/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "mvref_common.h" #if CONFIG_NEW_MVREF #define MVREF_NEIGHBOURS 8 static int mv_ref_search[MVREF_NEIGHBOURS][2] = { {0,-1},{-1,0},{-1,-1},{0,-2},{-2,0},{-1,-2},{-2,-1},{-2,-2} }; static int ref_distance_weight[MVREF_NEIGHBOURS] = { 3,3,2,1,1,1,1,1 }; //{ 4,4,2,1,1,1,1,1 }; // clamp_mv #define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units static void clamp_mv(const MACROBLOCKD *xd, int_mv *mv) { if (mv->as_mv.col < (xd->mb_to_left_edge - MV_BORDER)) mv->as_mv.col = xd->mb_to_left_edge - MV_BORDER; else if (mv->as_mv.col > xd->mb_to_right_edge + MV_BORDER) mv->as_mv.col = xd->mb_to_right_edge + MV_BORDER; if (mv->as_mv.row < (xd->mb_to_top_edge - MV_BORDER)) mv->as_mv.row = xd->mb_to_top_edge - MV_BORDER; else if (mv->as_mv.row > xd->mb_to_bottom_edge + MV_BORDER) mv->as_mv.row = xd->mb_to_bottom_edge + MV_BORDER; } // Code for selecting / building and entropy coding a motion vector reference // Returns a seperation value for two vectors. // This is taken as the sum of the abs x and y difference. unsigned int mv_distance(int_mv *mv1, int_mv *mv2) { return (abs(mv1->as_mv.row - mv2->as_mv.row) + abs(mv1->as_mv.col - mv2->as_mv.col)); } // Gets a best matching candidate refenence motion vector // from the given mode info structure (if available) int get_candidate_mvref( const MODE_INFO *candidate_mi, MV_REFERENCE_FRAME ref_frame, MV_REFERENCE_FRAME *candidate_ref_frame, int_mv *candidate_mv ) { int ret_val = FALSE; if (ref_frame == candidate_mi->mbmi.ref_frame) { candidate_mv->as_int = candidate_mi->mbmi.mv[FIRST_REF].as_int; *candidate_ref_frame = ref_frame; ret_val = TRUE; } else if (ref_frame == candidate_mi->mbmi.second_ref_frame) { candidate_mv->as_int = candidate_mi->mbmi.mv[SECOND_REF].as_int; *candidate_ref_frame = ref_frame; ret_val = TRUE; } else if (candidate_mi->mbmi.ref_frame != INTRA_FRAME) { candidate_mv->as_int = candidate_mi->mbmi.mv[FIRST_REF].as_int; *candidate_ref_frame = candidate_mi->mbmi.ref_frame; ret_val = TRUE; } else if (candidate_mi->mbmi.second_ref_frame != INTRA_FRAME) { candidate_mv->as_int = candidate_mi->mbmi.mv[SECOND_REF].as_int; *candidate_ref_frame = candidate_mi->mbmi.second_ref_frame; ret_val = TRUE; } return ret_val; } // Performs mv adjustment based on reference frame and clamps the MV // if it goes off the edge of the buffer. void scale_mv( MACROBLOCKD *xd, MV_REFERENCE_FRAME this_ref_frame, MV_REFERENCE_FRAME candidate_ref_frame, int_mv *candidate_mv, int *ref_sign_bias ) { if (candidate_ref_frame != this_ref_frame) { //int frame_distances[MAX_REF_FRAMES]; //int last_distance = 1; //int gf_distance = xd->frames_since_golden; //int arf_distance = xd->frames_till_alt_ref_frame; // Sign inversion where appropriate. if (ref_sign_bias[candidate_ref_frame] != ref_sign_bias[this_ref_frame]) { candidate_mv->as_mv.row = -candidate_mv->as_mv.row; candidate_mv->as_mv.col = -candidate_mv->as_mv.col; } // Scale based on frame distance if the reference frames not the same. /*frame_distances[INTRA_FRAME] = 1; // should never be used frame_distances[LAST_FRAME] = 1; frame_distances[GOLDEN_FRAME] = (xd->frames_since_golden) ? xd->frames_since_golden : 1; frame_distances[ALTREF_FRAME] = (xd->frames_till_alt_ref_frame) ? xd->frames_till_alt_ref_frame : 1; if (frame_distances[this_ref_frame] && frame_distances[candidate_ref_frame]) { candidate_mv->as_mv.row = (short)(((int)(candidate_mv->as_mv.row) * frame_distances[this_ref_frame]) / frame_distances[candidate_ref_frame]); candidate_mv->as_mv.col = (short)(((int)(candidate_mv->as_mv.col) * frame_distances[this_ref_frame]) / frame_distances[candidate_ref_frame]); } */ } // Clamp the MV so it does not point out of the frame buffer clamp_mv(xd, candidate_mv); } // Adds a new candidate reference vector to the list if indeed it is new. // If it is not new then the score of the existing candidate that it