/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "treereader.h" #include "vp8/common/entropymv.h" #include "vp8/common/entropymode.h" #include "onyxd_int.h" #include "vp8/common/findnearmv.h" #include "vp8/common/seg_common.h" #include "vp8/common/pred_common.h" #include "vp8/common/entropy.h" #if CONFIG_DEBUG #include #endif //#define DEBUG_DEC_MV #ifdef DEBUG_DEC_MV int dec_mvcount = 0; #endif static int vp8_read_bmode(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_bmode_tree, p); return i; } static int vp8_read_ymode(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_ymode_tree, p); return i; } static int vp8_kfread_ymode(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_kf_ymode_tree, p); return i; } static int vp8_read_i8x8_mode(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_i8x8_mode_tree, p); return i; } static int vp8_read_uv_mode(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_uv_mode_tree, p); return i; } // This function reads the current macro block's segnent id from the bitstream // It should only be called if a segment map update is indicated. static void vp8_read_mb_segid(vp8_reader *r, MB_MODE_INFO *mi, MACROBLOCKD *x) { /* Is segmentation enabled */ if (x->segmentation_enabled && x->update_mb_segmentation_map) { /* If so then read the segment id. */ if (vp8_read(r, x->mb_segment_tree_probs[0])) mi->segment_id = (unsigned char)(2 + vp8_read(r, x->mb_segment_tree_probs[2])); else mi->segment_id = (unsigned char)(vp8_read(r, x->mb_segment_tree_probs[1])); } } extern const int vp8_i8x8_block[4]; static void vp8_kfread_modes(VP8D_COMP *pbi, MODE_INFO *m, int mb_row, int mb_col) { VP8_COMMON *const cm = & pbi->common; vp8_reader *const bc = & pbi->bc; const int mis = pbi->common.mode_info_stride; int map_index = mb_row * pbi->common.mb_cols + mb_col; MB_PREDICTION_MODE y_mode; // Read the Macroblock segmentation map if it is being updated explicitly // this frame (reset to 0 by default). m->mbmi.segment_id = 0; if (pbi->mb.update_mb_segmentation_map) { vp8_read_mb_segid(bc, &m->mbmi, &pbi->mb); pbi->common.last_frame_seg_map[map_index] = m->mbmi.segment_id; } m->mbmi.mb_skip_coeff = 0; if ( pbi->common.mb_no_coeff_skip && ( !segfeature_active( &pbi->mb, m->mbmi.segment_id, SEG_LVL_EOB ) || ( get_segdata( &pbi->mb, m->mbmi.segment_id, SEG_LVL_EOB ) != 0 ) ) ) { #if CONFIG_NEWENTROPY MACROBLOCKD *const xd = & pbi->mb; m->mbmi.mb_skip_coeff = vp8_read(bc, get_pred_prob(cm, xd, PRED_MBSKIP)); #else m->mbmi.mb_skip_coeff = vp8_read(bc, pbi->prob_skip_false); #endif } else { if ( segfeature_active( &pbi->mb, m->mbmi.segment_id, SEG_LVL_EOB ) && ( get_segdata( &pbi->mb, m->mbmi.segment_id, SEG_LVL_EOB ) == 0 ) ) { m->mbmi.mb_skip_coeff = 1; } else m->mbmi.mb_skip_coeff = 0; } y_mode = (MB_PREDICTION_MODE) vp8_kfread_ymode(bc, pbi->common.kf_ymode_prob[pbi->common.kf_ymode_probs_index]); #if CONFIG_COMP_INTRA_PRED m->mbmi.second_mode = (MB_PREDICTION_MODE) (DC_PRED - 1); #endif m->mbmi.ref_frame = INTRA_FRAME; if ((m->mbmi.mode = y_mode) == B_PRED) { int i = 0; #if CONFIG_COMP_INTRA_PRED int use_comp_pred = vp8_read(bc, 128); #endif do { const B_PREDICTION_MODE A = above_block_mode(m, i, mis); const B_PREDICTION_MODE L = left_block_mode(m, i); m->bmi[i].as_mode.first = (B_PREDICTION_MODE) vp8_read_bmode( bc, pbi->common.kf_bmode_prob [A] [L]); #if CONFIG_COMP_INTRA_PRED if (use_comp_pred) { m->bmi[i].as_mode.second = (B_PREDICTION_MODE) vp8_read_bmode( bc, pbi->common.kf_bmode_prob [A] [L]); } else { m->bmi[i].as_mode.second = (B_PREDICTION_MODE) (B_DC_PRED - 1); } #endif } while (++i < 16); } if((m->mbmi.mode = y_mode) == I8X8_PRED) { int i; int mode8x8; for(i=0;i<4;i++) { int ib = vp8_i8x8_block[i]; mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob); m->bmi[ib+0].as_mode.first= mode8x8; m->bmi[ib+1].as_mode.first= mode8x8; m->bmi[ib+4].as_mode.first= mode8x8; m->bmi[ib+5].as_mode.first= mode8x8; #if CONFIG_COMP_INTRA_PRED m->bmi[ib+0].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); m->bmi[ib+1].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); m->bmi[ib+4].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); m->bmi[ib+5].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); #endif } } else m->mbmi.uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc, pbi->common.kf_uv_mode_prob[m->mbmi.mode]); #if CONFIG_COMP_INTRA_PRED m->mbmi.second_uv_mode = (MB_PREDICTION_MODE) (DC_PRED - 1); #endif } static int read_mvcomponent(vp8_reader *r, const MV_CONTEXT *mvc) { const vp8_prob *const p = (const vp8_prob *) mvc; int x = 0; if (vp8_read(r, p [mvpis_short])) /* Large */ { int i = 0; do { x += vp8_read(r, p [MVPbits + i]) << i; } while (++i < mvnum_short_bits); i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ do { x += vp8_read(r, p [MVPbits + i]) << i; } while (--i > mvnum_short_bits); if (!(x & ~((2<row = (short)(read_mvcomponent(r, mvc) << 1); mv->col = (short)(read_mvcomponent(r, ++mvc) << 1); #ifdef DEBUG_DEC_MV int i; printf("%d (np): %d %d\n", dec_mvcount++, mv->row, mv->col); //for (i=0; iprob[i]); printf("\n"); //for (i=0; iprob[i]); printf("\n"); #endif } static void read_mvcontexts(vp8_reader *bc, MV_CONTEXT *mvc) { int i = 0; do { const vp8_prob *up = vp8_mv_update_probs[i].prob; vp8_prob *p = (vp8_prob *)(mvc + i); vp8_prob *const pstop = p + MVPcount; do { if (vp8_read(bc, *up++)) { const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7); *p = x ? x << 1 : 1; } } while (++p < pstop); } while (++i < 2); } #if CONFIG_HIGH_PRECISION_MV static int read_mvcomponent_hp(vp8_reader *r, const MV_CONTEXT_HP *mvc) { const vp8_prob *const p = (const vp8_prob *) mvc; int x = 0; if (vp8_read(r, p [mvpis_short_hp])) /* Large */ { int i = 0; do { x += vp8_read(r, p [MVPbits_hp + i]) << i; } while (++i < mvnum_short_bits_hp); i = mvlong_width_hp - 1; /* Skip bit 3, which is sometimes implicit */ do { x += vp8_read(r, p [MVPbits_hp + i]) << i; } while (--i > mvnum_short_bits_hp); if (!