/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "./vpx_dsp_rtcd.h" #include "vpx_scale/yv12config.h" #include "vpx/vpx_integer.h" #include "vp10/common/vp9_reconinter.h" #include "vp10/encoder/vp9_context_tree.h" #include "vp10/encoder/vp9_denoiser.h" /* The VP9 denoiser is a work-in-progress. It currently is only designed to work * with speed 6, though it (inexplicably) seems to also work with speed 5 (one * would need to modify the source code in vp10_pickmode.c and vp10_encoder.c to * make the calls to the vp10_denoiser_* functions when in speed 5). * * The implementation is very similar to that of the VP8 denoiser. While * choosing the motion vectors / reference frames, the denoiser is run, and if * it did not modify the signal to much, the denoised block is copied to the * signal. */ #ifdef OUTPUT_YUV_DENOISED static void make_grayscale(YV12_BUFFER_CONFIG *yuv); #endif static int absdiff_thresh(BLOCK_SIZE bs, int increase_denoising) { (void)bs; return 3 + (increase_denoising ? 1 : 0); } static int delta_thresh(BLOCK_SIZE bs, int increase_denoising) { (void)bs; (void)increase_denoising; return 4; } static int noise_motion_thresh(BLOCK_SIZE bs, int increase_denoising) { (void)bs; (void)increase_denoising; return 625; } static unsigned int sse_thresh(BLOCK_SIZE bs, int increase_denoising) { return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 60 : 40); } static int sse_diff_thresh(BLOCK_SIZE bs, int increase_denoising, int motion_magnitude) { if (motion_magnitude > noise_motion_thresh(bs, increase_denoising)) { return 0; } else { return (1 << num_pels_log2_lookup[bs]) * 20; } } int total_adj_strong_thresh(BLOCK_SIZE bs, int increase_denoising) { return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2); } static int total_adj_weak_thresh(BLOCK_SIZE bs, int increase_denoising) { return (1 << num_pels_log2_lookup[bs]) * (increase_denoising ? 3 : 2); } // TODO(jackychen): If increase_denoising is enabled in the future, // we might need to update the code for calculating 'total_adj' in // case the C code is not bit-exact with corresponding sse2 code. int vp10_denoiser_filter_c(const uint8_t *sig, int sig_stride, const uint8_t *mc_avg, int mc_avg_stride, uint8_t *avg, int avg_stride, int increase_denoising, BLOCK_SIZE bs, int motion_magnitude) { int r, c; const uint8_t *sig_start = sig; const uint8_t *mc_avg_start = mc_avg; uint8_t *avg_start = avg; int diff, adj, absdiff, delta; int adj_val[] = {3, 4, 6}; int total_adj = 0; int shift_inc = 1; // If motion_magnitude is small, making the denoiser more aggressive by // increasing the adjustment for each level. Add another increment for // blocks that are labeled for increase denoising. if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) { if (increase_denoising) { shift_inc = 2; } adj_val[0] += shift_inc; adj_val[1] += shift_inc; adj_val[2] += shift_inc; } // First attempt to apply a strong temporal denoising filter. for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) { diff = mc_avg[c] - sig[c]; absdiff = abs(diff); if (absdiff <= absdiff_thresh(bs, increase_denoising)) { avg[c] = mc_avg[c]; total_adj += diff; } else { switch (absdiff) { case 4: case 5: case 6: case 7: adj = adj_val[0]; break; case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: adj = adj_val[1]; break; default: adj = adj_val[2]; } if (diff > 