/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/decoder/vp9_treereader.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/common/vp9_mvref_common.h" #if CONFIG_DEBUG #include #endif // #define DEBUG_DEC_MV #ifdef DEBUG_DEC_MV int dec_mvcount = 0; #endif // #define DEC_DEBUG #ifdef DEC_DEBUG extern int dec_debug; #endif static B_PREDICTION_MODE read_bmode(vp9_reader *bc, const vp9_prob *p) { B_PREDICTION_MODE m = treed_read(bc, vp9_bmode_tree, p); #if CONFIG_NEWBINTRAMODES if (m == B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS) m = B_CONTEXT_PRED; assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED); #endif return m; } static B_PREDICTION_MODE read_kf_bmode(vp9_reader *bc, const vp9_prob *p) { return (B_PREDICTION_MODE)treed_read(bc, vp9_kf_bmode_tree, p); } static MB_PREDICTION_MODE read_ymode(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(bc, vp9_ymode_tree, p); } static MB_PREDICTION_MODE read_sb_ymode(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(bc, vp9_sb_ymode_tree, p); } static MB_PREDICTION_MODE read_kf_sb_ymode(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(bc, vp9_uv_mode_tree, p); } static MB_PREDICTION_MODE read_kf_mb_ymode(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(bc, vp9_kf_ymode_tree, p); } static int read_i8x8_mode(vp9_reader *bc, const vp9_prob *p) { return treed_read(bc, vp9_i8x8_mode_tree, p); } static MB_PREDICTION_MODE read_uv_mode(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(bc, vp9_uv_mode_tree, p); } // This function reads the current macro block's segnent id from the bitstream // It should only be called if a segment map update is indicated. static void read_mb_segid(vp9_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *xd) { /* Is segmentation enabled */ if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { /* If so then read the segment id. */ mi->segment_id = vp9_read(r, xd->mb_segment_tree_probs[0]) ? (unsigned char)(2 + vp9_read(r, xd->mb_segment_tree_probs[2])): (unsigned char)(vp9_read(r, xd->mb_segment_tree_probs[1])); } } // This function reads the current macro block's segnent id from the bitstream // It should only be called if a segment map update is indicated. static void read_mb_segid_except(VP9_COMMON *cm, vp9_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *xd, int mb_row, int mb_col) { int pred_seg_id = vp9_get_pred_mb_segid(cm, xd, mb_row * cm->mb_cols + mb_col); const vp9_prob *p = xd->mb_segment_tree_probs; vp9_prob p1 = xd->mb_segment_mispred_tree_probs[pred_seg_id]; /* Is segmentation enabled */ if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { /* If so then read the segment id. */ if (vp9_read(r, p1)) { mi->segment_id = 2 + (pred_seg_id < 2 ? vp9_read(r, p[2]) : (pred_seg_id == 2)); } else { mi->segment_id = pred_seg_id >= 2 ? vp9_read(r, p[1]) : (pred_seg_id == 0); } } } #if CONFIG_NEW_MVREF int vp9_read_mv_ref_id(vp9_reader *r, vp9_prob *ref_id_probs) { int ref_index = 0; if (vp9_read(r, ref_id_probs[0])) { ref_index++; if (vp9_read(r, ref_id_probs[1])) { ref_index++; if (vp9_read(r, ref_id_probs[2])) ref_index++; } } return ref_index; } #endif extern const int vp9_i8x8_block[4]; static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m, int mb_row, int mb_col, BOOL_DECODER* const bc) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = pbi->common.mode_info_stride; int map_index = mb_row * pbi->common.mb_cols + mb_col; MB_PREDICTION_MODE y_mode; m->mbmi.ref_frame = INTRA_FRAME; // Read the Macroblock segmentation map if it is being updated explicitly // this frame (reset to 0 by default). m->mbmi.segment_id = 0; if (pbi->mb.update_mb_segmentation_map) { read_mb_segid(bc, &m->mbmi, &pbi->mb); if (m->mbmi.sb_type) { const int nmbs = 1 << m->mbmi.sb_type; const int ymbs = MIN(cm->mb_rows - mb_row, nmbs); const int xmbs = MIN(cm->mb_cols - mb_col, nmbs); int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { cm->last_frame_seg_map[map_index + x + y * cm->mb_cols] = m->mbmi.segment_id; } } } else { cm->last_frame_seg_map[map_index] = m->mbmi.segment_id; } } m->mbmi.mb_skip_coeff = 0; if (pbi->common.mb_no_coeff_skip && (!vp9_segfeature_active(&pbi->mb, m->mbmi.segment_id, SEG_LVL_SKIP))) { m->mbmi.mb_skip_coeff = vp9_read(bc, vp9_get_pred_prob(cm, &pbi->mb, PRED_MBSKIP)); } else { m->mbmi.mb_skip_coeff = vp9_segfeature_active(&pbi->mb, m->mbmi.segment_id, SEG_LVL_SKIP); } y_mode = m->mbmi.sb_type ? read_kf_sb_ymode(bc, pbi->common.sb_kf_ymode_prob[pbi->common.kf_ymode_probs_index]): read_kf_mb_ymode(bc, pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]); m->mbmi.ref_frame = INTRA_FRAME; if ((m->mbmi.mode = y_mode) == B_PRED) { int i = 0; do { const B_PREDICTION_MODE a = above_block_mode(m, i, mis); const B_PREDICTION_MODE l = (xd->left_available || (i & 3)) ? left_block_mode(m, i) : B_DC_PRED; m->bmi[i].as_mode.first = read_kf_bmode(bc, pbi->common.kf_bmode_prob[a][l]); } while (++i < 16); } if ((m->mbmi.mode = y_mode) == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { const int ib = vp9_i8x8_block[i]; const int mode8x8 = read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob); m->bmi[ib + 0].as_mode.first = mode8x8; m->bmi[ib + 1].as_mode.first = mode8x8; m->bmi[ib + 4].as_mode.first = mode8x8; m->bmi[ib + 5].as_mode.first = mode8x8; } } else { m->mbmi.uv_mode = read_uv_mode(bc, pbi->common.kf_uv_mode_prob[m->mbmi.mode]); } if (cm->txfm_mode == TX_MODE_SELECT && m->mbmi.mb_skip_coeff == 0 && m->mbmi.mode <= I8X8_PRED) { // FIXME(rbultje) code ternary symbol once all experiments are merged m->mbmi.txfm_size = vp9_read(bc, cm->prob_tx[0]); if (m->mbmi.txfm_size != TX_4X4 && m->mbmi.mode != I8X8_PRED) { m->mbmi.txfm_size += vp9_read(bc, cm->prob_tx[1]); if (m->mbmi.txfm_size != TX_8X8 && m->mbmi.sb_type) m->mbmi.txfm_size += vp9_read(bc, cm->prob_tx[2]); } } else if (cm->txfm_mode >= ALLOW_32X32 && m->mbmi.sb_type) { m->mbmi.txfm_size = TX_32X32; } else if (cm->txfm_mode >= ALLOW_16X16 && m->mbmi.mode <= TM_PRED) { m->mbmi.txfm_size = TX_16X16; } else if (cm->txfm_mode >= ALLOW_8X8 && m->mbmi.mode != B_PRED) { m->mbmi.txfm_size = TX_8X8; } else { m->mbmi.txfm_size = TX_4X4; } } static int read_nmv_component(vp9_reader *r, int rv, const nmv_component *mvcomp) { int mag, d; const int sign = vp9_read(r, mvcomp->sign); const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes); if (mv_class == MV_CLASS_0) { d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0); } else { int i; int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vp9_read(r, mvcomp->bits[i]) << i; } mag = vp9_get_mv_mag(mv_class, d << 3); return sign ? -(mag + 8) : (mag + 8); } static int read_nmv_component_fp(vp9_reader *r, int v, int rv, const nmv_component *mvcomp, int usehp) { const int sign = v < 0; int mag = ((sign ? -v : v) - 1) & ~7; // magnitude - 1 int offset; const int mv_class = vp9_get_mv_class(mag, &offset); const int f = mv_class == MV_CLASS_0 ? treed_read(r, vp9_mv_fp_tree, mvcomp->class0_fp[offset >> 3]): treed_read(r, vp9_mv_fp_tree, mvcomp->fp); offset += f << 1; if (usehp) { offset += mv_class == MV_CLASS_0 ? vp9_read(r, mvcomp->class0_hp) : vp9_read(r, mvcomp->hp); } else { offset += 1; // If hp is not used, the default value of the hp bit is 1 } mag = vp9_get_mv_mag(mv_class, offset); return sign ? -(mag + 1) : (mag + 1); } static void read_nmv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *mvctx) { const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, mvctx->joints); mv->row = mv-> col = 0; if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) { mv->row = read_nmv_component(r, ref->row, &mvctx->comps[0]); } if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) { mv->col = read_nmv_component(r, ref->col, &mvctx->comps[1]); } } static void read_nmv_fp(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *mvctx, int usehp) { const MV_JOINT_TYPE j = vp9_get_mv_joint(*mv); usehp = usehp && vp9_use_nmv_hp(ref); if (j == MV_JOINT_HZVNZ || j == MV_JOINT_HNZVNZ) { mv->row = read_nmv_component_fp(r, mv->row, ref->row, &mvctx->comps[0], usehp); } if (j == MV_JOINT_HNZVZ || j == MV_JOINT_HNZVNZ) { mv->col = read_nmv_component_fp(r, mv->col, ref->col, &mvctx->comps[1], usehp); } /* printf("MV: %d %d REF: %d %d\n", mv->row + ref->row, mv->col + ref->col, ref->row, ref->col); */ } static void update_nmv(vp9_reader *bc, vp9_prob *const p, const vp9_prob upd_p) { if (vp9_read(bc, upd_p)) { #ifdef LOW_PRECISION_MV_UPDATE *p = (vp9_read_literal(bc, 7) << 1) | 1; #else *p = (vp9_read_literal(bc, 8)); #endif } } static void read_nmvprobs(vp9_reader *bc, nmv_context *mvctx, int usehp) { int i, j, k; #ifdef MV_GROUP_UPDATE if (!vp9_read_bit(bc)) return; #endif for (j = 0; j < MV_JOINTS - 1; ++j) update_nmv(bc, &mvctx->joints[j], VP9_NMV_UPDATE_PROB); for (i = 0; i < 2; ++i) { update_nmv(bc, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_CLASSES - 1; ++j) update_nmv(bc, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_nmv(bc, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB); for (j = 0; j < MV_OFFSET_BITS; ++j) update_nmv(bc, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB); } for (i = 0; i < 2; ++i) { for (j = 0; j < CLASS0_SIZE; ++j) { for (k = 0; k < 3; ++k) update_nmv(bc, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB); } for (j = 0; j < 3; ++j) update_nmv(bc, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB); } if (usehp) { for (i = 0; i < 2; ++i) { update_nmv(bc, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB); update_nmv(bc, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB); } } } // Read the referncence frame static MV_REFERENCE_FRAME read_ref_frame(VP9D_COMP *pbi, vp9_reader *const bc, unsigned char segment_id) { MV_REFERENCE_FRAME ref_frame; VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int seg_ref_count = 0; int seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); // If segment coding enabled does the segment allow for more than one // possible reference frame if (seg_ref_active) { seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) + vp9_check_segref(xd, segment_id, LAST_FRAME) + vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + vp9_check_segref(xd, segment_id, ALTREF_FRAME); } // Segment reference frame features not available or allows for // multiple reference frame options if (!seg_ref_active || (seg_ref_count > 1)) { // Values used in prediction model coding MV_REFERENCE_FRAME pred_ref; // Get the context probability the prediction flag vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); // Read the prediction status flag unsigned char prediction_flag = vp9_read(bc, pred_prob); // Store the prediction flag. vp9_set_pred_flag(xd, PRED_REF, prediction_flag); // Get the predicted reference frame. pred_ref = vp9_get_pred_ref(cm, xd); // If correctly predicted then use the predicted value if (prediction_flag) { ref_frame = pred_ref; } else { // decode the explicitly coded value vp9_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_ref], sizeof(mod_refprobs)); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if (seg_ref_active) { mod_refprobs[INTRA_FRAME] *= vp9_check_segref(xd, segment_id, INTRA_FRAME); mod_refprobs[LAST_FRAME] *= vp9_check_segref(xd, segment_id, LAST_FRAME); mod_refprobs[GOLDEN_FRAME] *= (vp9_check_segref(xd, segment_id, GOLDEN_FRAME) * vp9_check_segref(xd, segment_id, ALTREF_FRAME)); } // Default to INTRA_FRAME (value 0) ref_frame = INTRA_FRAME; // Do we need to decode the Intra/Inter branch if (mod_refprobs[0]) ref_frame = (MV_REFERENCE_FRAME) vp9_read(bc, mod_refprobs[0]); else ref_frame++; if (ref_frame) { // Do we need to decode the Last/Gf_Arf branch if (mod_refprobs[1]) ref_frame += vp9_read(bc, mod_refprobs[1]); else ref_frame++; if (ref_frame > 1) { // Do we need to decode the GF/Arf branch if (mod_refprobs[2]) ref_frame += vp9_read(bc, mod_refprobs[2]); else { if (seg_ref_active) { if ((pred_ref == GOLDEN_FRAME) || !vp9_check_segref(xd, segment_id, GOLDEN_FRAME)) { ref_frame = ALTREF_FRAME; } else ref_frame = GOLDEN_FRAME; } else ref_frame = (pred_ref == GOLDEN_FRAME) ? ALTREF_FRAME : GOLDEN_FRAME; } } } } } else { // Segment reference frame features are enabled // The reference frame for the mb is considered as correclty predicted // if it is signaled at the segment level for the purposes of the // common prediction model vp9_set_pred_flag(xd, PRED_REF, 1); ref_frame = vp9_get_pred_ref(cm, xd); } return (MV_REFERENCE_FRAME)ref_frame; } static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE) treed_read(bc, vp9_sb_mv_ref_tree, p); } static MB_PREDICTION_MODE read_mv_ref(vp9_reader *bc, const vp9_prob *p) { return (MB_PREDICTION_MODE) treed_read(bc, vp9_mv_ref_tree, p); } static B_PREDICTION_MODE sub_mv_ref(vp9_reader *bc, const vp9_prob *p) { return (B_PREDICTION_MODE) treed_read(bc, vp9_sub_mv_ref_tree, p); } #ifdef VPX_MODE_COUNT unsigned int vp9_mv_cont_count[5][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; #endif static const unsigned char mbsplit_fill_count[4] = { 8, 8, 4, 1 }; static const unsigned char mbsplit_fill_offset[4][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15 }, { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } }; static void read_switchable_interp_probs(VP9D_COMP* const pbi, BOOL_DECODER* const bc) { VP9_COMMON *const cm = &pbi->common; int i, j; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { cm->fc.switchable_interp_prob[j][i] = vp9_read_literal(bc, 8); } } //printf("DECODER: %d %d\n", cm->fc.switchable_interp_prob[0], //cm->fc.switchable_interp_prob[1]); } static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *bc) { VP9_COMMON *const cm = &pbi->common; nmv_context *const nmvc = &pbi->common.fc.nmvc; MACROBLOCKD *const xd = &pbi->mb; if (cm->frame_type == KEY_FRAME) { if (!cm->kf_ymode_probs_update) cm->kf_ymode_probs_index = vp9_read_literal(bc, 3); } else { if (cm->mcomp_filter_type == SWITCHABLE) read_switchable_interp_probs(pbi, bc); #if CONFIG_COMP_INTERINTRA_PRED if (cm->use_interintra) { if (vp9_read(bc, VP9_UPD_INTERINTRA_PROB)) cm->fc.interintra_prob = (vp9_prob)vp9_read_literal(bc, 8); } #endif // Decode the baseline probabilities for decoding reference frame cm->prob_intra_coded = (vp9_prob)vp9_read_literal(bc, 8); cm->prob_last_coded = (vp9_prob)vp9_read_literal(bc, 8); cm->prob_gf_coded = (vp9_prob)vp9_read_literal(bc, 8); // Computes a modified set of probabilities for use when reference // frame prediction fails. vp9_compute_mod_refprobs(cm); pbi->common.comp_pred_mode = vp9_read(bc, 128); if (cm->comp_pred_mode) cm->comp_pred_mode += vp9_read(bc, 128); if (cm->comp_pred_mode == HYBRID_PREDICTION) { int i; for (i = 0; i < COMP_PRED_CONTEXTS; i++) cm->prob_comppred[i] = (vp9_prob)vp9_read_literal(bc, 8); } if (vp9_read_bit(bc)) { int i = 0; do { cm->fc.ymode_prob[i] = (vp9_prob) vp9_read_literal(bc, 8); } while (++i < VP9_YMODES - 1); } if (vp9_read_bit(bc)) { int i = 0; do { cm->fc.sb_ymode_prob[i] = (vp9_prob) vp9_read_literal(bc, 8); } while (++i < VP9_I32X32_MODES - 1); } read_nmvprobs(bc, nmvc, xd->allow_high_precision_mv); } } // This function either reads the segment id for the current macroblock from // the bitstream or if the value is temporally predicted asserts the predicted // value static void read_mb_segment_id(VP9D_COMP *pbi, int mb_row, int mb_col, BOOL_DECODER* const bc) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *mbmi = &mi->mbmi; int index = mb_row * pbi->common.mb_cols + mb_col; if (xd->segmentation_enabled) { if (xd->update_mb_segmentation_map) { // Is temporal coding of the segment id for this mb enabled. if (cm->temporal_update) { // Get the context based probability for reading the // prediction status flag vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID); // Read the prediction status flag unsigned char seg_pred_flag = vp9_read(bc, pred_prob); // Store the prediction flag. vp9_set_pred_flag(xd, PRED_SEG_ID, seg_pred_flag); // If the value is flagged as correctly predicted // then use the predicted value if (seg_pred_flag) { mbmi->segment_id = vp9_get_pred_mb_segid(cm, xd, index); } else { // Decode it explicitly read_mb_segid_except(cm, bc, mbmi, xd, mb_row, mb_col); } } else { // Normal unpredicted coding mode read_mb_segid(bc, mbmi, xd); } if (mbmi->sb_type) { const int nmbs = 1 << mbmi->sb_type; const int ymbs = MIN(cm->mb_rows - mb_row, nmbs); const int xmbs = MIN(cm->mb_cols - mb_col, nmbs); int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { cm->last_frame_seg_map[index + x + y * cm->mb_cols] = mbmi->segment_id; } } } else { cm->last_frame_seg_map[index] = mbmi->segment_id; } } else { if (mbmi->sb_type) { const int nmbs = 1 << mbmi->sb_type; const int ymbs = MIN(cm->mb_rows - mb_row, nmbs); const int xmbs = MIN(cm->mb_cols - mb_col, nmbs); unsigned segment_id = -1; int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { segment_id = MIN(segment_id, cm->last_frame_seg_map[index + x + y * cm->mb_cols]); } } mbmi->segment_id = segment_id; } else { mbmi->segment_id = cm->last_frame_seg_map[index]; } } } else { // The encoder explicitly sets the segment_id to 0 // when segmentation is disabled mbmi->segment_id = 0; } } static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src, int mb_to_left_edge, int mb_to_right_edge, int mb_to_top_edge, int mb_to_bottom_edge) { dst->as_int = src->as_int; clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } static INLINE void process_mv(BOOL_DECODER* bc, MV *mv, MV *ref, nmv_context *nmvc, nmv_context_counts *mvctx, int usehp) { read_nmv(bc, mv, ref, nmvc); read_nmv_fp(bc, mv, ref, nmvc, usehp); vp9_increment_nmv(mv, ref, mvctx, usehp); mv->row += ref->row; mv->col += ref->col; } static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi, MODE_INFO *prev_mi, int mb_row, int mb_col, BOOL_DECODER* const bc) { VP9_COMMON *const cm = &pbi->common; nmv_context *const nmvc = &pbi->common.fc.nmvc; const int mis = pbi->common.mode_info_stride; MACROBLOCKD *const xd = &pbi->mb; int_mv *const mv = &mbmi->mv[0]; const int mb_size = 1 << mi->mbmi.sb_type; const int use_prev_in_find_mv_refs = cm->Width == cm->last_width && cm->Height == cm->last_height && !cm->error_resilient_mode; int mb_to_left_edge; int mb_to_right_edge; int mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN; int mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; mbmi->need_to_clamp_mvs = 0; mbmi->need_to_clamp_secondmv = 0; mbmi->second_ref_frame = NONE; // Make sure the MACROBLOCKD mode info pointer is pointed at the // correct entry for the current macroblock. xd->mode_info_context = mi; xd->prev_mode_info_context = prev_mi; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV values // that are in 1/8th pel units set_mb_row(cm, xd, mb_row, mb_size); set_mb_col(cm, xd, mb_col, mb_size); mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN; mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; // Read the macroblock segment id. read_mb_segment_id(pbi, mb_row, mb_col, bc); if (pbi->common.mb_no_coeff_skip && (!vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP))) { // Read the macroblock coeff skip flag if this feature is in use, // else default to 0 mbmi->mb_skip_coeff = vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_MBSKIP)); } else { mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP); } // Read