/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "pragmas.h" #include "tokenize.h" #include "treewriter.h" #include "onyx_int.h" #include "modecosts.h" #include "encodeintra.h" #include "entropymode.h" #include "reconinter.h" #include "reconintra.h" #include "reconintra4x4.h" #include "findnearmv.h" #include "encodemb.h" #include "quantize.h" #include "idct.h" #include "g_common.h" #include "variance.h" #include "mcomp.h" #include "vpx_mem/vpx_mem.h" #include "dct.h" #include "systemdependent.h" #define DIAMONDSEARCH 1 #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #else #define IF_RTCD(x) NULL #endif void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x); #define RDFUNC(RM,DM,R,D,target_rd) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) ) /*int RDFUNC( int RM,int DM, int R, int D, int target_r ) { int rd_value; rd_value = ( ((128+(R)*(RM)) >> 8) + (DM)*(D) ); return rd_value; }*/ #define UVRDFUNC(RM,DM,R,D,target_r) RDFUNC(RM,DM,R,D,target_r) #define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) ) #define MAXF(a,b) (((a) > (b)) ? (a) : (b)) extern const TOKENEXTRA vp8_dct_value_tokens[DCT_MAX_VALUE*2]; extern const TOKENEXTRA *vp8_dct_value_tokens_ptr; extern int vp8_dct_value_cost[DCT_MAX_VALUE*2]; extern int *vp8_dct_value_cost_ptr; const int vp8_auto_speed_thresh[17] = { 1000, 200, 150, 130, 150, 125, 120, 115, 115, 115, 115, 115, 115, 115, 115, 115, 105 }; const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES] = { ZEROMV, DC_PRED, NEARESTMV, NEARMV, ZEROMV, NEARESTMV, ZEROMV, NEARESTMV, NEARMV, NEARMV, V_PRED, H_PRED, TM_PRED, NEWMV, NEWMV, NEWMV, SPLITMV, SPLITMV, SPLITMV, B_PRED, }; const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES] = { LAST_FRAME, INTRA_FRAME, LAST_FRAME, LAST_FRAME, GOLDEN_FRAME, GOLDEN_FRAME, ALTREF_FRAME, ALTREF_FRAME, GOLDEN_FRAME, ALTREF_FRAME, INTRA_FRAME, INTRA_FRAME, INTRA_FRAME, LAST_FRAME, GOLDEN_FRAME, ALTREF_FRAME, LAST_FRAME, GOLDEN_FRAME, ALTREF_FRAME, INTRA_FRAME, }; static void fill_token_costs( unsigned int c [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens], const vp8_prob p [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1] ) { int i, j, k; for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) vp8_cost_tokens((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree); } static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; // The values in this table should be reviewed static int sad_per_bit16lut[128] = { 4, 4, 4, 4, 4, 4, 4, 4, // 4 4, 4, 4, 4, 4, 4, 4, 4, // 1 4, 4, 4, 4, 4, 4, 4, 4, // 2 4, 4, 4, 4, 4, 4, 4, 4, // 3 4, 4, 4, 4, 4, 4, 4, 4, // 4 4, 4, 12, 12, 13, 13, 14, 14, // 5 14, 14, 14, 15, 15, 15, 15, 15, // 6 15, 15, 15, 15, 15, 15, 15, 15, // 7 15, 15, 15, 15, 15, 16, 16, 16, // 8 16, 16, 18, 18, 18, 18, 19, 19, // 9 19, 19, 19, 19, 19, 19, 19, 19, // 10 20, 20, 22, 22, 22, 22, 21, 21, // 11 22, 22, 22, 22, 22, 22, 22, 22, // 12 22, 22, 22, 22, 22, 22, 22, 22, // 13 22, 22, 22, 22, 22, 22, 22, 22, // 14 22, 22, 22, 22, 22, 22, 22, 22, // 15 }; static int sad_per_bit4lut[128] = { 4, 4, 4, 4, 4, 4, 4, 4, // 4 4, 4, 4, 4, 4, 4, 4, 4, // 1 4, 4, 4, 4, 4, 4, 4, 4, // 2 4, 4, 4, 4, 4, 4, 4, 4, // 3 4, 4, 4, 4, 4, 4, 4, 4, // 4 4, 4, 15, 15, 15, 15, 16, 16, // 5 16, 17, 17, 17, 17, 17, 17, 17, // 6 17, 17, 19, 19, 22, 22, 21, 21, // 7 23, 23, 23, 23, 23, 24, 24, 24, // 8 25, 25, 27, 27, 27, 27, 28, 28, // 9 28, 28, 29, 29, 29, 29, 29, 29, // 10 30, 30, 31, 31, 31, 31, 32, 32, // 11 34, 34, 34, 34, 34, 34, 34, 34, // 12 34, 34, 34, 34, 34, 34, 34, 34, // 13 34, 34, 34, 34, 34, 34, 34, 34, // 