/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "./aom_scale_rtcd.h" #include "aom_dsp/psnr.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/onyxc_int.h" #include "av1/common/quant_common.h" #include "av1/encoder/encoder.h" #include "av1/encoder/picklpf.h" #include "av1/encoder/pickrst.h" #include "av1/encoder/quantize.h" static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *sd, AV1_COMP *const cpi, RestorationInfo *rsi, int partial_frame) { AV1_COMMON *const cm = &cpi->common; int64_t filt_err; av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame); #if CONFIG_AOM_HIGHBITDEPTH if (cm->use_highbitdepth) { filt_err = aom_highbd_get_y_sse(sd, cm->frame_to_show); } else { filt_err = aom_get_y_sse(sd, cm->frame_to_show); } #else filt_err = aom_get_y_sse(sd, cm->frame_to_show); #endif // CONFIG_AOM_HIGHBITDEPTH // Re-instate the unfiltered frame aom_yv12_copy_y(&cpi->last_frame_db, cm->frame_to_show); return filt_err; } static int search_bilateral_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, int filter_level, int partial_frame, int *bilateral_level, double *best_cost_ret) { AV1_COMMON *const cm = &cpi->common; int i, j, tile_idx; int64_t err; int bits; double cost, best_cost, cost_norestore, cost_bilateral; const int bilateral_level_bits = av1_bilateral_level_bits(&cpi->common); const int bilateral_levels = 1 << bilateral_level_bits; MACROBLOCK *x = &cpi->td.mb; RestorationInfo rsi; const int ntiles = av1_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width, cm->height); // Make a copy of the unfiltered / processed recon buffer aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf); av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level, 1, partial_frame); aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db); // RD cost associated with no restoration rsi.restoration_type = RESTORE_NONE; err = try_restoration_frame(sd, cpi, &rsi, partial_frame); bits = 0; cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (AV1_PROB_COST_SHIFT - 4)), err); best_cost = cost_norestore; // RD cost associated with bilateral filtering rsi.restoration_type = RESTORE_BILATERAL; rsi.bilateral_level = (int *)aom_malloc(sizeof(*rsi.bilateral_level) * ntiles); assert(rsi.bilateral_level != NULL); for (j = 0; j < ntiles; ++j) bilateral_level[j] = -1; // Find best filter for each tile for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { for (j = 0; j < ntiles; ++j) rsi.bilateral_level[j] = -1; best_cost = cost_norestore; for (i = 0; i < bilateral_levels; ++i) { rsi.bilateral_level[tile_idx] = i; err = try_restoration_frame(sd, cpi, &rsi, partial_frame); bits = bilateral_level_bits + 1; // Normally the rate is rate in bits * 256 and dist is sum sq err * 64 // when RDCOST is used. However below we just scale both in the correct // ratios appropriately but not exactly by these values. cost = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (AV1_PROB_COST_SHIFT - 4)), err); if (cost < best_cost) { bilateral_level[tile_idx] = i; best_cost = cost; } } } // Find cost for combined configuration bits = 0; for (j = 0; j < ntiles; ++j) { rsi.bilateral_level[j] = bilateral_level[j]; if (rsi.bilateral_level[j] >= 0) { bits += (bilateral_level_bits + 1); } else { bits += 1; } } err = try_restoration_frame(sd, cpi, &rsi, partial_frame); cost_bilateral = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (AV1_PROB_COST_SHIFT - 4)), err); aom_free(rsi.bilateral_level); aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); if (cost_bilateral < cost_norestore) { if (best_cost_ret) *best_cost_ret = cost_bilateral; return 1; } else { if (best_cost_ret) *best_cost_ret = cost_norestore; return 0; } } static int search_filter_bilateral_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, int partial_frame, int *filter_best, int *bilateral_level, double *best_cost_ret) { const AV1_COMMON *const cm = &cpi->common; const struct loopfilter *const lf = &cm->lf; const int min_filter_level = 0; const int max_filter_level = av1_get_max_filter_level(cpi); int filt_direction = 0; int filt_best; double best_err; int i, j; int *tmp_level; int bilateral_success[MAX_LOOP_FILTER + 1]; const int ntiles = av1_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width, cm->height); // Start the search at the previous frame filter level unless it is now out of // range. int filt_mid = clamp(lf->filter_level, min_filter_level, max_filter_level); int filter_step = filt_mid < 16 ? 