the reference frame mbmi->ref_frame = read_ref_frame(pbi, bc, mbmi->segment_id); /* if (pbi->common.current_video_frame == 1) printf("ref frame: %d [%d %d]\n", mbmi->ref_frame, mb_row, mb_col); */ // If reference frame is an Inter frame if (mbmi->ref_frame) { int_mv nearest, nearby, best_mv; int_mv nearest_second, nearby_second, best_mv_second; vp9_prob mv_ref_p[VP9_MVREFS - 1]; MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame; xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; { const int use_prev_in_find_best_ref = xd->scale_factor[0].x_num == xd->scale_factor[0].x_den && xd->scale_factor[0].y_num == xd->scale_factor[0].y_den && !cm->error_resilient_mode && !cm->frame_parallel_decoding_mode; /* Select the appropriate reference frame for this MB */ const int ref_fb_idx = cm->active_ref_idx[ref_frame - 1]; setup_pred_block(&xd->pre, &cm->yv12_fb[ref_fb_idx], mb_row, mb_col, &xd->scale_factor[0], &xd->scale_factor_uv[0]); #ifdef DEC_DEBUG if (dec_debug) printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row, xd->mode_info_context->mbmi.mv[0].as_mv.col); #endif // if (cm->current_video_frame == 1 && mb_row == 4 && mb_col == 5) // printf("Dello\n"); vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL, ref_frame, mbmi->ref_mvs[ref_frame], cm->ref_frame_sign_bias); vp9_mv_ref_probs(&pbi->common, mv_ref_p, mbmi->mb_mode_context[ref_frame]); // If the segment level skip mode enabled if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; } else { mbmi->mode = mbmi->sb_type ? read_sb_mv_ref(bc, mv_ref_p) : read_mv_ref(bc, mv_ref_p); vp9_accum_mv_refs(&pbi->common, mbmi->mode, mbmi->mb_mode_context[ref_frame]); } if (mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, use_prev_in_find_best_ref ? xd->pre.y_buffer : NULL, xd->pre.y_stride, mbmi->ref_mvs[ref_frame], &nearest, &nearby); best_mv.as_int = (mbmi->ref_mvs[ref_frame][0]).as_int; } #ifdef DEC_DEBUG if (dec_debug) printf("[D %d %d] %d %d %d %d\n", ref_frame, mbmi->mb_mode_context[ref_frame], mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]); #endif } if (mbmi->mode >= NEARESTMV && mbmi->mode <= SPLITMV) { if (cm->mcomp_filter_type == SWITCHABLE) { mbmi->interp_filter = vp9_switchable_interp[ treed_read(bc, vp9_switchable_interp_tree, vp9_get_pred_probs(cm, xd, PRED_SWITCHABLE_INTERP))]; } else { mbmi->interp_filter = cm->mcomp_filter_type; } } if (cm->comp_pred_mode == COMP_PREDICTION_ONLY || (cm->comp_pred_mode == HYBRID_PREDICTION && vp9_read(bc, vp9_get_pred_prob(cm, xd, PRED_COMP)))) { /* Since we have 3 reference frames, we can only have 3 unique * combinations of combinations of 2 different reference frames * (A-G, G-L or A-L). In the bitstream, we use this to simply * derive the second reference frame from the first reference * frame, by saying it's the next one in the enumerator, and * if that's > n_refs, then the second reference frame is the * first one in the enumerator. */ mbmi->second_ref_frame = mbmi->ref_frame + 1; if (mbmi->second_ref_frame == 4) mbmi->second_ref_frame = 1; if (mbmi->second_ref_frame > 0) { int second_ref_fb_idx; int use_prev_in_find_best_ref; xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1]; use_prev_in_find_best_ref = xd->scale_factor[1].x_num == xd->scale_factor[1].x_den && xd->scale_factor[1].y_num == xd->scale_factor[1].y_den && !cm->error_resilient_mode && !cm->frame_parallel_decoding_mode; /* Select the appropriate reference frame for this MB */ second_ref_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1]; setup_pred_block(&xd->second_pre, &cm->yv12_fb[second_ref_fb_idx], mb_row, mb_col, &xd->scale_factor[1], &xd->scale_factor_uv[1]); vp9_find_mv_refs(cm, xd, mi, use_prev_in_find_mv_refs ? prev_mi : NULL, mbmi->second_ref_frame, mbmi->ref_mvs[mbmi->second_ref_frame], cm->ref_frame_sign_bias); if (mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, use_prev_in_find_best_ref ? xd->second_pre.y_buffer : NULL, xd->second_pre.y_stride, mbmi->ref_mvs[mbmi->second_ref_frame], &nearest_second, &nearby_second); best_mv_second = mbmi->ref_mvs[mbmi->second_ref_frame][0]; } } } else { #if CONFIG_COMP_INTERINTRA_PRED if (pbi->common.use_interintra && mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV && mbmi->second_ref_frame == NONE) { mbmi->second_ref_frame = (vp9_read(bc, pbi->common.fc.interintra_prob) ? INTRA_FRAME : NONE); // printf("-- %d (%d)\n", mbmi->second_ref_frame == INTRA_FRAME, // pbi->common.fc.interintra_prob); pbi->common.fc.interintra_counts[ mbmi->second_ref_frame == INTRA_FRAME]++; if (mbmi->second_ref_frame == INTRA_FRAME) { mbmi->interintra_mode = read_ymode(bc, pbi->common.fc.ymode_prob); pbi->common.fc.ymode_counts[mbmi->interintra_mode]++; #if SEPARATE_INTERINTRA_UV mbmi->interintra_uv_mode = read_uv_mode(bc, pbi->common.fc.uv_mode_prob[mbmi->interintra_mode]); pbi->common.fc.uv_mode_counts[mbmi->interintra_mode] [mbmi->interintra_uv_mode]++; #else mbmi->interintra_uv_mode = mbmi->interintra_mode; #endif // printf("** %d %d\n", // mbmi->interintra_mode, mbmi->interintra_uv_mode); } } #endif } #if CONFIG_NEW_MVREF // if ((mbmi->mode == NEWMV) || (mbmi->mode == SPLITMV)) if (mbmi->mode == NEWMV) { int best_index; MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame; // Encode the index of the choice. best_index = vp9_read_mv_ref_id(bc, xd->mb_mv_ref_probs[ref_frame]); best_mv.