14 34, 34, 34, 34, 34, 34, 34, 34, // 15 }; void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex) { cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex]; cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex]; } void vp8_initialize_rd_consts(VP8_COMP *cpi, int Qvalue) { int q; int i; int *thresh; int threshmult; double capped_q = (Qvalue < 160) ? (double)Qvalue : 160.0; double rdconst = 3.00; vp8_clear_system_state(); //__asm emms; // Further tests required to see if optimum is different // for key frames, golden frames and arf frames. // if (cpi->common.refresh_golden_frame || // cpi->common.refresh_alt_ref_frame) cpi->RDMULT = (int)(rdconst * (capped_q * capped_q)); // Extend rate multiplier along side quantizer zbin increases if (cpi->zbin_over_quant > 0) { double oq_factor; double modq; // Experimental code using the same basic equation as used for Q above // The units of cpi->zbin_over_quant are 1/128 of Q bin size oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant); modq = (int)((double)capped_q * oq_factor); cpi->RDMULT = (int)(rdconst * (modq * modq)); } if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { if (cpi->next_iiratio > 31) cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; else cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->next_iiratio]) >> 4; } if (cpi->RDMULT < 125) cpi->RDMULT = 125; cpi->mb.errorperbit = (cpi->RDMULT / 100); if (cpi->mb.errorperbit < 1) cpi->mb.errorperbit = 1; vp8_set_speed_features(cpi); if (cpi->common.simpler_lpf) cpi->common.filter_type = SIMPLE_LOOPFILTER; q = (int)pow(Qvalue, 1.25); if (q < 8) q = 8; if (cpi->ref_frame_flags == VP8_ALT_FLAG) { thresh = &cpi->rd_threshes[THR_NEWA]; threshmult = cpi->sf.thresh_mult[THR_NEWA]; } else if (cpi->ref_frame_flags == VP8_GOLD_FLAG) { thresh = &cpi->rd_threshes[THR_NEWG]; threshmult = cpi->sf.thresh_mult[THR_NEWG]; } else { thresh = &cpi->rd_threshes[THR_NEWMV]; threshmult = cpi->sf.thresh_mult[THR_NEWMV]; } if (cpi->RDMULT > 1000) { cpi->RDDIV = 1; cpi->RDMULT /= 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < INT_MAX) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } else { cpi->RDDIV = 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } fill_token_costs( cpi->mb.token_costs, (const vp8_prob( *)[8][3][11]) cpi->common.fc.coef_probs ); vp8_init_mode_costs(cpi); } void vp8_auto_select_speed(VP8_COMP *cpi) { int used = cpi->oxcf.cpu_used; int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate); milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16; #if 0 if (0) { FILE *f; f = fopen("speed.stt", "a"); fprintf(f, " %8ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time); fclose(f); } #endif /* // this is done during parameter valid check if( used > 16) used = 16; if( used < -16) used = -16; */ if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress) { if (cpi->avg_pick_mode_time == 0) { cpi->Speed = 4; } else { if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95) { cpi->Speed += 2; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; if (cpi->Speed > 16) { cpi->Speed = 16; } } if (milliseconds_for_compress * 100 > cpi->avg_encode_time * vp8_auto_speed_thresh[cpi->Speed]) { cpi->Speed -= 1; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; // In real-time mode, cpi->speed is in [4, 16]. if (cpi->Speed < 4) //if ( cpi->Speed < 0 ) { cpi->Speed = 4; //cpi->Speed = 0; } } } } else { cpi->Speed += 4; if (cpi->Speed > 16) cpi->Speed = 16; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; } } int vp8_block_error_c(short *coeff, short *dqcoeff) { int