/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "./aom_dsp_rtcd.h" #include "./av1_rtcd.h" #include "aom_dsp/inv_txfm.h" #include "aom_ports/mem.h" #include "av1/common/av1_inv_txfm2d_cfg.h" #include "av1/common/blockd.h" #include "av1/common/enums.h" #include "av1/common/idct.h" int get_tx_scale(const MACROBLOCKD *const xd, const TX_TYPE tx_type, const TX_SIZE tx_size) { (void)tx_type; #if CONFIG_AOM_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { return txsize_sqr_up_map[tx_size] == TX_32X32; } #else (void)xd; #endif return txsize_sqr_up_map[tx_size] == TX_32X32; } #if CONFIG_EXT_TX static void iidtx4_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 4; ++i) output[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } static void iidtx8_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 8; ++i) output[i] = input[i] * 2; } static void iidtx16_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 16; ++i) output[i] = (tran_low_t)dct_const_round_shift(input[i] * 2 * Sqrt2); } static void iidtx32_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 32; ++i) output[i] = input[i] * 4; } // For use in lieu of DST static void ihalfright32_c(const tran_low_t *input, tran_low_t *output) { int i; tran_low_t inputhalf[16]; for (i = 0; i < 16; ++i) { output[i] = input[16 + i] * 4; } // Multiply input by sqrt(2) for (i = 0; i < 16; ++i) { inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } idct16_c(inputhalf, output + 16); // Note overall scaling factor is 4 times orthogonal } #if CONFIG_AOM_HIGHBITDEPTH static void highbd_iidtx4_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; for (i = 0; i < 4; ++i) output[i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * Sqrt2), bd); } static void highbd_iidtx8_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; (void)bd; for (i = 0; i < 8; ++i) output[i] = input[i] * 2; } static void highbd_iidtx16_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; for (i = 0; i < 16; ++i) output[i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * 2 * Sqrt2), bd); } static void highbd_iidtx32_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; (void)bd; for (i = 0; i < 32; ++i) output[i] = input[i] * 4; } static void highbd_ihalfright32_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; tran_low_t inputhalf[16]; for (i = 0; i < 16; ++i) { output[i] = input[16 + i] * 4; } // Multiply input by sqrt(2) for (i = 0; i < 16; ++i) { inputhalf[i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(input[i] * Sqrt2), bd); } aom_highbd_idct16_c(inputhalf, output + 16, bd); // Note overall scaling factor is 4 times orthogonal } #endif // CONFIG_AOM_HIGHBITDEPTH // Inverse identity transform and add. static void inv_idtx_add_c(const tran_low_t *input, uint8_t *dest, int stride, int bs, int tx_type) { int r, c; const int shift = bs < 32 ? 3 : 2; if (tx_type == IDTX) { for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dest[c] = clip_pixel_add(dest[c], input[c] >> shift); dest += stride; input += bs; } } } #define FLIPUD_PTR(dest, stride, size) \ do { \ (dest) = (dest) + ((size)-1) * (stride); \ (stride) = -(stride); \ } while (0) static void maybe_flip_strides(uint8_t **dst, int *dstride, tran_low_t **src, int *sstride, int tx_type, int sizey, int sizex) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: case V_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); break; case DCT_FLIPADST: case ADST_FLIPADST: case H_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; default: assert(0); break; } } #if CONFIG_AOM_HIGHBITDEPTH static void highbd_inv_idtx_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bs, int tx_type, int bd) { int r, c; const int shift = bs < 32 ? 3 : 2; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); if (tx_type == IDTX) { for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dest[c] = highbd_clip_pixel_add(dest[c], input[c] >> shift, bd); dest += stride; input += bs; } } } static void maybe_flip_strides16(uint16_t **dst, int *dstride, tran_low_t **src, int *sstride, int tx_type, int sizey, int sizex) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: case V_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); break; case DCT_FLIPADST: case ADST_FLIPADST: case H_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; default: assert(0); break; } } #endif // CONFIG_AOM_HIGHBITDEPTH #endif // CONFIG_EXT_TX void av1_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_4[] = { { idct4_c, idct4_c }, // DCT_DCT { iadst4_c, idct4_c }, // ADST_DCT { idct4_c, iadst4_c }, // DCT_ADST { iadst4_c, iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst4_c, idct4_c }, // FLIPADST_DCT { idct4_c, iadst4_c }, // DCT_FLIPADST { iadst4_c, iadst4_c }, // FLIPADST_FLIPADST { iadst4_c, iadst4_c }, // ADST_FLIPADST { iadst4_c, iadst4_c }, // FLIPADST_ADST { iidtx4_c, iidtx4_c }, // IDTX { idct4_c, iidtx4_c }, // V_DCT { iidtx4_c, idct4_c }, // H_DCT { iadst4_c, iidtx4_c }, // V_ADST { iidtx4_c, iadst4_c }, // H_ADST { iadst4_c, iidtx4_c }, // V_FLIPADST { iidtx4_c, iadst4_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, out[i]); input += 4; } // transpose for (i = 1; i < 4; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); } } } #if CONFIG_EXT_TX void av1_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_4x8[] = { { idct8_c, idct4_c }, // DCT_DCT { iadst8_c, idct4_c }, // ADST_DCT { idct8_c, iadst4_c }, // DCT_ADST { iadst8_c, iadst4_c }, // ADST_ADST { iadst8_c, idct4_c }, // FLIPADST_DCT { idct8_c, iadst4_c }, // DCT_FLIPADST { iadst8_c, iadst4_c }, // FLIPADST_FLIPADST { iadst8_c, iadst4_c }, // ADST_FLIPADST { iadst8_c, iadst4_c }, // FLIPADST_ADST { iidtx8_c, iidtx4_c }, // IDTX { idct8_c, iidtx4_c }, // V_DCT { iidtx8_c, idct4_c }, // H_DCT { iadst8_c, iidtx4_c }, // V_ADST { iidtx8_c, iadst4_c }, // H_ADST { iadst8_c, iidtx4_c }, // V_FLIPADST { iidtx8_c, iadst4_c }, // H_FLIPADST }; const int n = 4; const int n2 = 8; int i, j; tran_low_t out[4][8], outtmp[4]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { IHT_4x8[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { IHT_4x8[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_8x4[] = { { idct4_c, idct8_c }, // DCT_DCT { iadst4_c, idct8_c }, // ADST_DCT { idct4_c, iadst8_c }, // DCT_ADST { iadst4_c, iadst8_c }, // ADST_ADST { iadst4_c, idct8_c }, // FLIPADST_DCT { idct4_c, iadst8_c }, // DCT_FLIPADST { iadst4_c, iadst8_c }, // FLIPADST_FLIPADST { iadst4_c, iadst8_c }, // ADST_FLIPADST { iadst4_c, iadst8_c }, // FLIPADST_ADST { iidtx4_c, iidtx8_c }, // IDTX { idct4_c, iidtx8_c }, // V_DCT { iidtx4_c, idct8_c }, // H_DCT { iadst4_c, iidtx8_c }, // V_ADST { iidtx4_c, iadst8_c }, // H_ADST { iadst4_c, iidtx8_c }, // V_FLIPADST { iidtx4_c, iadst8_c }, // H_FLIPADST }; const int n = 4; const int n2 = 8; int i, j; tran_low_t out[8][4], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_8x4[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { IHT_8x4[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht8x16_128_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_8x16[] = { { idct16_c, idct8_c }, // DCT_DCT { iadst16_c, idct8_c }, // ADST_DCT { idct16_c, iadst8_c }, // DCT_ADST { iadst16_c, iadst8_c }, // ADST_ADST { iadst16_c, idct8_c }, // FLIPADST_DCT { idct16_c, iadst8_c }, // DCT_FLIPADST { iadst16_c, iadst8_c }, // FLIPADST_FLIPADST { iadst16_c, iadst8_c }, // ADST_FLIPADST { iadst16_c, iadst8_c }, // FLIPADST_ADST { iidtx16_c, iidtx8_c }, // IDTX { idct16_c, iidtx8_c }, // V_DCT { iidtx16_c, idct8_c }, // H_DCT { iadst16_c, iidtx8_c }, // V_ADST { iidtx16_c, iadst8_c }, // H_ADST { iadst16_c, iidtx8_c }, // V_FLIPADST { iidtx16_c, iadst8_c }, // H_FLIPADST }; const int n = 8; const int n2 = 16; int i, j; tran_low_t out[8][16], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { IHT_8x16[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { IHT_8x16[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht16x8_128_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_16x8[] = { { idct8_c, idct16_c }, // DCT_DCT { iadst8_c, idct16_c }, // ADST_DCT { idct8_c, iadst16_c }, // DCT_ADST { iadst8_c, iadst16_c }, // ADST_ADST { iadst8_c, idct16_c }, // FLIPADST_DCT { idct8_c, iadst16_c }, // DCT_FLIPADST { iadst8_c, iadst16_c }, // FLIPADST_FLIPADST { iadst8_c, iadst16_c }, // ADST_FLIPADST { iadst8_c, iadst16_c }, // FLIPADST_ADST { iidtx8_c, iidtx16_c }, // IDTX { idct8_c, iidtx16_c }, // V_DCT { iidtx8_c, idct16_c }, // H_DCT { iadst8_c, iidtx16_c }, // V_ADST { iidtx8_c, iadst16_c }, // H_ADST { iadst8_c, iidtx16_c }, // V_FLIPADST { iidtx8_c, iadst16_c }, // H_FLIPADST }; const int n = 8; const int n2 = 16; int i, j; tran_low_t out[16][8], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_16x8[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { IHT_16x8[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht16x32_512_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_16x32[] = { { idct32_c, idct16_c }, // DCT_DCT { ihalfright32_c, idct16_c }, // ADST_DCT { idct32_c, iadst16_c }, // DCT_ADST { ihalfright32_c, iadst16_c }, // ADST_ADST { ihalfright32_c, idct16_c }, // FLIPADST_DCT { idct32_c, iadst16_c }, // DCT_FLIPADST { ihalfright32_c, iadst16_c }, // FLIPADST_FLIPADST { ihalfright32_c, iadst16_c }, // ADST_FLIPADST { ihalfright32_c, iadst16_c }, // FLIPADST_ADST { iidtx32_c, iidtx16_c }, // IDTX { idct32_c, iidtx16_c }, // V_DCT { iidtx32_c, idct16_c }, // H_DCT { ihalfright32_c, iidtx16_c }, // V_ADST { iidtx32_c, iadst16_c }, // H_ADST { ihalfright32_c, iidtx16_c }, // V_FLIPADST { iidtx32_c, iadst16_c }, // H_FLIPADST }; const int n = 16; const int n2 = 32; int i, j; tran_low_t out[16][32], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors and transpose for (i = 0; i < n2; ++i) { IHT_16x32[tx_type].rows(input, outtmp); for (j = 0; j < n; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { IHT_16x32[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n2, n); // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } void av1_iht32x16_512_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_32x16[] = { { idct16_c, idct32_c }, // DCT_DCT { iadst16_c, idct32_c }, // ADST_DCT { idct16_c, ihalfright32_c }, // DCT_ADST { iadst16_c, ihalfright32_c }, // ADST_ADST { iadst16_c, idct32_c }, // FLIPADST_DCT { idct16_c, ihalfright32_c }, // DCT_FLIPADST { iadst16_c, ihalfright32_c }, // FLIPADST_FLIPADST { iadst16_c, ihalfright32_c }, // ADST_FLIPADST { iadst16_c, ihalfright32_c }, // FLIPADST_ADST { iidtx16_c, iidtx32_c }, // IDTX { idct16_c, iidtx32_c }, // V_DCT { iidtx16_c, idct32_c }, // H_DCT { iadst16_c, iidtx32_c }, // V_ADST { iidtx16_c, ihalfright32_c }, // H_ADST { iadst16_c, iidtx32_c }, // V_FLIPADST { iidtx16_c, ihalfright32_c }, // H_FLIPADST }; const int n = 16; const int n2 = 32; int i, j; tran_low_t out[32][16], outtmp[32]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors and transpose for (i = 0; i < n; ++i) { IHT_32x16[tx_type].rows(input, outtmp); for (j = 0; j < n2; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { IHT_32x16[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, n, n2); // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } #endif // CONFIG_EXT_TX void av1_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_8[] = { { idct8_c, idct8_c }, // DCT_DCT { iadst8_c, idct8_c }, // ADST_DCT { idct8_c, iadst8_c }, // DCT_ADST { iadst8_c, iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst8_c, idct8_c }, // FLIPADST_DCT { idct8_c, iadst8_c }, // DCT_FLIPADST { iadst8_c, iadst8_c }, // FLIPADST_FLIPADST { iadst8_c, iadst8_c }, // ADST_FLIPADST { iadst8_c, iadst8_c }, // FLIPADST_ADST { iidtx8_c, iidtx8_c }, // IDTX { idct8_c, iidtx8_c }, // V_DCT { iidtx8_c, idct8_c }, // H_DCT { iadst8_c, iidtx8_c }, // V_ADST { iidtx8_c, iadst8_c }, // H_ADST { iadst8_c, iidtx8_c }, // V_FLIPADST { iidtx8_c, iadst8_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors for (i = 0; i < 8; ++i) { IHT_8[tx_type].rows(input, out[i]); input += 8; } // transpose for (i = 1; i < 8; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { IHT_8[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void av1_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_16[] = { { idct16_c, idct16_c }, // DCT_DCT { iadst16_c, idct16_c }, // ADST_DCT { idct16_c, iadst16_c }, // DCT_ADST { iadst16_c, iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst16_c, idct16_c }, // FLIPADST_DCT { idct16_c, iadst16_c }, // DCT_FLIPADST { iadst16_c, iadst16_c }, // FLIPADST_FLIPADST { iadst16_c, iadst16_c }, // ADST_FLIPADST { iadst16_c, iadst16_c }, // FLIPADST_ADST { iidtx16_c, iidtx16_c }, // IDTX { idct16_c, iidtx16_c }, // V_DCT { iidtx16_c, idct16_c }, // H_DCT { iadst16_c, iidtx16_c }, // V_ADST { iidtx16_c, iadst16_c }, // H_ADST { iadst16_c, iidtx16_c }, // V_FLIPADST { iidtx16_c, iadst16_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { IHT_16[tx_type].rows(input, out[i]); input += 16; } // transpose for (i = 1; i < 16; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 16; ++i) { IHT_16[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } #if CONFIG_EXT_TX void av1_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_32[] = { { idct32_c, idct32_c }, // DCT_DCT { ihalfright32_c, idct32_c }, // ADST_DCT { idct32_c, ihalfright32_c }, // DCT_ADST { ihalfright32_c, ihalfright32_c }, // ADST_ADST { ihalfright32_c, idct32_c }, // FLIPADST_DCT { idct32_c, ihalfright32_c }, // DCT_FLIPADST { ihalfright32_c, ihalfright32_c }, // FLIPADST_FLIPADST { ihalfright32_c, ihalfright32_c }, // ADST_FLIPADST { ihalfright32_c, ihalfright32_c }, // FLIPADST_ADST { iidtx32_c, iidtx32_c }, // IDTX { idct32_c, iidtx32_c }, // V_DCT { iidtx32_c, idct32_c }, // H_DCT { ihalfright32_c, iidtx16_c }, // V_ADST { iidtx16_c, ihalfright32_c }, // H_ADST { ihalfright32_c, iidtx16_c }, // V_FLIPADST { iidtx16_c, ihalfright32_c }, // H_FLIPADST }; int i, j; tran_low_t tmp; tran_low_t out[32][32]; tran_low_t *outp = &out[0][0]; int outstride = 32; // inverse transform row vectors for (i = 0; i < 32; ++i) { IHT_32[tx_type].rows(input, out[i]); input += 32; } // transpose for (i = 1; i < 32; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 32; ++i) { IHT_32[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 32, 32); // Sum with the destination for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } #endif // CONFIG_EXT_TX // idct void av1_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) aom_idct4x4_16_add(input, dest, stride); else aom_idct4x4_1_add(input, dest, stride); } void av1_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) aom_iwht4x4_16_add(input, dest, stride); else aom_iwht4x4_1_add(input, dest, stride); } void av1_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in av1_short_idct8x8_c. // Combine that with code here. if (eob == 1) // DC only DCT