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int; if (mbmi->second_ref_frame > 0) { ref_frame = mbmi->second_ref_frame; // Encode the index of the choice. best_index = vp9_read_mv_ref_id(bc, xd->mb_mv_ref_probs[ref_frame]); best_mv_second.as_int = mbmi->ref_mvs[ref_frame][best_index].as_int; } } #endif mbmi->uv_mode = DC_PRED; switch (mbmi->mode) { case SPLITMV: { const int s = mbmi->partitioning = treed_read(bc, vp9_mbsplit_tree, cm->fc.mbsplit_prob); const int num_p = vp9_mbsplit_count [s]; int j = 0; cm->fc.mbsplit_counts[s]++; mbmi->need_to_clamp_mvs = 0; do { // for each subset j int_mv leftmv, abovemv, second_leftmv, second_abovemv; int_mv blockmv, secondmv; int mv_contz; int blockmode; int k = vp9_mbsplit_offset[s][j]; // first block in subset j leftmv.as_int = left_block_mv(xd, mi, k); abovemv.as_int = above_block_mv(mi, k, mis); second_leftmv.as_int = 0; second_abovemv.as_int = 0; if (mbmi->second_ref_frame > 0) { second_leftmv.as_int = left_block_second_mv(xd, mi, k); second_abovemv.as_int = above_block_second_mv(mi, k, mis); } mv_contz = vp9_mv_cont(&leftmv, &abovemv); blockmode = sub_mv_ref(bc, cm->fc.sub_mv_ref_prob [mv_contz]); cm->fc.sub_mv_ref_counts[mv_contz][blockmode - LEFT4X4]++; switch (blockmode) { case NEW4X4: process_mv(bc, &blockmv.as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); if (mbmi->second_ref_frame > 0) process_mv(bc, &secondmv.as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][3]++; #endif break; case LEFT4X4: blockmv.as_int = leftmv.as_int; if (mbmi->second_ref_frame > 0) secondmv.as_int = second_leftmv.as_int; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][0]++; #endif break; case ABOVE4X4: blockmv.as_int = abovemv.as_int; if (mbmi->second_ref_frame > 0) secondmv.as_int = second_abovemv.as_int; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][1]++; #endif break; case ZERO4X4: blockmv.as_int = 0; if (mbmi->second_ref_frame > 0) secondmv.as_int = 0; #ifdef VPX_MODE_COUNT vp9_mv_cont_count[mv_contz][2]++; #endif break; default: break; } /* Commenting this section out, not sure why this was needed, and * there are mismatches with this section in rare cases since it is * not done in the encoder at all. mbmi->need_to_clamp_mvs |= check_mv_bounds(&blockmv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) { mbmi->need_to_clamp_mvs |= check_mv_bounds(&secondmv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } */ { /* Fill (uniform) modes, mvs of jth subset. Must do it here because ensuing subsets can refer back to us via "left" or "above". */ unsigned int fill_count = mbsplit_fill_count[s]; const unsigned char *fill_offset = &mbsplit_fill_offset[s][j * fill_count]; do { mi->bmi[*fill_offset].as_mv[0].as_int = blockmv.as_int; if (mbmi->second_ref_frame > 0) mi->bmi[*fill_offset].as_mv[1].as_int = secondmv.as_int; fill_offset++; } while (--fill_count); } } while (++j < num_p); } mv->as_int = mi->bmi[15].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[15].as_mv[1].as_int; break; /* done with SPLITMV */ case NEARMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv, &nearby, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) assign_and_clamp_mv(&mbmi->mv[1], &nearby_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case NEARESTMV: // Clip "next_nearest" so that it does not extend to far out of image assign_and_clamp_mv(mv, &nearest, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) assign_and_clamp_mv(&mbmi->mv[1], &nearest_second, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); break; case ZEROMV: mv->as_int = 0; if (mbmi->second_ref_frame > 0) mbmi->mv[1].as_int = 0; break; case NEWMV: process_mv(bc, &mv->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); // Don't need to check this on NEARMV and NEARESTMV modes // since those modes clamp the MV. The NEWMV mode does not, // so signal to the prediction stage whether special // handling may be required. mbmi->need_to_clamp_mvs = check_mv_bounds(mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame > 0) { process_mv(bc, &mbmi->mv[1].as_mv, &best_mv_second.as_mv, nmvc, &cm->fc.NMVcount, xd->allow_high_precision_mv); mbmi->need_to_clamp_secondmv |= check_mv_bounds(&mbmi->mv[1], mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } break; default: ; #if CONFIG_DEBUG