/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_encodemv.h" #ifdef ENTROPY_STATS extern unsigned int active_section; #endif static void encode_mv_component(vp9_writer* w, int comp, const nmv_component* mvcomp, int usehp) { int offset; const int sign = comp < 0; const int mag = sign ? -comp : comp; const int mv_class = vp9_get_mv_class(mag - 1, &offset); const int d = offset >> 3; // int mv data const int fr = (offset >> 1) & 3; // fractional mv data const int hp = offset & 1; // high precision mv data assert(comp != 0); // Sign vp9_write(w, sign, mvcomp->sign); // Class write_token(w, vp9_mv_class_tree, mvcomp->classes, &vp9_mv_class_encodings[mv_class]); // Integer bits if (mv_class == MV_CLASS_0) { write_token(w, vp9_mv_class0_tree, mvcomp->class0, &vp9_mv_class0_encodings[d]); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits for (i = 0; i < n; ++i) vp9_write(w, (d >> i) & 1, mvcomp->bits[i]); } // Fractional bits write_token(w, vp9_mv_fp_tree, mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp, &vp9_mv_fp_encodings[fr]); // High precision bit if (usehp) vp9_write(w, hp, mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp); } static void build_nmv_component_cost_table(int *mvcost, const nmv_component* const mvcomp, int usehp) { int i, v; int sign_cost[2], class_cost[MV_CLASSES], class0_cost[CLASS0_SIZE]; int bits_cost[MV_OFFSET_BITS][2]; int class0_fp_cost[CLASS0_SIZE][4], fp_cost[4]; int class0_hp_cost[2], hp_cost[2]; sign_cost[0] = vp9_cost_zero(mvcomp->sign); sign_cost[1] = vp9_cost_one(mvcomp->sign); vp9_cost_tokens(class_cost, mvcomp->classes, vp9_mv_class_tree); vp9_cost_tokens(class0_cost, mvcomp->class0, vp9_mv_class0_tree); for (i = 0; i < MV_OFFSET_BITS; ++i) { bits_cost[i][0] = vp9_cost_zero(mvcomp->bits[i]); bits_cost[i][1] = vp9_cost_one(mvcomp->bits[i]); } for (i = 0; i < CLASS0_SIZE; ++i) vp9_cost_tokens(class0_fp_cost[i], mvcomp->class0_fp[i], vp9_mv_fp_tree); vp9_cost_tokens(fp_cost, mvcomp->fp, vp9_mv_fp_tree); if (usehp) { class0_hp_cost[0] = vp9_cost_zero(mvcomp->class0_hp); class0_hp_cost[1] = vp9_cost_one(mvcomp->class0_hp); hp_cost[0] = vp9_cost_zero(mvcomp->hp); hp_cost[1] = vp9_cost_one(mvcomp->hp); } mvcost[0] = 0; for (v = 1; v <= MV_MAX; ++v) { int z, c, o, d, e, f, cost = 0; z = v - 1; c = vp9_get_mv_class(z, &o); cost += class_cost[c]; d = (o >> 3); /* int mv data */ f = (o >> 1) & 3; /* fractional pel mv data */ e = (o & 1); /* high precision mv data */ if (c == MV_CLASS_0) { cost += class0_cost[d]; } else { int i, b; b = c + CLASS0_BITS - 1; /* number of bits */ for (i = 0; i < b; ++i) cost += bits_cost[i][((d >> i) & 1)]; } if (c == MV_CLASS_0) { cost += class0_fp_cost[d][f]; } else { cost += fp_cost[f]; } if (usehp) { if (c == MV_CLASS_0) { cost += class0_hp_cost[e]; } else { cost += hp_cost[e]; } } mvcost[v] = cost + sign_cost[0]; mvcost[-v] = cost + sign_cost[1]; } } static int update_mv(vp9_writer *w, const unsigned int ct[2], vp9_prob *cur_p, vp9_prob upd_p) { const vp9_prob new_p = get_binary_prob(ct[0], ct[1]) | 1; const int update = cost_branch256(ct, *cur_p) + vp9_cost_zero(upd_p) > cost_branch256(ct, new_p) + vp9_cost_one(upd_p) + 7 * 256; vp9_write(w, update, upd_p); if (update) { *cur_p = new_p; vp9_write_literal(w, new_p >> 1, 7); } return update; } static void counts_to_nmv_context( nmv_context_counts *nmv_count, int usehp, unsigned int (*branch_ct_joint)[2], unsigned int (*branch_ct_sign)[2], unsigned int (*branch_ct_classes)[MV_CLASSES - 1][2], unsigned int (*branch_ct_class0)[CLASS0_SIZE - 1][2], unsigned int (*branch_ct_bits)[MV_OFFSET_BITS][2], unsigned int (*branch_ct_class0_fp)[CLASS0_SIZE][4 - 1][2], unsigned int (*branch_ct_fp)[4 - 1][2], unsigned int (*branch_ct_class0_hp)[2], unsigned int (*branch_ct_hp)[2]) { int i, j, k; vp9_tree_probs_from_distribution(vp9_mv_joint_tree, branch_ct_joint, nmv_count->joints); for (i = 0; i < 2; ++i) { const uint32_t s0 = nmv_count->comps[i].sign[0]; const uint32_t s1 = nmv_count->comps[i].sign[1]; branch_ct_sign[i][0] = s0; branch_ct_sign[i][1] = s1; vp9_tree_probs_from_distribution(vp9_mv_class_tree, branch_ct_classes[i], nmv_count->comps[i].classes); vp9_tree_probs_from_distribution(vp9_mv_class0_tree, branch_ct_class0[i], nmv_count->comps[i].class0); for (j = 0; j < MV_OFFSET_BITS; ++j) { const uint32_t b0 = nmv_count->comps[i].bits[j][0]; const uint32_t b1 = nmv_count->comps[i].bits[j][1]; branch_ct_bits[i][j][0] = b0; branch_ct_bits[i][j][1] = b1; } } for (i = 0; i < 2; ++i) { for (k = 0; k < CLASS0_SIZE; ++k) { vp9_tree_probs_from_distribution(vp9_mv_fp_tree, branch_ct_class0_fp[i][k], nmv_count->comps[i].class0_fp[k]); } vp9_tree_probs_from_distribution(vp9_mv_fp_tree, branch_ct_fp[i], nmv_count->comps[i].fp); } if (usehp) { for (i = 0; i < 2; ++i) { const uint32_t c0_hp0 = nmv_count->comps[i].class0_hp[0]; const uint32_t c0_hp1 = nmv_count->comps[i].class0_hp[1]; const uint32_t hp0 = nmv_count->comps[i].hp[0]; const uint32_t hp1 = nmv_count->comps[i].hp[1]; branch_ct_class0_hp[i][0] = c0_hp0; branch_ct_class0_hp[i][1] = c0_hp1; branch_ct_hp[i][0] = hp0; branch_ct_hp[i][1] = hp1; } } } void vp9_write_nmv_probs(VP9_COMP* const cpi, int usehp, vp9_writer* const bc) { int i, j; unsigned int branch_ct_joint[MV_JOINTS - 1][2]; unsigned int branch_ct_sign[2][2]; unsigned int branch_ct_classes[2][MV_CLASSES - 1][2]; unsigned int branch_ct_class0[2][CLASS0_SIZE - 1][2]; unsigned int branch_ct_bits[2][MV_OFFSET_BITS][2]; unsigned int branch_ct_class0_fp[2][CLASS0_SIZE][4 - 1][2]; unsigned int branch_ct_fp[2][4 - 1][2]; unsigned int branch_ct_class0_hp[2][2]; unsigned int branch_ct_hp[2][2]; nmv_context *mvc = &cpi->common.fc.nmvc; counts_to_nmv_context(&cpi->NMVcount, usehp, branch_ct_joint, branch_ct_sign, branch_ct_classes, branch_ct_class0, branch_ct_bits, branch_ct_class0_fp, branch_ct_fp, branch_ct_class0_hp, branch_ct_hp); for (j = 0; j < MV_JOINTS - 1; ++j) update_mv(bc, branch_ct_joint[j], &mvc->joints[j], NMV_UPDATE_PROB); for (i = 0; i < 