(x & ~((2<row = (short)(read_mvcomponent_hp(r, mvc)); mv->col = (short)(read_mvcomponent_hp(r, ++mvc)); #ifdef DEBUG_DEC_MV int i; printf("%d (hp): %d %d\n", dec_mvcount++, mv->row, mv->col); //for (i=0; iprob[i]); printf("\n"); //for (i=0; iprob[i]); printf("\n"); #endif } static void read_mvcontexts_hp(vp8_reader *bc, MV_CONTEXT_HP *mvc) { int i = 0; do { const vp8_prob *up = vp8_mv_update_probs_hp[i].prob; vp8_prob *p = (vp8_prob *)(mvc + i); vp8_prob *const pstop = p + MVPcount_hp; do { if (vp8_read(bc, *up++)) { const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7); *p = x ? x << 1 : 1; } } while (++p < pstop); } while (++i < 2); } #endif /* CONFIG_HIGH_PRECISION_MV */ // Read the referncence frame static MV_REFERENCE_FRAME read_ref_frame( VP8D_COMP *pbi, vp8_reader *const bc, unsigned char segment_id ) { MV_REFERENCE_FRAME ref_frame; int seg_ref_active; int seg_ref_count = 0; VP8_COMMON *const cm = & pbi->common; MACROBLOCKD *const xd = &pbi->mb; seg_ref_active = segfeature_active( xd, segment_id, SEG_LVL_REF_FRAME ); // If segment coding enabled does the segment allow for more than one // possible reference frame if ( seg_ref_active ) { seg_ref_count = check_segref( xd, segment_id, INTRA_FRAME ) + check_segref( xd, segment_id, LAST_FRAME ) + check_segref( xd, segment_id, GOLDEN_FRAME ) + check_segref( xd, segment_id, ALTREF_FRAME ); } // Segment reference frame features not available or allows for // multiple reference frame options if ( !seg_ref_active || (seg_ref_count > 1) ) { // Values used in prediction model coding unsigned char prediction_flag; vp8_prob pred_prob; MV_REFERENCE_FRAME pred_ref; // Get the context probability the prediction flag pred_prob = get_pred_prob( cm, xd, PRED_REF ); // Read the prediction status flag prediction_flag = (unsigned char)vp8_read( bc, pred_prob ); // Store the prediction flag. set_pred_flag( xd, PRED_REF, prediction_flag ); // Get the predicted reference frame. pred_ref = get_pred_ref( cm, xd ); // If correctly predicted then use the predicted value if ( prediction_flag ) { ref_frame = pred_ref; } // else decode the explicitly coded value else { vp8_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy( mod_refprobs, cm->mod_refprobs[pred_ref], sizeof(mod_refprobs) ); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if ( seg_ref_active ) { mod_refprobs[INTRA_FRAME] *= check_segref( xd, segment_id, INTRA_FRAME ); mod_refprobs[LAST_FRAME] *= check_segref( xd, segment_id, LAST_FRAME ); mod_refprobs[GOLDEN_FRAME] *= ( check_segref( xd, segment_id, GOLDEN_FRAME ) * check_segref( xd, segment_id, ALTREF_FRAME ) ); } // Default to INTRA_FRAME (value 0) ref_frame = INTRA_FRAME; // Do we need to decode the Intra/Inter branch if ( mod_refprobs[0] ) ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, mod_refprobs[0]); else ref_frame ++; if (ref_frame) { // Do we need to decode the Last/Gf_Arf branch if ( mod_refprobs[1] ) ref_frame += vp8_read(bc, mod_refprobs[1]); else ref_frame++; if ( ref_frame > 1 ) { // Do we need to decode the GF/Arf branch if ( mod_refprobs[2] ) ref_frame += vp8_read(bc, mod_refprobs[2]); else { if ( seg_ref_active ) { if ( (pred_ref == GOLDEN_FRAME) || !check_segref( xd, segment_id, GOLDEN_FRAME) ) { ref_frame = ALTREF_FRAME; } else ref_frame = GOLDEN_FRAME; } else ref_frame = (pred_ref == GOLDEN_FRAME) ? ALTREF_FRAME : GOLDEN_FRAME; } } } } } // Segment reference frame features are enabled else { // The reference frame for the mb is considered as correclty predicted // if it is signaled at the segment level for the purposes of the // common prediction model set_pred_flag( xd, PRED_REF, 1 ); ref_frame = get_pred_ref( cm, xd ); } return (MV_REFERENCE_FRAME)ref_frame; } static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_mv_ref_tree, p); return (MB_PREDICTION_MODE)i; } static B_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_sub_mv_ref_tree, p); return (B_PREDICTION_MODE)i; } #ifdef VPX_MODE_COUNT unsigned int vp8_mv_cont_count[5][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; #endif static const unsigned char mbsplit_fill_count[4] = {8, 8, 4, 1}; static const unsigned char mbsplit_fill_offset[4][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, { 0, 1, 4, 5, 8, 9, 12, 13, 2, 3, 6, 7, 10, 11, 14, 15}, { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9, 12, 13, 10, 11, 14, 15}, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} }; static void mb_mode_mv_init(VP8D_COMP *pbi) { VP8_COMMON *const cm = & pbi->common; vp8_reader *const bc = & pbi->bc; MV_CONTEXT *const mvc = pbi->common.fc.mvc; #if CONFIG_HIGH_PRECISION_MV MV_CONTEXT_HP *const mvc_hp = pbi->common.fc.mvc_hp; MACROBLOCKD *const xd = & pbi->mb; #endif #if CONFIG_NEWENTROPY vpx_memset(cm->mbskip_pred_probs, 0, sizeof(cm->mbskip_pred_probs)); #else pbi->prob_skip_false = 0; #endif if (pbi->common.mb_no_coeff_skip) { #if CONFIG_NEWENTROPY int k; for (k=0; kmbskip_pred_probs[k] = (vp8_prob)vp8_read_literal(bc, 8); #else pbi->prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8); #endif } if(pbi->common.frame_type != KEY_FRAME) { // Decode the baseline probabilities for decoding reference frame cm->prob_intra_coded = (vp8_prob)vp8_read_literal(bc, 8); cm->prob_last_coded = (vp8_prob)vp8_read_literal(bc, 8); cm->prob_gf_coded = (vp8_prob)vp8_read_literal(bc, 8); // Computes a modified set of probabilities for use when reference // frame prediction fails. compute_mod_refprobs( cm ); pbi->common.comp_pred_mode = vp8_read(bc, 128); if (cm->comp_pred_mode) cm->comp_pred_mode += vp8_read(bc, 128); if (cm->comp_pred_mode == HYBRID_PREDICTION) { int i; for ( i = 0; i < COMP_PRED_CONTEXTS; i++ ) cm->prob_comppred[i] = (vp8_prob)vp8_read_literal(bc, 8); } if (vp8_read_bit(bc)) { int i = 0; do { cm->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8); } while (++i < VP8_YMODES-1); } #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) read_mvcontexts_hp(bc, mvc_hp); else #endif read_mvcontexts(bc, mvc); } } // This function either reads the segment id for the current macroblock from // the bitstream or if the value is temporally predicted asserts the predicted // value static void read_mb_segment_id ( VP8D_COMP *pbi, int mb_row, int mb_col ) { vp8_reader *const bc = & pbi->bc; VP8_COMMON *const cm = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *mbmi = &mi->mbmi; int index = mb_row * pbi->common.mb_cols + mb_col; if (xd->segmentation_enabled) { if (xd->update_mb_segmentation_map) { // Is temporal coding of the segment id for this mb enabled. if (cm->temporal_update) { // Get the context based probability for reading the // prediction status flag vp8_prob pred_prob = get_pred_prob( cm, xd, PRED_SEG_ID ); // Read the prediction status flag unsigned char seg_pred_flag = (unsigned char)vp8_read(bc, pred_prob ); // Store the prediction flag. set_pred_flag( xd, PRED_SEG_ID, seg_pred_flag ); // If the value is