0) { avg[c] = MIN(UINT8_MAX, sig[c] + adj); total_adj += adj; } else { avg[c] = MAX(0, sig[c] - adj); total_adj -= adj; } } } sig += sig_stride; avg += avg_stride; mc_avg += mc_avg_stride; } // If the strong filter did not modify the signal too much, we're all set. if (abs(total_adj) <= total_adj_strong_thresh(bs, increase_denoising)) { return FILTER_BLOCK; } // Otherwise, we try to dampen the filter if the delta is not too high. delta = ((abs(total_adj) - total_adj_strong_thresh(bs, increase_denoising)) >> num_pels_log2_lookup[bs]) + 1; if (delta >= delta_thresh(bs, increase_denoising)) { return COPY_BLOCK; } mc_avg = mc_avg_start; avg = avg_start; sig = sig_start; for (r = 0; r < (4 << b_height_log2_lookup[bs]); ++r) { for (c = 0; c < (4 << b_width_log2_lookup[bs]); ++c) { diff = mc_avg[c] - sig[c]; adj = abs(diff); if (adj > delta) { adj = delta; } if (diff > 0) { // Diff positive means we made positive adjustment above // (in first try/attempt), so now make negative adjustment to bring // denoised signal down. avg[c] = MAX(0, avg[c] - adj); total_adj -= adj; } else { // Diff negative means we made negative adjustment above // (in first try/attempt), so now make positive adjustment to bring // denoised signal up. avg[c] = MIN(UINT8_MAX, avg[c] + adj); total_adj += adj; } } sig += sig_stride; avg += avg_stride; mc_avg += mc_avg_stride; } // We can use the filter if it has been sufficiently dampened if (abs(total_adj) <= total_adj_weak_thresh(bs, increase_denoising)) { return FILTER_BLOCK; } return COPY_BLOCK; } static uint8_t *block_start(uint8_t *framebuf, int stride, int mi_row, int mi_col) { return framebuf + (stride * mi_row * 8) + (mi_col * 8); } static VP9_DENOISER_DECISION perform_motion_compensation(VP9_DENOISER *denoiser, MACROBLOCK *mb, BLOCK_SIZE bs, int increase_denoising, int mi_row, int mi_col, PICK_MODE_CONTEXT *ctx, int *motion_magnitude ) { int mv_col, mv_row; int sse_diff = ctx->zeromv_sse - ctx->newmv_sse; MV_REFERENCE_FRAME frame; MACROBLOCKD *filter_mbd = &mb->e_mbd; MB_MODE_INFO *mbmi = &filter_mbd->mi[0]->mbmi; MB_MODE_INFO saved_mbmi; int i, j; struct buf_2d saved_dst[MAX_MB_PLANE]; struct buf_2d saved_pre[MAX_MB_PLANE][2]; // 2 pre buffers mv_col = ctx->best_sse_mv.as_mv.col; mv_row = ctx->best_sse_mv.as_mv.row; *motion_magnitude = mv_row * mv_row + mv_col * mv_col; frame = ctx->best_reference_frame; saved_mbmi = *mbmi; // If the best reference frame uses inter-prediction and there is enough of a // difference in sum-squared-error, use it. if (frame != INTRA_FRAME && sse_diff > sse_diff_thresh(bs, increase_denoising, *motion_magnitude)) { mbmi->ref_frame[0] = ctx->best_reference_frame; mbmi->mode = ctx->best_sse_inter_mode; mbmi->mv[0] = ctx->best_sse_mv; } else { // Otherwise, use the zero reference frame. frame = ctx->best_zeromv_reference_frame; mbmi->ref_frame[0] = ctx->best_zeromv_reference_frame; mbmi->mode = ZEROMV; mbmi->mv[0].as_int = 0; ctx->best_sse_inter_mode = ZEROMV; ctx->best_sse_mv.as_int = 0; ctx->newmv_sse = ctx->zeromv_sse; } if (ctx->newmv_sse > sse_thresh(bs, increase_denoising)) { // Restore everything to its original state *mbmi = saved_mbmi; return COPY_BLOCK; } if (*motion_magnitude > (noise_motion_thresh(bs, increase_denoising) << 3)) { // Restore everything to its original state *mbmi = saved_mbmi; return COPY_BLOCK; } // We will restore these after motion compensation. for (i = 0; i < MAX_MB_PLANE; ++i) { for (j = 0; j < 2; ++j) { saved_pre[i][j] = filter_mbd->plane[i].pre[j]; } saved_dst[i] = filter_mbd->plane[i].dst; } // Set the pointers in the MACROBLOCKD to point to the buffers in the denoiser // struct. for (j = 0; j < 2; ++j) { filter_mbd->plane[0].pre[j].buf = block_start(denoiser->running_avg_y[frame].y_buffer, denoiser->running_avg_y[frame].y_stride, mi_row, mi_col); filter_mbd->plane[0].pre[j].stride = denoiser->running_avg_y[frame].y_stride; filter_mbd->plane[1].pre[j].buf = block_start(denoiser->running_avg_y[frame].u_buffer, denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col); filter_mbd->plane[1].pre[j].stride = denoiser->running_avg_y[frame].uv_stride; filter_mbd->plane[2].pre[j].buf = block_start(denoiser->running_avg_y[frame].v_buffer, denoiser->running_avg_y[frame].uv_stride, mi_row, mi_col); filter_mbd->plane[2].pre[j].stride = denoiser->running_avg_y[frame].uv_stride; } filter_mbd->plane[0].dst.buf = block_start(denoiser->mc_running_avg_y.y_buffer, denoiser->mc_running_avg_y.y_stride, mi_row, mi_col); filter_mbd->plane[0].dst.stride = denoiser->mc_running_avg_y.y_stride; filter_mbd->plane[1].dst.buf = block_start(denoiser->mc_running_avg_y.u_buffer, denoiser->mc_running_avg_y.uv_stride, mi_row, mi_col); filter_mbd->plane[1].dst.stride = denoiser->mc_running_avg_y.uv_stride; filter_mbd->plane[2].dst.buf = block_start(denoiser->mc_running_avg_y.v_buffer, denoiser->mc_running_avg_y.uv_stride, mi_row, mi_col); filter_mbd->plane[2].dst.stride = denoiser->mc_running_avg_y.uv_stride; vp10_build_inter_predictors_sby(filter_mbd, mv_row, mv_col, bs); // Restore everything to its original state *mbmi = saved_mbmi; for (i = 0; i < MAX_MB_PLANE; ++i) { for (j = 0; j < 2; ++j) { filter_mbd->plane[i].pre[j] = saved_pre[i][j]; } filter_mbd->plane[i].dst = saved_dst[i]; } mv_row = ctx->best_sse_mv.as_mv.row; mv_col = ctx->best_sse_mv.as_mv.col; return FILTER_BLOCK; } void vp10_denoiser_denoise(VP9_DENOISER *denoiser, MACROBLOCK *mb, int mi_row, int mi_col, BLOCK_SIZE bs, PICK_MODE_CONTEXT *ctx) { int motion_magnitude = 0; VP9_DENOISER_DECISION decision = FILTER_BLOCK; YV12_BUFFER_CONFIG avg = denoiser->running_avg_y[INTRA_FRAME]; YV12_BUFFER_CONFIG mc_avg = denoiser->mc_running_avg_y; uint8_t *avg_start = block_start(avg.y_buffer, avg.y_stride, mi_row, mi_col); uint8_t *mc_avg_start = block_start(mc_avg.y_buffer, mc_avg.y_stride, mi_row, mi_col); struct buf_2d src = mb->plane[0].src; decision = perform_motion_compensation(denoiser, mb, bs, denoiser->increase_denoising, mi_row, mi_col, ctx, &motion_magnitude); if (decision == FILTER_BLOCK) { decision = vp10_denoiser_filter(src.buf, src.stride, mc_avg_start, mc_avg.y_stride, avg_start, avg.y_stride, 0, bs, motion_magnitude); } if (decision == FILTER_BLOCK) { vpx_convolve_copy(avg_start, avg.y_stride, src.buf, src.stride, NULL, 0, NULL, 0, num_4x4_blocks_wide_lookup[bs] << 2, num_4x4_blocks_high_lookup[bs] << 2); } else { // COPY_BLOCK vpx_convolve_copy(src.buf, src.stride, avg_start, avg.y_stride, NULL, 0, NULL, 0, num_4x4_blocks_wide_lookup[bs] << 2, num_4x4_blocks_high_lookup[bs] << 2); } } static void copy_frame(YV12_BUFFER_CONFIG dest, const YV12_BUFFER_CONFIG src) { int r; const uint8_t *srcbuf = src.y_buffer; uint8_t *destbuf = dest.y_buffer; assert(dest.y_width == src.y_width); assert(dest.y_height == src.y_height); for (r = 0; r < dest.y_height; ++r) { memcpy(destbuf, srcbuf, dest.y_width); destbuf += dest.y_stride; srcbuf += src.y_stride; } } static void swap_frame_buffer(YV12_BUFFER_CONFIG *dest, YV12_BUFFER_CONFIG *src) { uint8_t *tmp_buf = dest->y_buffer; assert(dest->y_width == src->y_width); assert(dest->y_height == src->y_height); dest->y_buffer = src->y_buffer; src->y_buffer = tmp_buf; } void vp10_denoiser_update_frame_info(VP9_DENOISER *denoiser, YV12_BUFFER_CONFIG src, FRAME_TYPE frame_type, int refresh_alt_ref_frame, int refresh_golden_frame, int refresh_last_frame) { if (frame_type == KEY_FRAME) { int i; // Start at 1 so as not to overwrite the INTRA_FRAME for (i = 1; i < MAX_REF_FRAMES; ++i) copy_frame(denoiser->running_avg_y[i], src); return; } /* For non key frames */ if (refresh_alt_ref_frame) { swap_frame_buffer(&denoiser->running_avg_y[ALTREF_FRAME], &denoiser->running_avg_y[INTRA_FRAME]); } if (refresh_golden_frame) { swap_frame_buffer(&denoiser->running_avg_y[GOLDEN_FRAME], &denoiser->running_avg_y[INTRA_FRAME]); } if (refresh_last_frame) { swap_frame_buffer(&denoiser->running_avg_y[LAST_FRAME], &denoiser->running_avg_y[INTRA_FRAME]); } } void vp10_denoiser_reset_frame_stats(PICK_MODE_CONTEXT *ctx) { ctx->zeromv_sse = UINT_MAX; ctx->newmv_sse = UINT_MAX; } void vp10_denoiser_update_frame_stats(MB_MODE_INFO *mbmi, unsigned int sse, PREDICTION_MODE mode, PICK_MODE_CONTEXT *ctx) { // TODO(tkopp): Use both MVs if possible if (mbmi->mv[0].as_int == 0 && sse < ctx->zeromv_sse) { ctx->zeromv_sse = sse; ctx->best_zeromv_reference_frame = mbmi->ref_frame[0]; } if (mbmi->mv[0].as_int != 0 && sse < ctx->newmv_sse) { ctx->newmv_sse = sse; ctx->best_sse_inter_mode = mode; ctx->best_sse_mv = mbmi->mv[0]; ctx->best_reference_frame = mbmi->ref_frame[0]; } } int vp10_denoiser_alloc(VP9_DENOISER *denoiser, int width, int height, int ssx, int ssy, #if CONFIG_VP9_HIGHBITDEPTH int use_highbitdepth, #endif int border) { int i, fail; const int legacy_byte_alignment = 0; assert(denoiser != NULL); for (i = 0; i < MAX_REF_FRAMES; ++i) { fail = vp9_alloc_frame_buffer(&denoiser->running_avg_y[i], width, height, ssx, ssy, #if CONFIG_VP9_HIGHBITDEPTH use_highbitdepth, #endif border, legacy_byte_alignment); if (fail) { vp10_denoiser_free(denoiser); return 1; } #ifdef OUTPUT_YUV_DENOISED make_grayscale(&denoiser->running_avg_y[i]); #endif } fail = vp9_alloc_frame_buffer(&denoiser->mc_running_avg_y, width, height, ssx, ssy, #if CONFIG_VP9_HIGHBITDEPTH use_highbitdepth, #endif border, legacy_byte_alignment); if (fail) { vp10_denoiser_free(denoiser); return 1; } #ifdef OUTPUT_YUV_DENOISED make_grayscale(&denoiser->running_avg_y[i]); #endif denoiser->increase_denoising = 0; denoiser->frame_buffer_initialized = 1; return 0; } void vp10_denoiser_free(VP9_DENOISER *denoiser) { int i; denoiser->frame_buffer_initialized = 0; if (denoiser == NULL) { return; } for (i = 0; i < MAX_REF_FRAMES; ++i) { vp9_free_frame_buffer(&denoiser->running_avg_y[i]); } vp9_free_frame_buffer(&denoiser->mc_running_avg_y); } #ifdef OUTPUT_YUV_DENOISED static void make_grayscale(YV12_BUFFER_CONFIG *yuv) { int r, c; uint8_t *u = yuv->u_buffer; uint8_t *v = yuv->v_buffer; for (r = 0; r < yuv->uv_height; ++r) { for (c = 0; c < yuv->uv_width; ++c) { u[c] = UINT8_MAX / 2; v[c] = UINT8_MAX / 2; } u += yuv->uv_stride; v += yuv->uv_stride; } } #endif