assert(0); #endif } } else { /* required for left and above block mv */ mbmi->mv[0].as_int = 0; if (mbmi->sb_type) { mbmi->mode = read_sb_ymode(bc, pbi->common.fc.sb_ymode_prob); pbi->common.fc.sb_ymode_counts[mbmi->mode]++; } else { mbmi->mode = read_ymode(bc, pbi->common.fc.ymode_prob); pbi->common.fc.ymode_counts[mbmi->mode]++; } // If MB mode is BPRED read the block modes if (mbmi->mode == B_PRED) { int j = 0; do { int m; m = mi->bmi[j].as_mode.first = read_bmode(bc, pbi->common.fc.bmode_prob); #if CONFIG_NEWBINTRAMODES if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS; #endif pbi->common.fc.bmode_counts[m]++; } while (++j < 16); } if (mbmi->mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { const int ib = vp9_i8x8_block[i]; const int mode8x8 = read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob); mi->bmi[ib + 0].as_mode.first = mode8x8; mi->bmi[ib + 1].as_mode.first = mode8x8; mi->bmi[ib + 4].as_mode.first = mode8x8; mi->bmi[ib + 5].as_mode.first = mode8x8; pbi->common.fc.i8x8_mode_counts[mode8x8]++; } } else { mbmi->uv_mode = read_uv_mode(bc, pbi->common.fc.uv_mode_prob[mbmi->mode]); pbi->common.fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++; } } /* if (pbi->common.current_video_frame == 1) printf("mode: %d skip: %d\n", mbmi->mode, mbmi->mb_skip_coeff); */ if (cm->txfm_mode == TX_MODE_SELECT && mbmi->mb_skip_coeff == 0 && ((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= I8X8_PRED) || (mbmi->ref_frame != INTRA_FRAME && !(mbmi->mode == SPLITMV && mbmi->partitioning == PARTITIONING_4X4)))) { // FIXME(rbultje) code ternary symbol once all experiments are merged mbmi->txfm_size = vp9_read(bc, cm->prob_tx[0]); if (mbmi->txfm_size != TX_4X4 && mbmi->mode != I8X8_PRED && mbmi->mode != SPLITMV) { mbmi->txfm_size += vp9_read(bc, cm->prob_tx[1]); if (mbmi->sb_type && mbmi->txfm_size != TX_8X8) mbmi->txfm_size += vp9_read(bc, cm->prob_tx[2]); } } else if (mbmi->sb_type && cm->txfm_mode >= ALLOW_32X32) { mbmi->txfm_size = TX_32X32; } else if (cm->txfm_mode >= ALLOW_16X16 && ((mbmi->ref_frame == INTRA_FRAME && mbmi->mode <= TM_PRED) || (mbmi->ref_frame != INTRA_FRAME && mbmi->mode != SPLITMV))) { mbmi->txfm_size = TX_16X16; } else if (cm->txfm_mode >= ALLOW_8X8 && (!(mbmi->ref_frame == INTRA_FRAME && mbmi->mode == B_PRED) && !(mbmi->ref_frame != INTRA_FRAME && mbmi->mode == SPLITMV && mbmi->partitioning == PARTITIONING_4X4))) { mbmi->txfm_size = TX_8X8; } else { mbmi->txfm_size = TX_4X4; } } void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, BOOL_DECODER* const bc) { VP9_COMMON *cm = &pbi->common; vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs)); if (pbi->common.mb_no_coeff_skip) { int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) { cm->mbskip_pred_probs[k] = (vp9_prob)vp9_read_literal(bc, 8); } } mb_mode_mv_init(pbi, bc); } #if CONFIG_CODE_NONZEROCOUNT static uint16_t read_nzc(VP9_COMMON *const cm, int nzc_context, TX_SIZE tx_size, int ref, int type, BOOL_DECODER* const bc) { int c, e; uint16_t nzc; if (tx_size == TX_32X32) { c = treed_read(bc, vp9_nzc32x32_tree, cm->fc.nzc_probs_32x32[nzc_context][ref][type]); cm->fc.nzc_counts_32x32[nzc_context][ref][type][c]++; } else if (tx_size == TX_16X16) { c = treed_read(bc, vp9_nzc16x16_tree, cm->fc.nzc_probs_16x16[nzc_context][ref][type]); cm->fc.nzc_counts_16x16[nzc_context][ref][type][c]++; } else if (tx_size == TX_8X8) { c = treed_read(bc, vp9_nzc8x8_tree, cm->fc.nzc_probs_8x8[nzc_context][ref][type]); cm->fc.nzc_counts_8x8[nzc_context][ref][type][c]++; } else if (tx_size == TX_4X4) { c = treed_read(bc, vp9_nzc4x4_tree, cm->fc.nzc_probs_4x4[nzc_context][ref][type]); cm->fc.nzc_counts_4x4[nzc_context][ref][type][c]++; } else { assert(0); } nzc = vp9_basenzcvalue[c]; if ((e = vp9_extranzcbits[c])) { int x = 0; while (e--) { int b = vp9_read( bc, cm->fc.nzc_pcat_probs[nzc_context][c - NZC_TOKENS_NOEXTRA][e]); x |= (b << e); cm->fc.nzc_pcat_counts[nzc_context][c - NZC_TOKENS_NOEXTRA][e][b]++; } nzc += x; } if (tx_size == TX_32X32) assert(nzc <= 1024); else if (tx_size == TX_16X16) assert(nzc <= 256); else if (tx_size == TX_8X8) assert(nzc <= 64); else if (tx_size == TX_4X4) assert(nzc <= 16); return nzc; } static void read_nzcs_sb64(VP9_COMMON *const cm, MACROBLOCKD* xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { MODE_INFO *m = xd->mode_info_context; MB_MODE_INFO *const mi = &m->mbmi; int j, nzc_context; const int ref = m->mbmi.ref_frame != INTRA_FRAME; assert(mb_col == get_mb_col(xd)); assert(mb_row == get_mb_row(xd)); vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0])); if (mi->mb_skip_coeff) return; switch (mi->txfm_size) { case TX_32X32: for (j = 0; j < 256; j += 64) { nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_32X32, ref, 0, bc); } for (j = 256; j < 384; j += 64) { nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_32X32, ref, 