/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/decoder/vp9_dthread.h" #include "vp9/decoder/vp9_decoder.h" #if CONFIG_MULTITHREAD static INLINE void mutex_lock(pthread_mutex_t *const mutex) { const int kMaxTryLocks = 4000; int locked = 0; int i; for (i = 0; i < kMaxTryLocks; ++i) { if (!pthread_mutex_trylock(mutex)) { locked = 1; break; } } if (!locked) pthread_mutex_lock(mutex); } #endif // CONFIG_MULTITHREAD static INLINE void sync_read(VP9LfSync *const lf_sync, int r, int c) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; if (r && !(c & (nsync - 1))) { pthread_mutex_t *const mutex = &lf_sync->mutex_[r - 1]; mutex_lock(mutex); while (c > lf_sync->cur_sb_col[r - 1] - nsync) { pthread_cond_wait(&lf_sync->cond_[r - 1], mutex); } pthread_mutex_unlock(mutex); } #else (void)lf_sync; (void)r; (void)c; #endif // CONFIG_MULTITHREAD } static INLINE void sync_write(VP9LfSync *const lf_sync, int r, int c, const int sb_cols) { #if CONFIG_MULTITHREAD const int nsync = lf_sync->sync_range; int cur; // Only signal when there are enough filtered SB for next row to run. int sig = 1; if (c < sb_cols - 1) { cur = c; if (c % nsync) sig = 0; } else { cur = sb_cols + nsync; } if (sig) { mutex_lock(&lf_sync->mutex_[r]); lf_sync->cur_sb_col[r] = cur; pthread_cond_signal(&lf_sync->cond_[r]); pthread_mutex_unlock(&lf_sync->mutex_[r]); } #else (void)lf_sync; (void)r; (void)c; (void)sb_cols; #endif // CONFIG_MULTITHREAD } // Implement row loopfiltering for each thread. static void loop_filter_rows_mt(const YV12_BUFFER_CONFIG *const frame_buffer, VP9_COMMON *const cm, struct macroblockd_plane planes[MAX_MB_PLANE], int start, int stop, int y_only, VP9LfSync *const lf_sync, int num_lf_workers) { const int num_planes = y_only ? 1 : MAX_MB_PLANE; int r, c; // SB row and col const int sb_cols = mi_cols_aligned_to_sb(cm->mi_cols) >> MI_BLOCK_SIZE_LOG2; for (r = start; r < stop; r += num_lf_workers) { const int mi_row = r << MI_BLOCK_SIZE_LOG2; MODE_INFO **const mi = cm->mi_grid_visible + mi_row * cm->mi_stride; for (c = 0; c < sb_cols; ++c) { const int mi_col = c << MI_BLOCK_SIZE_LOG2; LOOP_FILTER_MASK lfm; int plane; sync_read(lf_sync, r, c); vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, &lfm); for (plane = 0; plane < num_planes; ++plane) { vp9_filter_block_plane(cm, &planes[plane], mi_row, &lfm); } sync_write(lf_sync, r, c, sb_cols); } } } // Row-based multi-threaded loopfilter hook static int loop_filter_row_worker(TileWorkerData *const tile_data, void *unused) { LFWorkerData *const lf_data = &tile_data->lfdata; (void)unused; loop_filter_rows_mt(lf_data->frame_buffer, lf_data->cm, lf_data->planes, lf_data->start, lf_data->stop, lf_data->y_only, lf_data->lf_sync, lf_data->num_lf_workers); return 1; } // VP9 decoder: Implement multi-threaded loopfilter that uses the tile // threads. void vp9_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, VP9Decoder *pbi, VP9_COMMON *cm, int frame_filter_level, int y_only) { VP9LfSync *const lf_sync = &pbi->lf_row_sync; const VP9WorkerInterface *const winterface = vp9_get_worker_interface(); // Number of superblock rows and cols const int sb_rows = mi_cols_aligned_to_sb(cm->mi_rows) >> MI_BLOCK_SIZE_LOG2; const int tile_cols = 1 << cm->log2_tile_cols; const int num_workers = MIN(pbi->max_threads & ~1, tile_cols); int i; if (!frame_filter_level) return; if (!lf_sync->sync_range || cm->last_height != cm->height) { vp9_loop_filter_dealloc(lf_sync); vp9_loop_filter_alloc(lf_sync, cm, sb_rows, cm->width); } vp9_loop_filter_frame_init(cm, frame_filter_level); // Initialize cur_sb_col to -1 for all SB rows. vpx_memset(lf_sync->cur_sb_col, -1, sizeof(*lf_sync->cur_sb_col) * sb_rows); // Set up loopfilter thread data. // The decoder is using num_workers instead of pbi->num_tile_workers // because it has been observed that using more threads on the // loopfilter, than there are tile columns in the frame will hurt // performance on Android. This is because the system will only // schedule the tile decode workers on cores equal to the number // of tile columns. Then if the decoder tries to use more threads for the // loopfilter, it will hurt performance because of contention. If the // multithreading code changes in the future then the number of workers // used by the loopfilter should be revisited. for (i = 0; i < num_workers; ++i) { VP9Worker *const worker = &pbi->tile_workers[i]; TileWorkerData *const tile_data = (TileWorkerData*)worker->data1; LFWorkerData *const lf_data = &tile_data->lfdata; worker->hook = (VP9WorkerHook)loop_filter_row_worker; // Loopfilter data lf_data->frame_buffer = frame; lf_data->cm = cm; vp9_copy(lf_data->planes, pbi->mb.plane); lf_data->start = i; lf_data->stop = sb_rows; lf_data->y_only = y_only; // always do all planes in decoder lf_data->lf_sync = lf_sync; lf_data->num_lf_workers = num_workers; // Start loopfiltering if (i == num_workers - 1) { winterface->execute(worker); } else { winterface->launch(worker); } } // Wait till all rows are finished for (i = 0; i < num_workers; ++i) { winterface->sync(&pbi->tile_workers[i]); } } // Set up nsync by width. static int get_sync_range(int width) { // nsync numbers are picked by testing. For example, for 4k // video, using 4 gives best performance. if (width < 640) return 1; else if (width <= 1280) return 2; else if (width <= 4096) return 4; else return 8; } // Allocate memory for lf row synchronization void vp9_loop_filter_alloc(VP9LfSync *lf_sync, VP9_COMMON *cm, int rows, int width) { lf_sync->rows = rows; #if CONFIG_MULTITHREAD { int i; CHECK_MEM_ERROR(cm, lf_sync->mutex_, vpx_malloc(sizeof(*lf_sync->mutex_) * rows)); for (i = 0; i < rows; ++i) { pthread_mutex_init(&lf_sync->mutex_[i], NULL); } CHECK_MEM_ERROR(cm, lf_sync->cond_, vpx_malloc(sizeof(*lf_sync->cond_) * rows)); for (i = 0; i < rows; ++i) { pthread_cond_init(&lf_sync->cond_[i], NULL); } } #endif // CONFIG_MULTITHREAD CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col, vpx_malloc(sizeof(*lf_sync->cur_sb_col) * rows)); // Set up nsync. lf_sync->sync_range = get_sync_range(width); } // Deallocate lf synchronization related mutex and data void vp9_loop_filter_dealloc(VP9LfSync *lf_sync) { if (lf_sync != NULL) { #if CONFIG_MULTITHREAD int i; if (lf_sync->mutex_ != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_mutex_destroy(&lf_sync->mutex_[i]); } vpx_free(lf_sync->mutex_); } if (lf_sync->cond_ != NULL) { for (i = 0; i < lf_sync->rows; ++i) { pthread_cond_destroy(&lf_sync->cond_[i]); } vpx_free(lf_sync->cond_); } #endif // CONFIG_MULTITHREAD vpx_free(lf_sync->cur_sb_col); // clear the structure as the source of this call may be a resize in which // case this call will be followed by an _alloc() which may fail. vp9_zero(*lf_sync); } }