matches // is increased and the list is resorted. void addmv_and_shuffle( int_mv *mv_list, int *mv_scores, int *index, int_mv candidate_mv, int weight ) { int i = *index; int duplicate_found = FALSE; // Check for duplicates. If there is one increment its score. while (i > 0) { i--; if (candidate_mv.as_int == mv_list[i].as_int) { duplicate_found = TRUE; mv_scores[i] += weight; break; } } // If no duplicate was found add the new vector and give it a weight if (!duplicate_found) { mv_list[*index].as_int = candidate_mv.as_int; mv_scores[*index] = weight; i = *index; (*index)++; } // Reshuffle the list so that highest scoring mvs at the top. while (i > 0) { if (mv_scores[i] > mv_scores[i-1]) { int tmp_score = mv_scores[i-1]; int_mv tmp_mv = mv_list[i-1]; mv_scores[i-1] = mv_scores[i]; mv_list[i-1] = mv_list[i]; mv_scores[i] = tmp_score; mv_list[i] = tmp_mv; i--; } else break; } } // Measure the distance of each reference candidate from the actual // residual vector and return the nearest unsigned int pick_best_mv_ref( int_mv target_mv, int_mv * mv_ref_list, int_mv * best_ref ) { int i; int best_index = 0; unsigned int distance, distance2; distance = mv_distance(&target_mv, &mv_ref_list[0]); for (i = 1; i < MAX_MV_REFS; ++i ) { distance2 = mv_distance(&target_mv, &mv_ref_list[i]); if (distance2 < distance) { distance = distance2; best_index = i; } } (*best_ref).as_int = mv_ref_list[best_index].as_int; return best_index; } // This function searches the neighbourhood of a given MB/SB and populates a // list of candidate reference vectors. // void find_mv_refs( MACROBLOCKD *xd, MODE_INFO *here, MODE_INFO *lf_here, MV_REFERENCE_FRAME ref_frame, int_mv *mv_ref_list, int *ref_sign_bias ) { int i; MODE_INFO *candidate_mi; int_mv candidate_mvs[MAX_MV_REFS]; int_mv c_refmv; MV_REFERENCE_FRAME c_ref_frame; int candidate_scores[MAX_MV_REFS]; int index = 0; int ref_weight = 0; int valid_mv_ref; // Blank the reference vector lists and other local structures. vpx_memset(mv_ref_list, 0, sizeof(int_mv) * MAX_MV_REFS); vpx_memset(candidate_mvs, 0, sizeof(int_mv) * MAX_MV_REFS); vpx_memset(candidate_scores, 0, sizeof(candidate_scores)); // Populate a list with candidate reference vectors from the // spatial neighbours. for (i = 0; i < 2; ++i) { if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) && ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); valid_mv_ref = get_candidate_mvref(candidate_mi, ref_frame, &c_ref_frame, &c_refmv); if (valid_mv_ref) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias ); ref_weight = ref_distance_weight[i] + ((c_ref_frame == ref_frame) << 3); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, ref_weight); } } } // Look at the corresponding vector in the last frame candidate_mi = lf_here; valid_mv_ref = get_candidate_mvref(candidate_mi, ref_frame, &c_ref_frame, &c_refmv); if (valid_mv_ref) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias ); ref_weight = 2 + ((c_ref_frame == ref_frame) << 3); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, ref_weight); } // Populate a list with candidate reference vectors from the // spatial neighbours. for (i = 2; i < MVREF_NEIGHBOURS; ++i) { if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) && ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); valid_mv_ref = get_candidate_mvref(candidate_mi, ref_frame, &c_ref_frame, &c_refmv); if (valid_mv_ref) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias ); ref_weight = ref_distance_weight[i] + ((c_ref_frame == ref_frame) << 3); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, ref_weight); } } } // 0,0 is always a valid reference. for (i = 0; i < index; ++i) if (candidate_mvs[i].as_int == 0) break; if (i == index) { c_refmv.as_int = 0; addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, 1); } // Copy over the candidate list. vpx_memcpy(mv_ref_list, candidate_mvs, sizeof(candidate_mvs)); } #endif