1, bc); } break; case TX_16X16: for (j = 0; j < 256; j += 16) { nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 0, bc); } for (j = 256; j < 384; j += 16) { nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 1, bc); } break; case TX_8X8: for (j = 0; j < 256; j += 4) { nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 0, bc); } for (j = 256; j < 384; j += 4) { nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc); } break; case TX_4X4: for (j = 0; j < 256; ++j) { nzc_context = vp9_get_nzc_context_y_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 0, bc); } for (j = 256; j < 384; ++j) { nzc_context = vp9_get_nzc_context_uv_sb64(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc); } break; default: break; } } static void read_nzcs_sb32(VP9_COMMON *const cm, MACROBLOCKD* xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { MODE_INFO *m = xd->mode_info_context; MB_MODE_INFO *const mi = &m->mbmi; int j, nzc_context; const int ref = m->mbmi.ref_frame != INTRA_FRAME; assert(mb_col == get_mb_col(xd)); assert(mb_row == get_mb_row(xd)); vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0])); if (mi->mb_skip_coeff) return; switch (mi->txfm_size) { case TX_32X32: for (j = 0; j < 64; j += 64) { nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_32X32, ref, 0, bc); } for (j = 64; j < 96; j += 16) { nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 1, bc); } break; case TX_16X16: for (j = 0; j < 64; j += 16) { nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 0, bc); } for (j = 64; j < 96; j += 16) { nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 1, bc); } break; case TX_8X8: for (j = 0; j < 64; j += 4) { nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 0, bc); } for (j = 64; j < 96; j += 4) { nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc); } break; case TX_4X4: for (j = 0; j < 64; ++j) { nzc_context = vp9_get_nzc_context_y_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 0, bc); } for (j = 64; j < 96; ++j) { nzc_context = vp9_get_nzc_context_uv_sb32(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc); } break; default: break; } } static void read_nzcs_mb16(VP9_COMMON *const cm, MACROBLOCKD* xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { MODE_INFO *m = xd->mode_info_context; MB_MODE_INFO *const mi = &m->mbmi; int j, nzc_context; const int ref = m->mbmi.ref_frame != INTRA_FRAME; assert(mb_col == get_mb_col(xd)); assert(mb_row == get_mb_row(xd)); vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0])); if (mi->mb_skip_coeff) return; switch (mi->txfm_size) { case TX_16X16: for (j = 0; j < 16; j += 16) { nzc_context = vp9_get_nzc_context_y_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_16X16, ref, 0, bc); } for (j = 16; j < 24; j += 4) { nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc); } break; case TX_8X8: for (j = 0; j < 16; j += 4) { nzc_context = vp9_get_nzc_context_y_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 0, bc); } if (mi->mode == I8X8_PRED || mi->mode == SPLITMV) { for (j = 16; j < 24; ++j) { nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc); } } else { for (j = 16; j < 24; j += 4) { nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_8X8, ref, 1, bc); } } break; case TX_4X4: for (j = 0; j < 16; ++j) { nzc_context = vp9_get_nzc_context_y_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 0, bc); } for (j = 16; j < 24; ++j) { nzc_context = vp9_get_nzc_context_uv_mb16(cm, m, mb_row, mb_col, j); m->mbmi.nzcs[j] = read_nzc(cm, nzc_context, TX_4X4, ref, 1, bc); } break; default: break; } } #endif // CONFIG_CODE_NONZEROCOUNT void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi, MACROBLOCKD* const xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { VP9_COMMON *const cm = &pbi->common; MODE_INFO *mi = xd->mode_info_context; MODE_INFO *prev_mi = xd->prev_mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (pbi->common.frame_type == KEY_FRAME) { kfread_modes(pbi, mi, mb_row, mb_col, bc); } else { read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row, mb_col, bc); set_scale_factors(xd, mi->mbmi.ref_frame - 1, mi->mbmi.second_ref_frame - 1, pbi->common.active_ref_scale); } #if CONFIG_CODE_NONZEROCOUNT if (mbmi->sb_type == BLOCK_SIZE_SB64X64) read_nzcs_sb64(cm, xd, mb_row, mb_col, bc); else if (mbmi->sb_type == BLOCK_SIZE_SB32X32) read_nzcs_sb32(cm, xd, mb_row, mb_col, bc); else read_nzcs_mb16(cm, xd, mb_row, mb_col, bc); #endif // CONFIG_CODE_NONZEROCOUNT if (mbmi->sb_type) { const int n_mbs = 1 << mbmi->sb_type; const int y_mbs = MIN(n_mbs, cm->mb_rows - mb_row); const int x_mbs = MIN(n_mbs, cm->mb_cols - mb_col); const int mis = cm->mode_info_stride; int x, y; for (y = 0; y < y_mbs; y++) { for (x = !y; x < x_mbs; x++) { mi[y * mis + x] = *mi; } } } else { update_blockd_bmi(xd); } }