coefficient aom_idct8x8_1_add(input, dest, stride); else if (eob <= 12) aom_idct8x8_12_add(input, dest, stride); else aom_idct8x8_64_add(input, dest, stride); } void av1_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob == 1) /* DC only DCT coefficient. */ aom_idct16x16_1_add(input, dest, stride); else if (eob <= 10) aom_idct16x16_10_add(input, dest, stride); else aom_idct16x16_256_add(input, dest, stride); } void av1_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob == 1) aom_idct32x32_1_add(input, dest, stride); else if (eob <= 34) // non-zero coeff only in upper-left 8x8 aom_idct32x32_34_add(input, dest, stride); else aom_idct32x32_1024_add(input, dest, stride); } void av1_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type, int lossless) { if (lossless) { assert(tx_type == DCT_DCT); av1_iwht4x4_add(input, dest, stride, eob); return; } switch (tx_type) { case DCT_DCT: av1_idct4x4_add(input, dest, stride, eob); break; case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_iht4x4_16_add(input, dest, stride, tx_type); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_iht4x4_16_add(input, dest, stride, tx_type); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_iht4x4_16_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 4, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #if CONFIG_EXT_TX void av1_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void)eob; av1_iht4x8_32_add(input, dest, stride, tx_type); } void av1_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void)eob; av1_iht8x4_32_add(input, dest, stride, tx_type); } void av1_inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void)eob; av1_iht8x16_128_add(input, dest, stride, tx_type); } void av1_inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void)eob; av1_iht16x8_128_add(input, dest, stride, tx_type); } void av1_inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void)eob; av1_iht16x32_512_add(input, dest, stride, tx_type); } void av1_inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void)eob; av1_iht32x16_512_add(input, dest, stride, tx_type); } #endif // CONFIG_EXT_TX void av1_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { switch (tx_type) { case DCT_DCT: av1_idct8x8_add(input, dest, stride, eob); break; case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_iht8x8_64_add(input, dest, stride, tx_type); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_iht8x8_64_add(input, dest, stride, tx_type); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_iht8x8_64_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 8, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void av1_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { switch (tx_type) { case DCT_DCT: av1_idct16x16_add(input, dest, stride, eob); break; case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_iht16x16_256_add(input, dest, stride, tx_type); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_iht16x16_256_add(input, dest, stride, tx_type); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_iht16x16_256_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 16, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void av1_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { switch (tx_type) { case DCT_DCT: av1_idct32x32_add(input, dest, stride, eob); break; #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: av1_iht32x32_1024_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 32, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #if CONFIG_AOM_HIGHBITDEPTH void av1_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_4[] = { { aom_highbd_idct4_c, aom_highbd_idct4_c }, // DCT_DCT { aom_highbd_iadst4_c, aom_highbd_idct4_c }, // ADST_DCT { aom_highbd_idct4_c, aom_highbd_iadst4_c }, // DCT_ADST { aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_highbd_iadst4_c, aom_highbd_idct4_c }, // FLIPADST_DCT { aom_highbd_idct4_c, aom_highbd_iadst4_c }, // DCT_FLIPADST { aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // FLIPADST_FLIPADST { aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // ADST_FLIPADST { aom_highbd_iadst4_c, aom_highbd_iadst4_c }, // FLIPADST_ADST { highbd_iidtx4_c, highbd_iidtx4_c }, // IDTX { aom_highbd_idct4_c, highbd_iidtx4_c }, // V_DCT { highbd_iidtx4_c, aom_highbd_idct4_c }, // H_DCT { aom_highbd_iadst4_c, highbd_iidtx4_c }, // V_ADST { highbd_iidtx4_c, aom_highbd_iadst4_c }, // H_ADST { aom_highbd_iadst4_c, highbd_iidtx4_c }, // V_FLIPADST { highbd_iidtx4_c, aom_highbd_iadst4_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4[tx_type].rows(input, out[i], bd); input += 4; } // transpose for (i = 1; i < 4; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 4, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4), bd); } } } #if CONFIG_EXT_TX void av1_highbd_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_4x8[] = { { aom_highbd_idct8_c, aom_highbd_idct4_c }, // DCT_DCT { aom_highbd_iadst8_c, aom_highbd_idct4_c }, // ADST_DCT { aom_highbd_idct8_c, aom_highbd_iadst4_c }, // DCT_ADST { aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // ADST_ADST { aom_highbd_iadst8_c, aom_highbd_idct4_c }, // FLIPADST_DCT { aom_highbd_idct8_c, aom_highbd_iadst4_c }, // DCT_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // FLIPADST_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // ADST_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst4_c }, // FLIPADST_ADST { highbd_iidtx8_c, highbd_iidtx4_c }, // IDTX { aom_highbd_idct8_c, highbd_iidtx4_c }, // V_DCT { highbd_iidtx8_c, aom_highbd_idct4_c }, // H_DCT { aom_highbd_iadst8_c, highbd_iidtx4_c }, // V_ADST { highbd_iidtx8_c, aom_highbd_iadst4_c }, // H_ADST { aom_highbd_iadst8_c, highbd_iidtx4_c }, // V_FLIPADST { highbd_iidtx8_c, aom_highbd_iadst4_c }, // H_FLIPADST }; const int n = 4; const int n2 = 8; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[4][8], outtmp[4]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors, and transpose for (i = 0; i < n2; ++i) { HIGH_IHT_4x8[tx_type].rows(input, outtmp, bd); for (j = 0; j < n; ++j) { out[j][i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); } input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { HIGH_IHT_4x8[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n2, n); // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } void av1_highbd_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_8x4[] = { { aom_highbd_idct4_c, aom_highbd_idct8_c }, // DCT_DCT { aom_highbd_iadst4_c, aom_highbd_idct8_c }, // ADST_DCT { aom_highbd_idct4_c, aom_highbd_iadst8_c }, // DCT_ADST { aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // ADST_ADST { aom_highbd_iadst4_c, aom_highbd_idct8_c }, // FLIPADST_DCT { aom_highbd_idct4_c, aom_highbd_iadst8_c }, // DCT_FLIPADST { aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // FLIPADST_FLIPADST { aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // ADST_FLIPADST { aom_highbd_iadst4_c, aom_highbd_iadst8_c }, // FLIPADST_ADST { highbd_iidtx4_c, highbd_iidtx8_c }, // IDTX { aom_highbd_idct4_c, highbd_iidtx8_c }, // V_DCT { highbd_iidtx4_c, aom_highbd_idct8_c }, // H_DCT { aom_highbd_iadst4_c, highbd_iidtx8_c }, // V_ADST { highbd_iidtx4_c, aom_highbd_iadst8_c }, // H_ADST { aom_highbd_iadst4_c, highbd_iidtx8_c }, // V_FLIPADST { highbd_iidtx4_c, aom_highbd_iadst8_c }, // H_FLIPADST }; const int n = 4; const int n2 = 8; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[8][4], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors, and transpose for (i = 0; i < n; ++i) { HIGH_IHT_8x4[tx_type].rows(input, outtmp, bd); for (j = 0; j < n2; ++j) { out[j][i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); } input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { HIGH_IHT_8x4[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n, n2); // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } void av1_highbd_iht8x16_128_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_8x16[] = { { aom_highbd_idct16_c, aom_highbd_idct8_c }, // DCT_DCT { aom_highbd_iadst16_c, aom_highbd_idct8_c }, // ADST_DCT { aom_highbd_idct16_c, aom_highbd_iadst8_c }, // DCT_ADST { aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // ADST_ADST { aom_highbd_iadst16_c, aom_highbd_idct8_c }, // FLIPADST_DCT { aom_highbd_idct16_c, aom_highbd_iadst8_c }, // DCT_FLIPADST { aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // FLIPADST_FLIPADST { aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // ADST_FLIPADST { aom_highbd_iadst16_c, aom_highbd_iadst8_c }, // FLIPADST_ADST { highbd_iidtx16_c, highbd_iidtx8_c }, // IDTX { aom_highbd_idct16_c, highbd_iidtx8_c }, // V_DCT { highbd_iidtx16_c, aom_highbd_idct8_c }, // H_DCT { aom_highbd_iadst16_c, highbd_iidtx8_c }, // V_ADST { highbd_iidtx16_c, aom_highbd_iadst8_c }, // H_ADST { aom_highbd_iadst16_c, highbd_iidtx8_c }, // V_FLIPADST { highbd_iidtx16_c, aom_highbd_iadst8_c }, // H_FLIPADST }; const int n = 8; const int n2 = 16; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[8][16], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors, and transpose for (i = 0; i < n2; ++i) { HIGH_IHT_8x16[tx_type].rows(input, outtmp, bd); for (j = 0; j < n; ++j) out[j][i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { HIGH_IHT_8x16[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n2, n); // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } void av1_highbd_iht16x8_128_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_16x8[] = { { aom_highbd_idct8_c, aom_highbd_idct16_c }, // DCT_DCT { aom_highbd_iadst8_c, aom_highbd_idct16_c }, // ADST_DCT { aom_highbd_idct8_c, aom_highbd_iadst16_c }, // DCT_ADST { aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // ADST_ADST { aom_highbd_iadst8_c, aom_highbd_idct16_c }, // FLIPADST_DCT { aom_highbd_idct8_c, aom_highbd_iadst16_c }, // DCT_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // FLIPADST_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // ADST_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst16_c }, // FLIPADST_ADST { highbd_iidtx8_c, highbd_iidtx16_c }, // IDTX { aom_highbd_idct8_c, highbd_iidtx16_c }, // V_DCT { highbd_iidtx8_c, aom_highbd_idct16_c }, // H_DCT { aom_highbd_iadst8_c, highbd_iidtx16_c }, // V_ADST { highbd_iidtx8_c, aom_highbd_iadst16_c }, // H_ADST { aom_highbd_iadst8_c, highbd_iidtx16_c }, // V_FLIPADST { highbd_iidtx8_c, aom_highbd_iadst16_c }, // H_FLIPADST }; const int n = 8; const int n2 = 16; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[16][8], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors, and transpose for (i = 0; i < n; ++i) { HIGH_IHT_16x8[tx_type].rows(input, outtmp, bd); for (j = 0; j < n2; ++j) out[j][i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { HIGH_IHT_16x8[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n, n2); // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } void av1_highbd_iht16x32_512_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_16x32[] = { { aom_highbd_idct32_c, aom_highbd_idct16_c }, // DCT_DCT { highbd_ihalfright32_c, aom_highbd_idct16_c }, // ADST_DCT { aom_highbd_idct32_c, aom_highbd_iadst16_c }, // DCT_ADST { highbd_ihalfright32_c, aom_highbd_iadst16_c }, // ADST_ADST { highbd_ihalfright32_c, aom_highbd_idct16_c }, // FLIPADST_DCT { aom_highbd_idct32_c, aom_highbd_iadst16_c }, // DCT_FLIPADST { highbd_ihalfright32_c, aom_highbd_iadst16_c }, // FLIPADST_FLIPADST { highbd_ihalfright32_c, aom_highbd_iadst16_c }, // ADST_FLIPADST { highbd_ihalfright32_c, aom_highbd_iadst16_c }, // FLIPADST_ADST { highbd_iidtx32_c, highbd_iidtx16_c }, // IDTX { aom_highbd_idct32_c, highbd_iidtx16_c }, // V_DCT { highbd_iidtx32_c, aom_highbd_idct16_c }, // H_DCT { highbd_ihalfright32_c, highbd_iidtx16_c }, // V_ADST { highbd_iidtx32_c, aom_highbd_iadst16_c }, // H_ADST { highbd_ihalfright32_c, highbd_iidtx16_c }, // V_FLIPADST { highbd_iidtx32_c, aom_highbd_iadst16_c }, // H_FLIPADST }; const int n = 16; const int n2 = 32; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[16][32], outtmp[16]; tran_low_t *outp = &out[0][0]; int outstride = n2; // inverse transform row vectors, and transpose for (i = 0; i < n2; ++i) { HIGH_IHT_16x32[tx_type].rows(input, outtmp, bd); for (j = 0; j < n; ++j) out[j][i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); input += n; } // inverse transform column vectors for (i = 0; i < n; ++i) { HIGH_IHT_16x32[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n2, n); // Sum with the destination for (i = 0; i < n2; ++i) { for (j = 0; j < n; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } void av1_highbd_iht32x16_512_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_32x16[] = { { aom_highbd_idct16_c, aom_highbd_idct32_c }, // DCT_DCT { aom_highbd_iadst16_c, aom_highbd_idct32_c }, // ADST_DCT { aom_highbd_idct16_c, highbd_ihalfright32_c }, // DCT_ADST { aom_highbd_iadst16_c, highbd_ihalfright32_c }, // ADST_ADST { aom_highbd_iadst16_c, aom_highbd_idct32_c }, // FLIPADST_DCT { aom_highbd_idct16_c, highbd_ihalfright32_c }, // DCT_FLIPADST { aom_highbd_iadst16_c, highbd_ihalfright32_c }, // FLIPADST_FLIPADST { aom_highbd_iadst16_c, highbd_ihalfright32_c }, // ADST_FLIPADST { aom_highbd_iadst16_c, highbd_ihalfright32_c }, // FLIPADST_ADST { highbd_iidtx16_c, highbd_iidtx32_c }, // IDTX { aom_highbd_idct16_c, highbd_iidtx32_c }, // V_DCT { highbd_iidtx16_c, aom_highbd_idct32_c }, // H_DCT { aom_highbd_iadst16_c, highbd_iidtx32_c }, // V_ADST { highbd_iidtx16_c, highbd_ihalfright32_c }, // H_ADST { aom_highbd_iadst16_c, highbd_iidtx32_c }, // V_FLIPADST { highbd_iidtx16_c, highbd_ihalfright32_c }, // H_FLIPADST }; const int n = 16; const int n2 = 32; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[32][16], outtmp[32]; tran_low_t *outp = &out[0][0]; int outstride = n; // inverse transform row vectors, and transpose for (i = 0; i < n; ++i) { HIGH_IHT_32x16[tx_type].rows(input, outtmp, bd); for (j = 0; j < n2; ++j) out[j][i] = HIGHBD_WRAPLOW(highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); input += n2; } // inverse transform column vectors for (i = 0; i < n2; ++i) { HIGH_IHT_32x16[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, n, n2); // Sum with the destination for (i = 0; i < n; ++i) { for (j = 0; j < n2; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } #endif // CONFIG_EXT_TX void av1_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_8[] = { { aom_highbd_idct8_c, aom_highbd_idct8_c }, // DCT_DCT { aom_highbd_iadst8_c, aom_highbd_idct8_c }, // ADST_DCT { aom_highbd_idct8_c, aom_highbd_iadst8_c }, // DCT_ADST { aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_highbd_iadst8_c, aom_highbd_idct8_c }, // FLIPADST_DCT { aom_highbd_idct8_c, aom_highbd_iadst8_c }, // DCT_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // FLIPADST_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // ADST_FLIPADST { aom_highbd_iadst8_c, aom_highbd_iadst8_c }, // FLIPADST_ADST { highbd_iidtx8_c, highbd_iidtx8_c }, // IDTX { aom_highbd_idct8_c, highbd_iidtx8_c }, // V_DCT { highbd_iidtx8_c, aom_highbd_idct8_c }, // H_DCT { aom_highbd_iadst8_c, highbd_iidtx8_c }, // V_ADST { highbd_iidtx8_c, aom_highbd_iadst8_c }, // H_ADST { aom_highbd_iadst8_c, highbd_iidtx8_c }, // V_FLIPADST { highbd_iidtx8_c, aom_highbd_iadst8_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8[tx_type].rows(input, out[i], bd); input += 8; } // transpose for (i = 1; i < 8; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 8, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } void av1_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_16[] = { { aom_highbd_idct16_c, aom_highbd_idct16_c }, // DCT_DCT { aom_highbd_iadst16_c, aom_highbd_idct16_c }, // ADST_DCT { aom_highbd_idct16_c, aom_highbd_iadst16_c }, // DCT_ADST { aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { aom_highbd_iadst16_c, aom_highbd_idct16_c }, // FLIPADST_DCT { aom_highbd_idct16_c, aom_highbd_iadst16_c }, // DCT_FLIPADST { aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // FLIPADST_FLIPADST { aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // ADST_FLIPADST { aom_highbd_iadst16_c, aom_highbd_iadst16_c }, // FLIPADST_ADST { highbd_iidtx16_c, highbd_iidtx16_c }, // IDTX { aom_highbd_idct16_c, highbd_iidtx16_c }, // V_DCT { highbd_iidtx16_c, aom_highbd_idct16_c }, // H_DCT { aom_highbd_iadst16_c, highbd_iidtx16_c }, // V_ADST { highbd_iidtx16_c, aom_highbd_iadst16_c }, // H_ADST { aom_highbd_iadst16_c, highbd_iidtx16_c }, // V_FLIPADST { highbd_iidtx16_c, aom_highbd_iadst16_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { HIGH_IHT_16[tx_type].rows(input, out[i], bd); input += 16; } // transpose for (i = 1; i < 16; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 16; ++i) { HIGH_IHT_16[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 16, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } #if CONFIG_EXT_TX void av1_highbd_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_32[] = { { aom_highbd_idct32_c, aom_highbd_idct32_c }, // DCT_DCT { highbd_ihalfright32_c, aom_highbd_idct32_c }, // ADST_DCT { aom_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_ADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_ADST { highbd_ihalfright32_c, aom_highbd_idct32_c }, // FLIPADST_DCT { aom_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_FLIPADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_FLIPADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_FLIPADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_ADST { highbd_iidtx32_c, highbd_iidtx32_c }, // IDTX { aom_highbd_idct32_c, highbd_iidtx32_c }, // V_DCT { highbd_iidtx32_c, aom_highbd_idct32_c }, // H_DCT { highbd_ihalfright32_c, highbd_iidtx32_c }, // V_ADST { highbd_iidtx32_c, highbd_ihalfright32_c }, // H_ADST { highbd_ihalfright32_c, highbd_iidtx32_c }, // V_FLIPADST { highbd_iidtx32_c, highbd_ihalfright32_c }, // H_FLIPADST }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[32][32]; tran_low_t *outp = &out[0][0]; int outstride = 32; // inverse transform row vectors for (i = 0; i < 32; ++i) { HIGH_IHT_32[tx_type].rows(input, out[i], bd); input += 32; } // transpose for (i = 1; i < 32; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 32; ++i) { HIGH_IHT_32[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 32, 32); // Sum with the destination for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } #endif // CONFIG_EXT_TX // idct void av1_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) aom_highbd_idct4x4_16_add(input, dest, stride, bd); else aom_highbd_idct4x4_1_add(input, dest, stride, bd); } void av1_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) aom_highbd_iwht4x4_16_add(input, dest, stride, bd); else aom_highbd_iwht4x4_1_add(input, dest, stride, bd); } void av1_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in av1_short_idct8x8_c. // Combine that with code here. // DC only DCT coefficient if (eob == 1) { aom_highbd_idct8x8_1_add(input, dest, stride, bd); } else if (eob <= 10) { aom_highbd_idct8x8_10_add(input, dest, stride, bd); } else { aom_highbd_idct8x8_64_add(input, dest, stride, bd); } } void av1_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to separate different cases. // DC only DCT coefficient. if (eob == 1) { aom_highbd_idct16x16_1_add(input, dest, stride, bd); } else if (eob <= 10) { aom_highbd_idct16x16_10_add(input, dest, stride, bd); } else { aom_highbd_idct16x16_256_add(input, dest, stride, bd); } } void av1_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // Non-zero coeff only in upper-left 8x8 if (eob == 1) { aom_highbd_idct32x32_1_add(input, dest, stride, bd); } else if (eob <= 34) { aom_highbd_idct32x32_34_add(input, dest, stride, bd); } else { aom_highbd_idct32x32_1024_add(input, dest, stride, bd); } } void