/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8/encoder/denoising.h" #include "vp8/common/reconinter.h" #include "vpx/vpx_integer.h" #include "vpx_mem/vpx_mem.h" #include "vpx_rtcd.h" #include union sum_union { __m128i v; short e[8]; }; int vp8_denoiser_filter_sse2(YV12_BUFFER_CONFIG *mc_running_avg, YV12_BUFFER_CONFIG *running_avg, MACROBLOCK *signal, unsigned int motion_magnitude, int y_offset, int uv_offset) { unsigned char filtered_buf[16*16]; unsigned char *filtered = filtered_buf; unsigned char *sig = signal->thismb; int sig_stride = 16; unsigned char *mc_running_avg_y = mc_running_avg->y_buffer + y_offset; int mc_avg_y_stride = mc_running_avg->y_stride; unsigned char *running_avg_y = running_avg->y_buffer + y_offset; int avg_y_stride = running_avg->y_stride; const union coeff_pair *LUT = vp8_get_filter_coeff_LUT(motion_magnitude); int r, c; __m128i acc_diff = { 0 }; for (r = 0; r < 16; ++r) { __m128i filter_coefficient_00, filter_coefficient_04; __m128i filter_coefficient_08, filter_coefficient_12; __m128i v_sig0, v_sig1; __m128i v_mc_running_avg_y0, v_mc_running_avg_y1; __m128i state0, state1, state2, state3; __m128i res0, res1, res2, res3; __m128i v_running_avg_y; __m128i diff0, diff1, diff0sq, diff1sq, diff_sq; const __m128i kNOISE_DIFF2_THRESHOLD = _mm_set1_epi8(NOISE_DIFF2_THRESHOLD); __m128i take_running, p0, p1, p2; const __m128i k_zero = _mm_set1_epi16(0); const __m128i k_128 = _mm_set1_epi32(128); // Calculate absolute differences DECLARE_ALIGNED_ARRAY(16,unsigned char,abs_diff,16); DECLARE_ALIGNED_ARRAY(16,uint32_t,filter_coefficient,16); __m128i v_sig = _mm_loadu_si128((__m128i *)(&sig[0])); __m128i v_mc_running_avg_y = _mm_loadu_si128( (__m128i *)(&mc_running_avg_y[0])); __m128i a_minus_b = _mm_subs_epu8(v_sig, v_mc_running_avg_y); __m128i b_minus_a = _mm_subs_epu8(v_mc_running_avg_y, v_sig); __m128i v_abs_diff = _mm_adds_epu8(a_minus_b, b_minus_a); _mm_store_si128((__m128i *)(&abs_diff[0]), v_abs_diff); // Use LUT to get filter coefficients (two 16b value; f and 256-f) for (c = 0; c < 16; ++c) { filter_coefficient[c] = LUT[abs_diff[c]].as_int; } // Filtering... // load filter coefficients (two 16b value; f and 256-f) filter_coefficient_00 = _mm_load_si128( (__m128i *)(&filter_coefficient[ 0])); filter_coefficient_04 = _mm_load_si128( (__m128i *)(&filter_coefficient[ 4])); filter_coefficient_08 = _mm_load_si128( (__m128i *)(&filter_coefficient[ 8])); filter_coefficient_12 = _mm_load_si128( (__m128i *)(&filter_coefficient[12])); // expand sig from 8b to 16b v_sig0 = _mm_unpacklo_epi8(v_sig, k_zero); v_sig1 = _mm_unpackhi_epi8(v_sig, k_zero); // expand mc_running_avg_y from 8b to 16b v_mc_running_avg_y0 = _mm_unpacklo_epi8(v_mc_running_avg_y, k_zero); v_mc_running_avg_y1 = _mm_unpackhi_epi8(v_mc_running_avg_y, k_zero); // interleave sig and mc_running_avg_y for upcoming multiply-add state0 = _mm_unpacklo_epi16(v_mc_running_avg_y0, v_sig0); state1 = _mm_unpackhi_epi16(v_mc_running_avg_y0, v_sig0); state2 = _mm_unpacklo_epi16(v_mc_running_avg_y1, v_sig1); state3 = _mm_unpackhi_epi16(v_mc_running_avg_y1, v_sig1); // blend values res0 = _mm_madd_epi16(filter_coefficient_00, state0); res1 = _mm_madd_epi16(filter_coefficient_04, state1); res2 = _mm_madd_epi16(filter_coefficient_08, state2); res3 = _mm_madd_epi16(filter_coefficient_12, state3); res0 = _mm_add_epi32(res0, k_128); res1 = _mm_add_epi32(res1, k_128); res2 = _mm_add_epi32(res2, k_128); res3 = _mm_add_epi32(res3, k_128); res0 = _mm_srai_epi32(res0, 8); res1 = _mm_srai_epi32(res1, 8); res2 = _mm_srai_epi32(res2, 8); res3 = _mm_srai_epi32(res3, 8); // combine the 32b results into a single 8b vector res0 = _mm_packs_epi32(res0, res1); res2 = _mm_packs_epi32(res2, res3); v_running_avg_y = _mm_packus_epi16(res0, res2); // Depending on the magnitude of the difference between the signal and // filtered version, either replace the signal by the filtered one or // update the filter state with the signal when the change in a pixel // isn't classified as noise. diff0 = _mm_sub_epi16(v_sig0, res0); diff1 = _mm_sub_epi16(v_sig1, res2); acc_diff = _mm_add_epi16(acc_diff, _mm_add_epi16(diff0, diff1)); diff0sq = _mm_mullo_epi16(diff0, diff0); diff1sq = _mm_mullo_epi16(diff1, diff1); diff_sq = _mm_packus_epi16(diff0sq, diff1sq); take_running = _mm_cmplt_epi8(diff_sq, kNOISE_DIFF2_THRESHOLD); p0 = _mm_and_si128(take_running, v_running_avg_y); p1 = _mm_andnot_si128(take_running, v_sig); p2 = _mm_or_si128(p0, p1); _mm_storeu_si128((__m128i *)(&running_avg_y[0]), p2); _mm_storeu_si128((__m128i *)(&filtered[0]), p2); // Update pointers for next iteration. sig += sig_stride; filtered += 16; mc_running_avg_y += mc_avg_y_stride; running_avg_y += avg_y_stride; } { // Compute the sum of all pixel differences of this MB. union sum_union s; int sum_diff; s.v = acc_diff; sum_diff = s.e[0] + s.e[1] + s.e[2] + s.e[3] + s.e[4] + s.e[5] + s.e[6] + s.e[7]; if (abs(sum_diff) > SUM_DIFF_THRESHOLD) { return COPY_BLOCK; } } vp8_copy_mem16x16(filtered_buf, 16, signal->thismb, sig_stride); return FILTER_BLOCK; }