flagged as correctly predicted // then use the predicted value if ( seg_pred_flag ) { mbmi->segment_id = get_pred_mb_segid( cm, index ); } // Else .... decode it explicitly else { vp8_read_mb_segid(bc, mbmi, xd ); cm->last_frame_seg_map[index] = mbmi->segment_id; } } // Normal unpredicted coding mode else { vp8_read_mb_segid(bc, mbmi, xd); cm->last_frame_seg_map[index] = mbmi->segment_id; } } } else { // The encoder explicitly sets the segment_id to 0 // when segmentation is disabled mbmi->segment_id = 0; } } static void read_mb_modes_mv(VP8D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi, MODE_INFO *prev_mi, int mb_row, int mb_col) { VP8_COMMON *const cm = & pbi->common; vp8_reader *const bc = & pbi->bc; MV_CONTEXT *const mvc = pbi->common.fc.mvc; #if CONFIG_HIGH_PRECISION_MV MV_CONTEXT_HP *const mvc_hp = pbi->common.fc.mvc_hp; #endif const int mis = pbi->common.mode_info_stride; MACROBLOCKD *const xd = & pbi->mb; int_mv *const mv = & mbmi->mv; int mb_to_left_edge; int mb_to_right_edge; int mb_to_top_edge; int mb_to_bottom_edge; mb_to_top_edge = xd->mb_to_top_edge; mb_to_bottom_edge = xd->mb_to_bottom_edge; mb_to_top_edge -= LEFT_TOP_MARGIN; mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN; mbmi->need_to_clamp_mvs = 0; mbmi->need_to_clamp_secondmv = 0; mbmi->second_ref_frame = 0; /* Distance of Mb to the various image edges. * These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units */ xd->mb_to_left_edge = mb_to_left_edge = -((mb_col * 16) << 3); mb_to_left_edge -= LEFT_TOP_MARGIN; xd->mb_to_right_edge = mb_to_right_edge = ((pbi->common.mb_cols - 1 - mb_col) * 16) << 3; mb_to_right_edge += RIGHT_BOTTOM_MARGIN; // Make sure the MACROBLOCKD mode info pointer is pointed at the // correct entry for the current macroblock. xd->mode_info_context = mi; // Read the macroblock segment id. read_mb_segment_id ( pbi, mb_row, mb_col ); if ( pbi->common.mb_no_coeff_skip && ( !segfeature_active( xd, mbmi->segment_id, SEG_LVL_EOB ) || (get_segdata( xd, mbmi->segment_id, SEG_LVL_EOB ) != 0) ) ) { // Read the macroblock coeff skip flag if this feature is in use, // else default to 0 #if CONFIG_NEWENTROPY mbmi->mb_skip_coeff = vp8_read(bc, get_pred_prob(cm, xd, PRED_MBSKIP)); #else mbmi->mb_skip_coeff = vp8_read(bc, pbi->prob_skip_false); #endif } else { if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_EOB ) && (get_segdata( xd, mbmi->segment_id, SEG_LVL_EOB ) == 0) ) { mbmi->mb_skip_coeff = 1; } else mbmi->mb_skip_coeff = 0; } // Read the reference frame mbmi->ref_frame = read_ref_frame( pbi, bc, mbmi->segment_id ); // If reference frame is an Inter frame if (mbmi->ref_frame) { int rct[4]; int_mv nearest, nearby, best_mv; int_mv nearest_second, nearby_second, best_mv_second; vp8_prob mv_ref_p [VP8_MVREFS-1]; vp8_find_near_mvs(xd, mi, prev_mi, &nearest, &nearby, &best_mv, rct, mbmi->ref_frame, pbi->common.ref_frame_sign_bias); vp8_mv_ref_probs(&pbi->common, mv_ref_p, rct); // Is the segment level mode feature enabled for this segment if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_MODE ) ) { mbmi->mode = get_segdata( xd, mbmi->segment_id, SEG_LVL_MODE ); } else { mbmi->mode = read_mv_ref(bc, mv_ref_p); vp8_accum_mv_refs(&pbi->common, mbmi->mode, rct); } if ( cm->comp_pred_mode == COMP_PREDICTION_ONLY || (cm->comp_pred_mode == HYBRID_PREDICTION && vp8_read(bc, get_pred_prob( cm, xd, PRED_COMP ))) ) { /* Since we have 3 reference frames, we can only have 3 unique * combinations of combinations of 2 different reference frames * (A-G, G-L or A-L). In the bitstream, we use this to simply * derive the second reference frame from the first reference * frame, by saying it's the next one in the enumerator, and * if that's > n_refs, then the second reference frame is the * first one in the enumerator. */ mbmi->second_ref_frame = mbmi->ref_frame + 1; if (mbmi->second_ref_frame == 4) mbmi->second_ref_frame = 1; vp8_find_near_mvs(xd, mi, prev_mi, &nearest_second, &nearby_second, &best_mv_second, rct, mbmi->second_ref_frame, pbi->common.ref_frame_sign_bias); } else { mbmi->second_ref_frame = 0; } mbmi->uv_mode = DC_PRED; switch (mbmi->mode) { case SPLITMV: { const int s = mbmi->partitioning = vp8_treed_read(bc, vp8_mbsplit_tree, vp8_mbsplit_probs); const int num_p = vp8_mbsplit_count [s]; int j = 0; mbmi->need_to_clamp_mvs = 0; do /* for each subset j */ { int_mv leftmv, abovemv, second_leftmv, second_abovemv; int_mv blockmv, secondmv; int k; /* first block in subset j */ int mv_contz; int blockmode; k = vp8_mbsplit_offset[s][j]; leftmv.as_int = left_block_mv(mi, k); abovemv.as_int = above_block_mv(mi, k, mis); if (mbmi->second_ref_frame) { second_leftmv.as_int = left_block_second_mv(mi, k); second_abovemv.as_int = above_block_second_mv(mi, k, mis); } mv_contz = vp8_mv_cont(&leftmv, &abovemv); blockmode = sub_mv_ref(bc, vp8_sub_mv_ref_prob2 [mv_contz]); switch (blockmode) { case NEW4X4: #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) { read_mv_hp(bc, &blockmv.as_mv, (const MV_CONTEXT_HP *) mvc_hp); #if CONFIG_ADAPTIVE_ENTROPY cm->fc.MVcount_hp[0][mv_max_hp+(blockmv.as_mv.row)]++; cm->fc.MVcount_hp[1][mv_max_hp+(blockmv.as_mv.col)]++; #endif } else #endif { read_mv(bc, &blockmv.as_mv, (const MV_CONTEXT *) mvc); #if CONFIG_ADAPTIVE_ENTROPY cm->fc.MVcount[0][mv_max+(blockmv.as_mv.row>>1)]++; cm->fc.MVcount[1][mv_max+(blockmv.as_mv.col>>1)]++; #endif } blockmv.as_mv.row += best_mv.as_mv.row; blockmv.as_mv.col += best_mv.as_mv.col; if (mbmi->second_ref_frame) { #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) read_mv_hp(bc, &secondmv.as_mv, (const MV_CONTEXT_HP *) mvc_hp); else #endif read_mv(bc, &secondmv.as_mv, (const MV_CONTEXT *) mvc); secondmv.as_mv.row += best_mv_second.as_mv.row; secondmv.as_mv.col += best_mv_second.as_mv.col; } #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][3]++; #endif break; case LEFT4X4: blockmv.as_int = leftmv.as_int; if (mbmi->second_ref_frame) secondmv.as_int = second_leftmv.as_int; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][0]++; #endif break; case ABOVE4X4: blockmv.as_int = abovemv.as_int; if (mbmi->second_ref_frame) secondmv.as_int = second_abovemv.as_int; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][1]++; #endif break; case ZERO4X4: blockmv.as_int = 0; if (mbmi->second_ref_frame) secondmv.as_int = 0; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][2]++; #endif break; default: break; } mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&blockmv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame) { mbmi->need_to_clamp_mvs |= vp8_check_mv_bounds(&secondmv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } { /* Fill (uniform) modes, mvs of jth subset. Must do it here because ensuing subsets can refer back to us via "left" or "above". */ const unsigned char *fill_offset; unsigned int fill_count = mbsplit_fill_count[s]; fill_offset = &mbsplit_fill_offset[s][(unsigned char)j * mbsplit_fill_count[s]]; do { mi->bmi[ *fill_offset].as_mv.first.as_int = blockmv.as_int; if (mbmi->second_ref_frame) mi->bmi[ *fill_offset].as_mv.second.as_int = secondmv.as_int; fill_offset++; }while (--fill_count); } } while (++j < num_p); } mv->as_int = mi->bmi[15].as_mv.first.as_int; mbmi->second_mv.as_int = mi->bmi[15].as_mv.second.as_int; break; /* done with SPLITMV */ case NEARMV: mv->as_int = nearby.as_int; /* Clip "next_nearest" so that it does not extend to far out of image */ vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame) { mbmi->second_mv.as_int = nearby_second.as_int; vp8_clamp_mv(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } break; case NEARESTMV: mv->as_int = nearest.as_int; /* Clip "next_nearest" so that it does not extend to far out of image */ vp8_clamp_mv(mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame) { mbmi->second_mv.as_int = nearest_second.as_int; vp8_clamp_mv(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } break; case ZEROMV: mv->as_int = 0; if (mbmi->second_ref_frame) mbmi->second_mv.as_int = 0; break; case NEWMV: #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) { read_mv_hp(bc, &mv->as_mv, (const MV_CONTEXT_HP *) mvc_hp); #if CONFIG_ADAPTIVE_ENTROPY cm->fc.MVcount_hp[0][mv_max_hp+(mv->as_mv.row)]++; cm->fc.MVcount_hp[1][mv_max_hp+(mv->as_mv.col)]++; #endif } else #endif { read_mv(bc, &mv->as_mv, (const MV_CONTEXT *) mvc); #if CONFIG_ADAPTIVE_ENTROPY cm->fc.MVcount[0][mv_max+(mv->as_mv.row>>1)]++; cm->fc.MVcount[1][mv_max+(mv->as_mv.col>>1)]++; #endif } mv->as_mv.row += best_mv.as_mv.row; mv->as_mv.col += best_mv.as_mv.col; /* Don't need to check this on NEARMV and NEARESTMV modes * since those modes clamp the MV. The NEWMV mode does not, * so signal to the prediction stage whether special * handling may be required. */ mbmi->need_to_clamp_mvs = vp8_check_mv_bounds(mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); if (mbmi->second_ref_frame) { #if CONFIG_HIGH_PRECISION_MV if (xd->allow_high_precision_mv) read_mv_hp(bc, &mbmi->second_mv.as_mv, (const MV_CONTEXT_HP *) mvc_hp); else #endif read_mv(bc, &mbmi->second_mv.as_mv, (const MV_CONTEXT *) mvc); mbmi->second_mv.as_mv.row += best_mv_second.as_mv.row; mbmi->second_mv.as_mv.col += best_mv_second.as_mv.col; mbmi->need_to_clamp_secondmv |= vp8_check_mv_bounds(&mbmi->second_mv, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge); } break; default:; #if CONFIG_DEBUG assert(0); #endif } } else { /* required for left and above block mv */ mbmi->mv.as_int = 0; if ( segfeature_active( xd, mbmi->segment_id, SEG_LVL_MODE ) ) mbmi->mode = (MB_PREDICTION_MODE) get_segdata( xd, mbmi->segment_id, SEG_LVL_MODE ); else { mbmi->mode = (MB_PREDICTION_MODE) vp8_read_ymode(bc, pbi->common.fc.ymode_prob); #if