av1_highbd_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type, int lossless) { if (lossless) { assert(tx_type == DCT_DCT); av1_highbd_iwht4x4_add(input, dest, stride, eob, bd); return; } switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_highbd_iht4x4_16_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 4, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #if CONFIG_EXT_TX void av1_highbd_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; av1_highbd_iht4x8_32_add_c(input, dest, stride, tx_type, bd); } void av1_highbd_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; av1_highbd_iht8x4_32_add_c(input, dest, stride, tx_type, bd); } void av1_highbd_inv_txfm_add_8x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; av1_highbd_iht8x16_128_add_c(input, dest, stride, tx_type, bd); } void av1_highbd_inv_txfm_add_16x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; av1_highbd_iht16x8_128_add_c(input, dest, stride, tx_type, bd); } void av1_highbd_inv_txfm_add_16x32(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; av1_highbd_iht16x32_512_add_c(input, dest, stride, tx_type, bd); } void av1_highbd_inv_txfm_add_32x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; av1_highbd_iht32x16_512_add_c(input, dest, stride, tx_type, bd); } #endif // CONFIG_EXT_TX void av1_highbd_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_highbd_iht8x8_64_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 8, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void av1_highbd_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: av1_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: av1_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code av1_highbd_iht16x16_256_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 16, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void av1_highbd_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; switch (tx_type) { case DCT_DCT: av1_inv_txfm2d_add_32x32(input, CONVERT_TO_SHORTPTR(dest), stride, DCT_DCT, bd); break; #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: av1_highbd_iht32x32_1024_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 32, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #endif // CONFIG_AOM_HIGHBITDEPTH void inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride, INV_TXFM_PARAM *inv_txfm_param) { const TX_TYPE tx_type = inv_txfm_param->tx_type; const TX_SIZE tx_size = inv_txfm_param->tx_size; const int eob = inv_txfm_param->eob; const int lossless = inv_txfm_param->lossless; switch (tx_size) { case TX_32X32: av1_inv_txfm_add_32x32(input, dest, stride, eob, tx_type); break; case TX_16X16: av1_inv_txfm_add_16x16(input, dest, stride, eob, tx_type); break; case TX_8X8: av1_inv_txfm_add_8x8(input, dest, stride, eob, tx_type); break; #if CONFIG_EXT_TX case TX_4X8: av1_inv_txfm_add_4x8(input, dest, stride, eob, tx_type); break; case TX_8X4: av1_inv_txfm_add_8x4(input, dest, stride, eob, tx_type); break; case TX_8X16: av1_inv_txfm_add_8x16(input, dest, stride, eob, tx_type); break; case TX_16X8: av1_inv_txfm_add_16x8(input, dest, stride, eob, tx_type); break; case TX_16X32: av1_inv_txfm_add_16x32(input, dest, stride, eob, tx_type); break; case TX_32X16: av1_inv_txfm_add_32x16(input, dest, stride, eob, tx_type); break; #endif // CONFIG_EXT_TX case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_inv_txfm_add_4x4(input, dest, stride, eob, tx_type, lossless); break; default: assert(0 && "Invalid transform size"); break; } } #if CONFIG_AOM_HIGHBITDEPTH void highbd_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride, INV_TXFM_PARAM *inv_txfm_param) { const TX_TYPE tx_type = inv_txfm_param->tx_type; const TX_SIZE tx_size = inv_txfm_param->tx_size; const int eob = inv_txfm_param->eob; const int bd = inv_txfm_param->bd; const int lossless = inv_txfm_param->lossless; switch (tx_size) { case TX_32X32: av1_highbd_inv_txfm_add_32x32(input, dest, stride, eob, bd, tx_type); break; case TX_16X16: av1_highbd_inv_txfm_add_16x16(input, dest, stride, eob, bd, tx_type); break; case TX_8X8: av1_highbd_inv_txfm_add_8x8(input, dest, stride, eob, bd, tx_type); break; #if CONFIG_EXT_TX case TX_4X8: av1_highbd_inv_txfm_add_4x8(input, dest, stride, eob, bd, tx_type); break; case TX_8X4: av1_highbd_inv_txfm_add_8x4(input, dest, stride, eob, bd, tx_type); break; case TX_8X16: av1_highbd_inv_txfm_add_8x16(input, dest, stride, eob, bd, tx_type); break; case TX_16X8: av1_highbd_inv_txfm_add_16x8(input, dest, stride, eob, bd, tx_type); break; case TX_16X32: av1_highbd_inv_txfm_add_16x32(input, dest, stride, eob, bd, tx_type); break; case TX_32X16: av1_highbd_inv_txfm_add_32x16(input, dest, stride, eob, bd, tx_type); break; #endif // CONFIG_EXT_TX case TX_4X4: // this is like av1_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. av1_highbd_inv_txfm_add_4x4(input, dest, stride, eob, bd, tx_type, lossless); break; default: assert(0 && "Invalid transform size"); break; } } #endif // CONFIG_AOM_HIGHBITDEPTH