi->arf_buffer_idx[cpi->sequence_number]; } #endif /* Get the mapping of L/G/A to the reference buffer pool */ cm->active_ref_idx[0] = cm->ref_frame_map[cpi->lst_fb_idx]; cm->active_ref_idx[1] = cm->ref_frame_map[cpi->gld_fb_idx]; cm->active_ref_idx[2] = cm->ref_frame_map[cpi->alt_fb_idx]; #if 0 // CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { fprintf(fp_out, " idx(%d, %d, %d, %d) active(%d, %d, %d)", cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx, cm->new_fb_idx, cm->active_ref_idx[0], cm->active_ref_idx[1], cm->active_ref_idx[2]); if (cpi->refresh_alt_ref_frame) fprintf(fp_out, " type:ARF"); if (cpi->is_src_frame_alt_ref) fprintf(fp_out, " type:OVERLAY[%d]", cpi->alt_fb_idx); fprintf(fp_out, "\n"); } #endif cm->frame_type = INTER_FRAME; cm->frame_flags = *frame_flags; // Reset the frame pointers to the current frame size vp8_yv12_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx], cm->width, cm->height, VP9BORDERINPIXELS); // Calculate scaling factors for each of the 3 available references for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { if (cm->active_ref_idx[i] >= NUM_YV12_BUFFERS) { memset(&cm->active_ref_scale[i], 0, sizeof(cm->active_ref_scale[i])); continue; } vp9_setup_scale_factors_for_frame(&cm->active_ref_scale[i], &cm->yv12_fb[cm->active_ref_idx[i]], cm->width, cm->height); } vp9_setup_interp_filters(&cpi->mb.e_mbd, DEFAULT_INTERP_FILTER, cm); if (cpi->pass == 1) { Pass1Encode(cpi, size, dest, frame_flags); } else if (cpi->pass == 2) { Pass2Encode(cpi, size, dest, frame_flags); } else { encode_frame_to_data_rate(cpi, size, dest, frame_flags); } if (cm->refresh_entropy_probs) { vpx_memcpy(&cm->frame_contexts[cm->frame_context_idx], &cm->fc, sizeof(cm->fc)); } if (*size > 0) { // if its a dropped frame honor the requests on subsequent frames cpi->droppable = !frame_is_reference(cpi); // return to normal state cm->refresh_entropy_probs = 1; cpi->refresh_alt_ref_frame = 0; cpi->refresh_golden_frame = 0; cpi->refresh_last_frame = 1; cm->frame_type = INTER_FRAME; } vpx_usec_timer_mark(&cmptimer); cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) generate_psnr_packet(cpi); #if CONFIG_INTERNAL_STATS if (cpi->pass != 1) { cpi->bytes += *size; if (cm->show_frame) { cpi->count++; if (cpi->b_calculate_psnr) { double ye, ue, ve; double frame_psnr; YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; int y_samples = orig->y_height * orig->y_width; int uv_samples = orig->uv_height * orig->uv_width; int t_samples = y_samples + 2 * uv_samples; double sq_error; ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height); ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, orig->uv_width, orig->uv_height); ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height); sq_error = ye + ue + ve; frame_psnr = vp9_mse2psnr(t_samples, 255.0, sq_error); cpi->total_y += vp9_mse2psnr(y_samples, 255.0, ye); cpi->total_u += vp9_mse2psnr(uv_samples, 255.0, ue); cpi->total_v += vp9_mse2psnr(uv_samples, 255.0, ve); cpi->total_sq_error += sq_error; cpi->total += frame_psnr; { double frame_psnr2, frame_ssim2 = 0; double weight = 0; #if CONFIG_POSTPROC vp9_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0); #endif vp9_clear_system_state(); ye = (double)calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height); ue = (double)calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height); ve = (double)calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height); sq_error = ye + ue + ve; frame_psnr2 = vp9_mse2psnr(t_samples, 255.0, sq_error); cpi->totalp_y += vp9_mse2psnr(y_samples, 255.0, ye); cpi->totalp_u += vp9_mse2psnr(uv_samples, 255.0, ue); cpi->totalp_v += vp9_mse2psnr(uv_samples, 255.0, ve); cpi->total_sq_error2 += sq_error; cpi->totalp += frame_psnr2; frame_ssim2 = vp9_calc_ssim(cpi->Source, recon, 1, &weight); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; frame_ssim2 = vp9_calc_ssim(cpi->Source, &cm->post_proc_buffer, 1, &weight); cpi->summedp_quality += frame_ssim2 * weight; cpi->summedp_weights += weight; #if 0 { FILE *f = fopen("q_used.stt", "a"); fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", cpi->common.current_video_frame, y2, u2, v2, frame_psnr2, frame_ssim2); fclose(f); } #endif } } if (cpi->b_calculate_ssimg) { double y, u, v, frame_all; frame_all = vp9_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v); cpi->total_ssimg_y += y; cpi->total_ssimg_u += u; cpi->total_ssimg_v += v; cpi->total_ssimg_all += frame_all; } } } #endif // fclose(fp_out); return 0; } int vp9_get_preview_raw_frame(VP9_PTR comp, YV12_BUFFER_CONFIG *dest, vp9_ppflags_t *flags) { VP9_COMP *cpi = (VP9_COMP *) comp; if (!cpi->common.show_frame) return -1; else { int ret; #if CONFIG_POSTPROC ret = vp9_post_proc_frame(&cpi->common, dest, flags); #else if (cpi->common.frame_to_show) { *dest = *cpi->common.frame_to_show; dest->y_width = cpi->common.width; dest->y_height = cpi->common.height; dest->uv_height = cpi->common.height / 2; ret = 0; } else { ret = -1; } #endif // !CONFIG_POSTPROC vp9_clear_system_state(); return ret; } } int vp9_set_roimap(VP9_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4]) { VP9_COMP *cpi = (VP9_COMP *) comp; signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS]; MACROBLOCKD *xd = &cpi->mb.e_mbd; int i; if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols) return -1; if (!map) { vp9_disable_segmentation((VP9_PTR)cpi); return 0; } // Set the segmentation Map vp9_set_segmentation_map((VP9_PTR)cpi, map); // Activate segmentation. vp9_enable_segmentation((VP9_PTR)cpi); // Set up the quant segment data feature_data[SEG_LVL_ALT_Q][0] = delta_q[0]; feature_data[SEG_LVL_ALT_Q][1] = delta_q[1]; feature_data[SEG_LVL_ALT_Q][2] = delta_q[2]; feature_data[SEG_LVL_ALT_Q][3] = delta_q[3]; // Set up the loop segment data s feature_data[SEG_LVL_ALT_LF][0] = delta_lf[0]; feature_data[SEG_LVL_ALT_LF][1] = delta_lf[1]; feature_data[SEG_LVL_ALT_LF][2] = delta_lf[2]; feature_data[SEG_LVL_ALT_LF][3] = delta_lf[3]; cpi->segment_encode_breakout[0] = threshold[0]; cpi->segment_encode_breakout[1] = threshold[1]; cpi->segment_encode_breakout[2] = threshold[2]; cpi->segment_encode_breakout[3] = threshold[3]; // Enable the loop and quant changes in the feature mask for (i = 0; i < 4; i++) { if (delta_q[i]) vp9_enable_segfeature(xd, i, SEG_LVL_ALT_Q); else vp9_disable_segfeature(xd, i, SEG_LVL_ALT_Q); if (delta_lf[i]) vp9_enable_segfeature(xd, i, SEG_LVL_ALT_LF); else vp9_disable_segfeature(xd, i, SEG_LVL_ALT_LF); } // Initialise the feature data structure // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 vp9_set_segment_data((VP9_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); return 0; } int vp9_set_active_map(VP9_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols) { VP9_COMP *cpi = (VP9_COMP *) comp; if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { if (map) { vpx_memcpy(cpi->active_map, map, rows * cols); cpi->active_map_enabled = 1; } else { cpi->active_map_enabled = 0; } return 0; } else { // cpi->active_map_enabled = 0; return -1; } } int vp9_set_internal_size(VP9_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { VP9_COMP *cpi = (VP9_COMP *) comp; VP9_COMMON *cm = &cpi->common; int hr = 0, hs = 0, vr = 0, vs = 0; if (horiz_mode > ONETWO || vert_mode > ONETWO) return -1; Scale2Ratio(horiz_mode, &hr, &hs); Scale2Ratio(vert_mode, &vr, &vs); // always go to the next whole number cm->width = (hs - 1 + cpi->oxcf.width * hr) / hs; cm->height = (vs - 1 + cpi->oxcf.height * vr) / vs; assert(cm->width <= cpi->initial_width); assert(cm->height <= cpi->initial_height); update_frame_size(cpi); return 0; } int vp9_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) { int i, j; int total = 0; uint8_t *src = source->y_buffer; uint8_t *dst = dest->y_buffer; // Loop through the Y plane raw and reconstruction data summing // (square differences) for (i = 0; i < source->y_height; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; total += vp9_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse); } src += 16 * source->y_stride; dst += 16 * dest->y_stride; } return total; } int vp9_get_quantizer(VP9_PTR c) { return ((VP9_COMP *)c)->common.base_qindex; }