CONFIG_ADAPTIVE_ENTROPY pbi->common.fc.ymode_counts[mbmi->mode]++; #endif } #if CONFIG_COMP_INTRA_PRED mbmi->second_mode = (MB_PREDICTION_MODE) (DC_PRED - 1); #endif // If MB mode is BPRED read the block modes if (mbmi->mode == B_PRED) { int j = 0; #if CONFIG_COMP_INTRA_PRED int use_comp_pred = vp8_read(bc, 128); #endif do { mi->bmi[j].as_mode.first = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob); #if CONFIG_ADAPTIVE_ENTROPY pbi->common.fc.bmode_counts[mi->bmi[j].as_mode.first]++; #endif #if CONFIG_COMP_INTRA_PRED if (use_comp_pred) { mi->bmi[j].as_mode.second = (B_PREDICTION_MODE)vp8_read_bmode(bc, pbi->common.fc.bmode_prob); } else { mi->bmi[j].as_mode.second = (B_PREDICTION_MODE) (B_DC_PRED - 1); } #endif } while (++j < 16); } if(mbmi->mode == I8X8_PRED) { int i; int mode8x8; for(i=0;i<4;i++) { int ib = vp8_i8x8_block[i]; mode8x8 = vp8_read_i8x8_mode(bc, pbi->common.fc.i8x8_mode_prob); mi->bmi[ib+0].as_mode.first= mode8x8; mi->bmi[ib+1].as_mode.first= mode8x8; mi->bmi[ib+4].as_mode.first= mode8x8; mi->bmi[ib+5].as_mode.first= mode8x8; #if CONFIG_ADAPTIVE_ENTROPY pbi->common.fc.i8x8_mode_counts[mode8x8]++; #endif #if CONFIG_COMP_INTRA_PRED mi->bmi[ib+0].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); mi->bmi[ib+1].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); mi->bmi[ib+4].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); mi->bmi[ib+5].as_mode.second= (MB_PREDICTION_MODE) (DC_PRED - 1); #endif } } else { mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc, pbi->common.fc.uv_mode_prob[mbmi->mode]); #if CONFIG_ADAPTIVE_ENTROPY pbi->common.fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++; #endif } #if CONFIG_COMP_INTRA_PRED mbmi->second_uv_mode = (MB_PREDICTION_MODE) (DC_PRED - 1); #endif } } void vp8_decode_mode_mvs(VP8D_COMP *pbi) { int i; VP8_COMMON *cm = &pbi->common; MODE_INFO *mi = cm->mi; MACROBLOCKD *const xd = &pbi->mb; int sb_row, sb_col; int sb_rows = (cm->mb_rows + 1)>>1; int sb_cols = (cm->mb_cols + 1)>>1; int row_delta[4] = { 0, +1, 0, -1}; int col_delta[4] = {+1, -1, +1, +1}; MODE_INFO *prev_mi = cm->prev_mi; mb_mode_mv_init(pbi); if(cm->frame_type==KEY_FRAME && !cm->kf_ymode_probs_update) { cm->kf_ymode_probs_index = vp8_read_literal(&pbi->bc, 3); } for (sb_row=0; sb_rowmode_info_stride + dx; if ((mb_row >= cm->mb_rows) || (mb_col >= cm->mb_cols)) { /* next macroblock */ mb_row += dy; mb_col += dx; mi += offset_extended; prev_mi += offset_extended; continue; } // Make sure the MacroBlockD mode info pointer is set correctly xd->mode_info_context = mi; xd->prev_mode_info_context = prev_mi; pbi->mb.mb_to_top_edge = mb_to_top_edge = -((mb_row * 16)) << 3; mb_to_top_edge -= LEFT_TOP_MARGIN; pbi->mb.mb_to_bottom_edge = mb_to_bottom_edge = ((pbi->common.mb_rows - 1 - mb_row) * 16) << 3; mb_to_bottom_edge += RIGHT_BOTTOM_MARGIN; if(cm->frame_type == KEY_FRAME) vp8_kfread_modes(pbi, mi, mb_row, mb_col); else read_mb_modes_mv(pbi, mi, &mi->mbmi, prev_mi, mb_row, mb_col); /* next macroblock */ mb_row += dy; mb_col += dx; mi += offset_extended; prev_mi += offset_extended; } } mi += cm->mode_info_stride + (1 - (cm->mb_cols & 0x1)); prev_mi += cm->mode_info_stride + (1 - (cm->mb_cols & 0x1)); } }