2; ++i) { update_mv(bc, branch_ct_sign[i], &mvc->comps[i].sign, NMV_UPDATE_PROB); for (j = 0; j < MV_CLASSES - 1; ++j) update_mv(bc, branch_ct_classes[i][j], &mvc->comps[i].classes[j], NMV_UPDATE_PROB); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_mv(bc, branch_ct_class0[i][j], &mvc->comps[i].class0[j], NMV_UPDATE_PROB); for (j = 0; j < MV_OFFSET_BITS; ++j) update_mv(bc, branch_ct_bits[i][j], &mvc->comps[i].bits[j], NMV_UPDATE_PROB); } for (i = 0; i < 2; ++i) { for (j = 0; j < CLASS0_SIZE; ++j) { int k; for (k = 0; k < 3; ++k) update_mv(bc, branch_ct_class0_fp[i][j][k], &mvc->comps[i].class0_fp[j][k], NMV_UPDATE_PROB); } for (j = 0; j < 3; ++j) update_mv(bc, branch_ct_fp[i][j], &mvc->comps[i].fp[j], NMV_UPDATE_PROB); } if (usehp) { for (i = 0; i < 2; ++i) { update_mv(bc, branch_ct_class0_hp[i], &mvc->comps[i].class0_hp, NMV_UPDATE_PROB); update_mv(bc, branch_ct_hp[i], &mvc->comps[i].hp, NMV_UPDATE_PROB); } } } void vp9_encode_mv(VP9_COMP* cpi, vp9_writer* w, const MV* mv, const MV* ref, const nmv_context* mvctx, int usehp) { const MV diff = {mv->row - ref->row, mv->col - ref->col}; const MV_JOINT_TYPE j = vp9_get_mv_joint(&diff); usehp = usehp && vp9_use_mv_hp(ref); write_token(w, vp9_mv_joint_tree, mvctx->joints, &vp9_mv_joint_encodings[j]); if (mv_joint_vertical(j)) encode_mv_component(w, diff.row, &mvctx->comps[0], usehp); if (mv_joint_horizontal(j)) encode_mv_component(w, diff.col, &mvctx->comps[1], usehp); // If auto_mv_step_size is enabled then keep track of the largest // motion vector component used. if (!cpi->dummy_packing && cpi->sf.auto_mv_step_size) { unsigned int maxv = MAX(abs(mv->row), abs(mv->col)) >> 3; cpi->max_mv_magnitude = MAX(maxv, cpi->max_mv_magnitude); } } void vp9_build_nmv_cost_table(int *mvjoint, int *mvcost[2], const nmv_context* const mvctx, int usehp, int mvc_flag_v, int mvc_flag_h) { vp9_clear_system_state(); vp9_cost_tokens(mvjoint, mvctx->joints, vp9_mv_joint_tree); if (mvc_flag_v) build_nmv_component_cost_table(mvcost[0], &mvctx->comps[0], usehp); if (mvc_flag_h) build_nmv_component_cost_table(mvcost[1], &mvctx->comps[1], usehp); } static void inc_mvs(int_mv mv[2], int_mv ref[2], int is_compound, nmv_context_counts *counts) { int i; for (i = 0; i < 1 + is_compound; ++i) { const MV diff = { mv[i].as_mv.row - ref[i].as_mv.row, mv[i].as_mv.col - ref[i].as_mv.col }; vp9_inc_mv(&diff, counts); } } void vp9_update_mv_count(VP9_COMP *cpi, MACROBLOCK *x, int_mv best_ref_mv[2]) { MODE_INFO *mi = x->e_mbd.mi_8x8[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const int is_compound = has_second_ref(mbmi); if (mbmi->sb_type < BLOCK_8X8) { const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi->sb_type]; const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi->sb_type]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int i = idy * 2 + idx; if (mi->bmi[i].as_mode == NEWMV) inc_mvs(mi->bmi[i].as_mv, best_ref_mv, is_compound, &cpi->NMVcount); } } } else if (mbmi->mode == NEWMV) { inc_mvs(mbmi->mv, best_ref_mv, is_compound, &cpi->NMVcount); } }