4 : filt_mid / 4; double ss_err[MAX_LOOP_FILTER + 1]; // Set each entry to -1 for (i = 0; i <= MAX_LOOP_FILTER; ++i) ss_err[i] = -1.0; tmp_level = (int *)aom_malloc(sizeof(*tmp_level) * ntiles); bilateral_success[filt_mid] = search_bilateral_level( sd, cpi, filt_mid, partial_frame, tmp_level, &best_err); filt_best = filt_mid; ss_err[filt_mid] = best_err; for (j = 0; j < ntiles; ++j) { bilateral_level[j] = tmp_level[j]; } while (filter_step > 0) { const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level); const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level); // Bias against raising loop filter in favor of lowering it. double bias = (best_err / (1 << (15 - (filt_mid / 8)))) * filter_step; if ((cpi->oxcf.pass == 2) && (cpi->twopass.section_intra_rating < 20)) bias = (bias * cpi->twopass.section_intra_rating) / 20; // yx, bias less for large block size if (cm->tx_mode != ONLY_4X4) bias /= 2; if (filt_direction <= 0 && filt_low != filt_mid) { // Get Low filter error score if (ss_err[filt_low] < 0) { bilateral_success[filt_low] = search_bilateral_level( sd, cpi, filt_low, partial_frame, tmp_level, &ss_err[filt_low]); } // If value is close to the best so far then bias towards a lower loop // filter value. if (ss_err[filt_low] < (best_err + bias)) { // Was it actually better than the previous best? if (ss_err[filt_low] < best_err) { best_err = ss_err[filt_low]; } filt_best = filt_low; for (j = 0; j < ntiles; ++j) { bilateral_level[j] = tmp_level[j]; } } } // Now look at filt_high if (filt_direction >= 0 && filt_high != filt_mid) { if (ss_err[filt_high] < 0) { bilateral_success[filt_high] = search_bilateral_level( sd, cpi, filt_high, partial_frame, tmp_level, &ss_err[filt_high]); } // If value is significantly better than previous best, bias added against // raising filter value if (ss_err[filt_high] < (best_err - bias)) { best_err = ss_err[filt_high]; filt_best = filt_high; for (j = 0; j < ntiles; ++j) { bilateral_level[j] = tmp_level[j]; } } } // Half the step distance if the best filter value was the same as last time if (filt_best == filt_mid) { filter_step /= 2; filt_direction = 0; } else { filt_direction = (filt_best < filt_mid) ? -1 : 1; filt_mid = filt_best; } } aom_free(tmp_level); // Update best error best_err = ss_err[filt_best]; if (best_cost_ret) *best_cost_ret = best_err; if (filter_best) *filter_best = filt_best; return bilateral_success[filt_best]; } static double find_average(uint8_t *src, int h_start, int h_end, int v_start, int v_end, int stride) { uint64_t sum = 0; double avg = 0; int i, j; for (i = v_start; i < v_end; i++) for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); return avg; } static void compute_stats(uint8_t *dgd, uint8_t *src, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { int i, j, k, l; double Y[RESTORATION_WIN2]; const double avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); memset(M, 0, sizeof(*M) * RESTORATION_WIN2); memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const double X = (double)src[i * src_stride + j] - avg; int idx = 0; for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) { for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) { Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; idx++; } } for (k = 0; k < RESTORATION_WIN2; ++k) { M[k] += Y[k] * X; H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k]; for (l = k + 1; l < RESTORATION_WIN2; ++l) { double value = Y[k] * Y[l]; H[k * RESTORATION_WIN2 + l] += value; H[l * RESTORATION_WIN2 + k] += value; } } } } } #if CONFIG_AOM_HIGHBITDEPTH static double find_average_highbd(uint16_t *src, int h_start, int h_end, int v_start, int v_end, int stride) { uint64_t sum = 0; double avg = 0; int i, j; for (i = v_start; i < v_end; i++) for (j = h_start; j < h_end; j++) sum += src[i * stride + j]; avg = (double)sum / ((v_end - v_start) * (h_end - h_start)); return avg; } static void compute_stats_highbd(uint8_t *dgd8, uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, double *M, double *H) { int i, j, k, l; double Y[RESTORATION_WIN2]; uint16_t *src = CONVERT_TO_SHORTPTR(src8); uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const double avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); memset(M, 0, sizeof(*M) * RESTORATION_WIN2); memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const double X = (double)src[i * src_stride + j] - avg; int idx = 0; for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) { for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) { Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg; idx++; } } for (k = 0; k < RESTORATION_WIN2; ++k) { M[k] += Y[k] * X; H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k]; for (l = k + 1; l < RESTORATION_WIN2; ++l) { double value = Y[k] * Y[l]; H[k * RESTORATION_WIN2 + l] += value; H[l * RESTORATION_WIN2 + k] += value; } } } } } #endif // CONFIG_AOM_HIGHBITDEPTH // Solves Ax = b, where x and b are column vectors static int linsolve(int n, double *A, int stride, double *b, double *x) { int i, j, k; double c; // Partial pivoting for (i = n - 1; i > 0; i--) { if (A[(i - 1) * stride] < A[i * stride]) { for (j = 0; j < n; j++) { c = A[i * stride + j]; A[i * stride + j] = A[(i - 1) * stride + j]; A[(i - 1) * stride + j] = c; } c = b[i]; b[i] = b[i - 1]; b[i - 1] = c; } } // Forward elimination for (k = 0; k < n - 1; k++) { for (i = k; i < n - 1; i++) { c = A[(i + 1) * stride + k] / A[k * stride + k]; for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; b[i + 1] -= c * b[k]; } } // Backward substitution for (i = n - 1; i >= 0; i--) { if (fabs(A[i * stride + i]) < 1e-10) return 0; c = 0; for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; x[i] = (b[i] - c) / A[i * stride + i]; } return 1; } static INLINE int wrap_index(int i) { return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i); } // Fix vector b, update vector a static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) { int i, j; double S[RESTORATION_WIN]; double A[RESTORATION_WIN], B[RESTORATION_WIN2]; int w, w2; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < RESTORATION_WIN; i++) { int j; for (j = 0; j < RESTORATION_WIN; ++j) { const int jj = wrap_index(j); A[jj] += Mc[i][j] * b[i]; } } for (i = 0; i < RESTORATION_WIN; i++) { for (j = 0; j < RESTORATION_WIN; j++) { int k, l; for (k = 0; k < RESTORATION_WIN; ++k) for (l = 0; l < RESTORATION_WIN; ++l) { const int kk = wrap_index(k); const int ll = wrap_index(l); B[ll * RESTORATION_HALFWIN1 + kk] += Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] * b[i] * b[j]; } } } // Normalization enforcement in the system of equations itself w = RESTORATION_WIN; w2 = (w >> 1) + 1; for (i = 0; i < w2 - 1; ++i) A[i] -= A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]; for (i = 0; i < w2 - 1; ++i) for (j = 0; j < w2 - 1; ++j) B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]); if (linsolve(w2 - 1, B, w2, A, S)) { S[w2 - 1] = 1.0; for (i = w2; i < w; ++i) { S[i] = S[w - 1 - i]; S[w2 - 1] -= 2 * S[i]; } memcpy(a, S, w * sizeof(*a)); } } // Fix vector a, update vector b static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) { int i, j; double S[RESTORATION_WIN]; double A[RESTORATION_WIN], B[RESTORATION_WIN2]; int w, w2; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < RESTORATION_WIN; i++) { int j; const int ii = wrap_index(i); for (j = 0; j < RESTORATION_WIN; j++) A[ii] += Mc[i][j] * a[j]; } for (i = 0; i < RESTORATION_WIN; i++) { for (j = 0; j < RESTORATION_WIN; j++) { const int ii = wrap_index(i); const int jj = wrap_index(j); int k, l; for (k = 0; k < RESTORATION_WIN; ++k) for (l = 0; l < RESTORATION_WIN; ++l) B[jj * RESTORATION_HALFWIN1 + ii] += Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] * a[k] * a[l]; } } // Normalization enforcement in the system of equations itself w = RESTORATION_WIN; w2 = RESTORATION_HALFWIN1; for (i = 0; i < w2 - 1; ++i) A[i] -= A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]; for (i = 0; i < w2 - 1; ++i) for (j = 0; j < w2 - 1; ++j) B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] - 2 * B[(w2 - 1) * w2 + (w2 - 1)]); if (linsolve(w2 - 1, B, w2, A, S)) { S[w2 - 1] = 1.0; for (i = w2; i < w; ++i) { S[i] = S[w - 1 - i]; S[w2 - 1] -= 2 * S[i]; } memcpy(b, S, w * sizeof(*b)); } } static int wiener_decompose_sep_sym(double *M, double *H, double *a, double *b) { static const double init_filt[RESTORATION_WIN] = { 0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623, }; int i, j, iter; double *Hc[RESTORATION_WIN2]; double *Mc[RESTORATION_WIN]; for (i = 0; i < RESTORATION_WIN; i++) { Mc[i] = M + i * RESTORATION_WIN; for (j = 0; j < RESTORATION_WIN; j++) { Hc[i * RESTORATION_WIN + j] = H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN; } } memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN); memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN); iter = 1; while (iter < 10) { update_a_sep_sym(Mc, Hc, a, b); update_b_sep_sym(Mc, Hc, a, b); iter++; } return 1; } // Computes the function x'*A*x - x'*b for the learned filters, and compares // against identity filters; Final score is defined as the difference between // the function values static double compute_score(double *M, double *H, int *vfilt, int *hfilt) { double ab[RESTORATION_WIN * RESTORATION_WIN]; int i, k, l; double P = 0, Q = 0; double iP = 0, iQ = 0; double Score, iScore; int w; double a[RESTORATION_WIN], b[RESTORATION_WIN]; w = RESTORATION_WIN; a[RESTORATION_HALFWIN] = b[RESTORATION_HALFWIN] = 1.0; for (i = 0; i < RESTORATION_HALFWIN; ++i) { a[i] = a[RESTORATION_WIN - i - 1] = (double)vfilt[i] / RESTORATION_FILT_STEP; b[i] = b[RESTORATION_WIN - i - 1] = (double)hfilt[i] / RESTORATION_FILT_STEP; a[RESTORATION_HALFWIN] -= 2 * a[i]; b[RESTORATION_HALFWIN] -= 2 * b[i]; } for (k = 0; k < w; ++k) { for (l = 0; l < w; ++l) { ab[k * w + l] = a[l] * b[k]; } } for (k = 0; k < w * w; ++k) { P += ab[k] * M[k]; for (l = 0; l < w * w; ++l) Q += ab[k] * H[k * w * w + l] * ab[l]; } Score = Q - 2 * P; iP = M[(w * w) >> 1]; iQ = H[((w * w) >> 1) * w * w + ((w * w) >> 1)]; iScore = iQ - 2 * iP; return Score - iScore; } #define CLIP(x, lo, hi) ((x) < (lo) ? (lo) : (x) > (hi) ? (hi) : (x)) #define RINT(x) ((x) < 0 ? (int)((x)-0.5) : (int)((x) + 0.5)) static void quantize_sym_filter(double *f, int *fi) { int i; for (i = 0; i < RESTORATION_HALFWIN; ++i) { fi[i] = RINT(f[i] * RESTORATION_FILT_STEP); } // Specialize for 7-tap filter fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); } static int search_wiener_filter(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi, int filter_level, int partial_frame, int (*vfilter)[RESTORATION_HALFWIN], int (*hfilter)[RESTORATION_HALFWIN], int *process_tile, double *best_cost_ret) { AV1_COMMON *const cm = &cpi->common; RestorationInfo rsi; int64_t err; int bits; double cost_wiener, cost_norestore; MACROBLOCK *x = &cpi->td.mb; double M[RESTORATION_WIN2]; double H[RESTORATION_WIN2 * RESTORATION_WIN2]; double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN]; const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show; const int width = cm->width; const int height = cm->height; const int src_stride = src->y_stride; const int dgd_stride = dgd->y_stride; double score; int tile_idx, htile_idx, vtile_idx, tile_width, tile_height, nhtiles, nvtiles; int h_start, h_end, v_start, v_end; int i, j; const int tilesize = WIENER_TILESIZE; const int ntiles = av1_get_restoration_ntiles(tilesize, width, height); assert(width == dgd->y_crop_width); assert(height == dgd->y_crop_height); assert(width == src->y_crop_width); assert(height == src->y_crop_height); av1_get_restoration_tile_size(tilesize, width, height, &tile_width, &tile_height, &nhtiles, &nvtiles); // Make a copy of the unfiltered / processed recon buffer aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf); av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level, 1, partial_frame); aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db); rsi.restoration_type = RESTORE_NONE; err = try_restoration_frame(src, cpi, &rsi, partial_frame); bits = 0; cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (AV1_PROB_COST_SHIFT - 4)), err); rsi.restoration_type = RESTORE_WIENER; rsi.vfilter = (int(*)[RESTORATION_HALFWIN])aom_malloc(sizeof(*rsi.vfilter) * ntiles); assert(rsi.vfilter != NULL); rsi.hfilter = (int(*)[RESTORATION_HALFWIN])aom_malloc(sizeof(*rsi.hfilter) * ntiles); assert(rsi.hfilter != NULL); rsi.wiener_level = (int *)aom_malloc(sizeof(*rsi.wiener_level) * ntiles); assert(rsi.wiener_level != NULL); // Compute best Wiener filters for each tile for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { htile_idx = tile_idx % nhtiles; vtile_idx = tile_idx / nhtiles; h_start = htile_idx * tile_width + ((htile_idx > 0) ? 0 : RESTORATION_HALFWIN); h_end = (htile_idx < nhtiles - 1) ? ((htile_idx + 1) * tile_width) : (width - RESTORATION_HALFWIN); v_start = vtile_idx * tile_height + ((vtile_idx > 0) ? 0 : RESTORATION_HALFWIN); v_end = (vtile_idx < nvtiles - 1) ? ((vtile_idx + 1) * tile_height) : (height - RESTORATION_HALFWIN); #if CONFIG_AOM_HIGHBITDEPTH if (cm->use_highbitdepth) compute_stats_highbd(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); else #endif // CONFIG_AOM_HIGHBITDEPTH compute_stats(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H); if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) { for (i = 0; i < RESTORATION_HALFWIN; ++i) rsi.vfilter[tile_idx][i] = rsi.hfilter[tile_idx][i] = 0; process_tile[tile_idx] = 0; continue; } quantize_sym_filter(vfilterd, rsi.vfilter[tile_idx]); quantize_sym_filter(hfilterd, rsi.hfilter[tile_idx]); process_tile[tile_idx] = 1; // Filter score computes the value of the function x'*A*x - x'*b for the // learned filter and compares it against identity filer. If there is no // reduction in the function, the filter is reverted back to identity score = compute_score(M, H, rsi.vfilter[tile_idx], rsi.hfilter[tile_idx]); if (score > 0.0) { for (i = 0; i < RESTORATION_HALFWIN; ++i) rsi.vfilter[tile_idx][i] = rsi.hfilter[tile_idx][i] = 0; process_tile[tile_idx] = 0; continue; } for (j = 0; j < ntiles; ++j) rsi.wiener_level[j] = 0; rsi.wiener_level[tile_idx] = 1; err = try_restoration_frame(src, cpi, &rsi, partial_frame); bits = 1 + WIENER_FILT_BITS; cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (AV1_PROB_COST_SHIFT - 4)), err); if (cost_wiener >= cost_norestore) process_tile[tile_idx] = 0; } // Cost for Wiener filtering bits = 0; for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { bits += (process_tile[tile_idx] ? (WIENER_FILT_BITS + 1) : 1); rsi.wiener_level[tile_idx] = process_tile[tile_idx]; } err = try_restoration_frame(src, cpi, &rsi, partial_frame); cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits << (AV1_PROB_COST_SHIFT - 4)), err); for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) { if (process_tile[tile_idx] == 0) continue; for (i = 0; i < RESTORATION_HALFWIN; ++i) { vfilter[tile_idx][i] = rsi.vfilter[tile_idx][i]; hfilter[tile_idx][i] = rsi.hfilter[tile_idx][i]; } } aom_free(rsi.vfilter); aom_free(rsi.hfilter); aom_free(rsi.wiener_level); aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show); if (cost_wiener < cost_norestore) { if (best_cost_ret) *best_cost_ret = cost_wiener; return 1; } else { if (best_cost_ret) *best_cost_ret = cost_norestore; return 0; } } void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, LPF_PICK_METHOD method) { AV1_COMMON *const cm = &cpi->common; struct loopfilter *const lf = &cm->lf; int wiener_success = 0; int bilateral_success = 0; double cost_bilateral = DBL_MAX; double cost_wiener = DBL_MAX; double cost_norestore = DBL_MAX; int ntiles; ntiles = av1_get_restoration_ntiles(BILATERAL_TILESIZE, cm->width, cm->height); cm->rst_info.bilateral_level = (int *)aom_realloc(cm->rst_info.bilateral_level, sizeof(*cm->rst_info.bilateral_level) * ntiles); assert(cm->rst_info.bilateral_level != NULL); ntiles = av1_get_restoration_ntiles(WIENER_TILESIZE, cm->width, cm->height); cm->rst_info.wiener_level = (int *)aom_realloc( cm->rst_info.wiener_level, sizeof(*cm->rst_info.wiener_level) * ntiles); assert(cm->rst_info.wiener_level != NULL); cm->rst_info.vfilter = (int(*)[RESTORATION_HALFWIN])aom_realloc( cm->rst_info.vfilter, sizeof(*cm->rst_info.vfilter) * ntiles); assert(cm->rst_info.vfilter != NULL); cm->rst_info.hfilter = (int(*)[RESTORATION_HALFWIN])aom_realloc( cm->rst_info.hfilter, sizeof(*cm->rst_info.hfilter) * ntiles); assert(cm->rst_info.hfilter != NULL); lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness; if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) { lf->filter_level = 0; cm->rst_info.restoration_type = RESTORE_NONE; } else if (method >= LPF_PICK_FROM_Q) { const int min_filter_level = 0; const int max_filter_level = av1_get_max_filter_level(cpi); const int q = av1_ac_quant(cm->base_qindex, 0, cm->bit_depth); // These values were determined by linear fitting the result of the // searched level, filt_guess = q * 0.316206 + 3.87252 #if CONFIG_AOM_HIGHBITDEPTH int filt_guess; switch (cm->bit_depth) { case AOM_BITS_8: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18); break; case AOM_BITS_10: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20); break; case AOM_BITS_12: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22); break; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 " "or AOM_BITS_12"); return; } #else int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18); #endif // CONFIG_AOM_HIGHBITDEPTH if (cm->frame_type == KEY_FRAME) filt_guess -= 4; lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level); bilateral_success = search_bilateral_level( sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE, cm->rst_info.bilateral_level, &cost_bilateral); wiener_success = search_wiener_filter( sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE, cm->rst_info.vfilter, cm->rst_info.hfilter, cm->rst_info.wiener_level, &cost_wiener); if (cost_bilateral < cost_wiener) { if (bilateral_success) cm->rst_info.restoration_type = RESTORE_BILATERAL; else cm->rst_info.restoration_type = RESTORE_NONE; } else { if (wiener_success) cm->rst_info.restoration_type = RESTORE_WIENER; else cm->rst_info.restoration_type = RESTORE_NONE; } } else { int blf_filter_level = -1; bilateral_success = search_filter_bilateral_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &blf_filter_level, cm->rst_info.bilateral_level, &cost_bilateral); lf->filter_level = av1_search_filter_level( sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, &cost_norestore); wiener_success = search_wiener_filter( sd, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE, cm->rst_info.vfilter, cm->rst_info.hfilter, cm->rst_info.wiener_level, &cost_wiener); if (cost_bilateral < cost_wiener) { lf->filter_level = blf_filter_level; if (bilateral_success) cm->rst_info.restoration_type = RESTORE_BILATERAL; else cm->rst_info.restoration_type = RESTORE_NONE; } else { if (wiener_success) cm->rst_info.restoration_type = RESTORE_WIENER; else cm->rst_info.restoration_type = RESTORE_NONE; } // printf("[%d] Costs %g %g (%d) %g (%d)\n", cm->rst_info.restoration_type, // cost_norestore, cost_bilateral, lf->filter_level, cost_wiener, // wiener_success); } if (cm->rst_info.restoration_type != RESTORE_BILATERAL) { aom_free(cm->rst_info.bilateral_level); cm->rst_info.bilateral_level = NULL; } if (cm->rst_info.restoration_type != RESTORE_WIENER) { aom_free(cm->rst_info.vfilter); cm->rst_info.vfilter = NULL; aom_free(cm->rst_info.hfilter); cm->rst_info.hfilter = NULL; aom_free(cm->rst_info.wiener_level); cm->rst_info.wiener_level = NULL; } }