i; int error = 0; for (i = 0; i < 16; i++) { int this_diff = coeff[i] - dqcoeff[i]; error += this_diff * this_diff; } return error; } int vp8_mbblock_error_c(MACROBLOCK *mb, int dc) { BLOCK *be; BLOCKD *bd; int i, j; int berror, error = 0; for (i = 0; i < 16; i++) { be = &mb->block[i]; bd = &mb->e_mbd.block[i]; berror = 0; for (j = dc; j < 16; j++) { int this_diff = be->coeff[j] - bd->dqcoeff[j]; berror += this_diff * this_diff; } error += berror; } return error; } int vp8_mbuverror_c(MACROBLOCK *mb) { BLOCK *be; BLOCKD *bd; int i; int error = 0; for (i = 16; i < 24; i++) { be = &mb->block[i]; bd = &mb->e_mbd.block[i]; error += vp8_block_error_c(be->coeff, bd->dqcoeff); } return error; } #if !(CONFIG_REALTIME_ONLY) static int macro_block_max_error(MACROBLOCK *mb) { int error = 0; int dc = 0; BLOCK *be; int i, j; int berror; dc = !(mb->e_mbd.mbmi.mode == B_PRED || mb->e_mbd.mbmi.mode == SPLITMV); for (i = 0; i < 16; i++) { be = &mb->block[i]; berror = 0; for (j = dc; j < 16; j++) { int this_diff = be->coeff[j]; berror += this_diff * this_diff; } error += berror; } for (i = 16; i < 24; i++) { be = &mb->block[i]; berror = 0; for (j = 0; j < 16; j++) { int this_diff = be->coeff[j]; berror += this_diff * this_diff; } error += berror; } error <<= 2; if (dc) { be = &mb->block[24]; berror = 0; for (j = 0; j < 16; j++) { int this_diff = be->coeff[j]; berror += this_diff * this_diff; } error += berror; } error >>= 4; return error; } #endif int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd) { unsigned char *uptr, *vptr; unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src); unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src); int uv_stride = x->block[16].src_stride; unsigned int sse1 = 0; unsigned int sse2 = 0; int mv_row; int mv_col; int offset; int pre_stride = x->e_mbd.block[16].pre_stride; vp8_build_uvmvs(&x->e_mbd, 0); mv_row = x->e_mbd.block[16].bmi.mv.as_mv.row; mv_col = x->e_mbd.block[16].bmi.mv.as_mv.col; offset = (mv_row >> 3) * pre_stride + (mv_col >> 3); uptr = x->e_mbd.pre.u_buffer + offset; vptr = x->e_mbd.pre.v_buffer + offset; if ((mv_row | mv_col) & 7) { VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2); VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1); sse2 += sse1; } else { VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2); VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1); sse2 += sse1; } return sse2; } #if !(CONFIG_REALTIME_ONLY) static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int c = !type; /* start at coef 0, unless Y with Y2 */ int eob = b->eob; int pt ; /* surrounding block/prev coef predictor */ int cost = 0; short *qcoeff_ptr = b->qcoeff; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); # define QC( I) ( qcoeff_ptr [vp8_default_zig_zag1d[I]] ) for (; c < eob; c++) { int v = QC(c); int t = vp8_dct_value_tokens_ptr[v].Token; cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [t]; cost += vp8_dct_value_cost_ptr[v]; pt = vp8_prev_token_class[t]; } # undef QC if (c < 16) cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [DCT_EOB_TOKEN]; pt = (c != !type); // is eob first coefficient; *a = *l = pt; return cost; } int vp8_rdcost_mby(MACROBLOCK *mb) { int cost = 0; int b; TEMP_CONTEXT t, t2; int type = 0; MACROBLOCKD *x = &mb->e_mbd; vp8_setup_temp_context(&t, x->above_context[Y1CONTEXT], x->left_context[Y1CONTEXT], 4); vp8_setup_temp_context(&t2, x->above_context[Y2CONTEXT], x->left_context[Y2CONTEXT], 1); if (x->mbmi.mode == SPLITMV) type = 3; for (b = 0; b < 16; b++) cost += cost_coeffs(mb, x->block + b, type, t.a + vp8_block2above[b], t.l + vp8_block2left[b]); if (x->mbmi.mode != SPLITMV) cost += cost_coeffs(mb, x->block + 24, 1, t2.a + vp8_block2above[24], t2.l + vp8_block2left[24]); return cost; } static void rd_pick_intra4x4block( VP8_COMP *cpi, MACROBLOCK *x, BLOCK *be, BLOCKD *b, B_PREDICTION_MODE *best_mode, B_PREDICTION_MODE above, B_PREDICTION_MODE left, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int *bestdistortion) { B_PREDICTION_MODE mode; int best_rd = INT_MAX; // 1<<30 int rate = 0; int distortion; unsigned int *mode_costs; ENTROPY_CONTEXT ta = *a, tempa = *a; ENTROPY_CONTEXT tl = *l, templ = *l; if (x->e_mbd.frame_type == KEY_FRAME) { mode_costs = x->bmode_costs[above][left]; } else { mode_costs = x->inter_bmode_costs; } for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++) { int this_rd; int ratey; rate = mode_costs[mode]; vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, mode); tempa = ta; templ = tl; ratey = cost_coeffs(x, b, 3, &tempa, &templ); rate += ratey; distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff) >> 2; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; *a = tempa; *l = templ; } } b->bmi.mode = (B_PREDICTION_MODE)(*best_mode); vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, b->bmi.mode); } int vp8_rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion) { MACROBLOCKD *const xd = &mb->e_mbd; int i; TEMP_CONTEXT t; int cost = mb->mbmode_cost [xd->frame_type] [B_PRED]; int distortion = 0; int tot_rate_y = 0; vp8_intra_prediction_down_copy(xd); vp8_setup_temp_context(&t, xd->above_context[Y1CONTEXT], xd->left_context[Y1CONTEXT], 4); for (i = 0; i < 16; i++) { MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; const B_PREDICTION_MODE A = vp8_above_bmi(mic, i, mis)->mode; const B_PREDICTION_MODE L = vp8_left_bmi(mic, i)->mode; B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d); rd_pick_intra4x4block( cpi, mb, mb->block + i, xd->block + i, &best_mode, A, L, t.a + vp8_block2above[i], t.l + vp8_block2left[i], &r, &ry, &d); cost += r; distortion += d; tot_rate_y += ry; mic->bmi[i].mode = xd->block[i].bmi.mode = best_mode; } *Rate = cost; *rate_y += tot_rate_y; *Distortion = distortion; return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); } int vp8_rd_pick_intra16x16mby_mode(VP8_COMP *cpi, MACROBLOCK *x, int *Rate, int *rate_y, int *Distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); int rate, ratey; unsigned int distortion; int best_rd = INT_MAX; //Y Search for 16x16 intra prediction mode for (mode = DC_PRED; mode <= TM_PRED; mode++) { int this_rd; int dummy; rate = 0; x->e_mbd.mbmi.mode = mode; rate += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mbmi.mode]; vp8_encode_intra16x16mbyrd(IF_RTCD(&cpi->rtcd), x); ratey = vp8_rdcost_mby(x); rate += ratey; VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride, &distortion, &dummy); this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; *Rate = rate; *rate_y = ratey; *Distortion = (int)distortion; } } x->e_mbd.mbmi.mode = mode_selected; return best_rd; } static int rd_cost_mbuv(MACROBLOCK *mb) { TEMP_CONTEXT t, t2; int b; int cost = 0; MACROBLOCKD *x = &mb->e_mbd; vp8_setup_temp_context(&t, x->above_context[UCONTEXT], x->left_context[UCONTEXT], 2); vp8_setup_temp_context(&t2, x->above_context[VCONTEXT], x->left_context[VCONTEXT], 2); for (b = 16; b < 20; b++) cost += cost_coeffs(mb, x->block + b, vp8_block2type[b], t.a + vp8_block2above[b], t.l + vp8_block2left[b]); for (b = 20; b < 24; b++) cost += cost_coeffs(mb, x->block + b, vp8_block2type[b], t2.a + vp8_block2above[b], t2.l + vp8_block2left[b]); return cost; } unsigned int vp8_get_mbuvrecon_error(const vp8_variance_rtcd_vtable_t *rtcd, const MACROBLOCK *x) // sum of squares { unsigned int sse0, sse1; int sum0, sum1; VARIANCE_INVOKE(rtcd, get8x8var)(x->src.u_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer, x->e_mbd.dst.uv_stride, &sse0, &sum0); VARIANCE_INVOKE(rtcd, get8x8var)(x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride, &sse1, &sum1); return (sse0 + sse1); } static int vp8_rd_inter_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel) { vp8_build_uvmvs(&x->e_mbd, fullpixel); vp8_encode_inter16x16uvrd(IF_RTCD(&cpi->rtcd), x); *rate = rd_cost_mbuv(x); *distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; return UVRDFUNC(x->rdmult, x->rddiv, *rate, *distortion, cpi->target_bits_per_mb); } int vp8_rd_pick_intra_mbuv_mode(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); int best_rd = INT_MAX; int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r); int rate_to; for (mode = DC_PRED; mode <= TM_PRED; mode++) { int rate; int distortion; int this_rd; x->e_mbd.mbmi.uv_mode = mode; vp8_encode_intra16x16mbuvrd(IF_RTCD(&cpi->rtcd), x); rate_to = rd_cost_mbuv(x); rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][x->e_mbd.mbmi.uv_mode]; distortion = vp8_get_mbuvrecon_error(IF_RTCD(&cpi->rtcd.variance), x); this_rd = UVRDFUNC(x->rdmult, x->rddiv, rate, distortion, cpi->target_bits_per_mb); if (this_rd < best_rd) { best_rd = this_rd; d = distortion; r = rate; *rate_tokenonly = rate_to; mode_selected = mode; } } *rate = r; *distortion = d; x->e_mbd.mbmi.uv_mode = mode_selected; return best_rd; } #endif int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4]) { vp8_prob p [VP8_MVREFS-1]; assert(NEARESTMV <= m && m <= SPLITMV); vp8_mv_ref_probs(p, near_mv_ref_ct); return vp8_cost_token(vp8_mv_ref_tree, p, VP8_MVREFENCODINGS + m); } void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv) { int i; x->e_mbd.mbmi.mode = mb; x->e_mbd.mbmi.mv.as_mv.row = mv->row; x->e_mbd.mbmi.mv.as_mv.col = mv->col; for (i = 0; i < 16; i++) { B_MODE_INFO *bmi = &x->e_mbd.block[i].bmi; bmi->mode = (B_PREDICTION_MODE) mb; bmi->mv.as_mv.row = mv->row; bmi->mv.as_mv.col = mv->col; } } #if !(CONFIG_REALTIME_ONLY) int vp8_count_labels(int const *labelings) { int i; int count = 0; for (i = 0; i < 16; i++) { if (labelings[i] > count) count = labelings[i]; } return count + 1; } static int labels2mode( MACROBLOCK *x, int const *labelings, int which_label, B_PREDICTION_MODE this_mode, MV *this_mv, MV *best_ref_mv, int *mvcost[2] ) { MACROBLOCKD *const xd = & x->e_mbd; MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; int cost = 0; int thismvcost = 0; /* We have to be careful retrieving previously-encoded motion vectors. Ones from this macroblock have to be pulled from the BLOCKD array as they have not yet made it to the bmi array in our MB_MODE_INFO. */ int i = 0; do { BLOCKD *const d = xd->block + i; const int row = i >> 2, col = i & 3; B_PREDICTION_MODE m; if (labelings[i] != which_label) continue; if (col && labelings[i] == labelings[i-1]) m = LEFT4X4; else if (row && labelings[i] == labelings[i-4]) m = ABOVE4X4; else { // the only time we should do costing for new motion vector or mode // is when we are on a new label (jbb May 08, 2007) switch (m = this_mode) { case NEW4X4 : thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102); break; case LEFT4X4: *this_mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv; break; case ABOVE4X4: *this_mv = row ? d[-4].bmi.mv.as_mv : vp8_above_bmi(mic, i, mis)->mv.as_mv; break; case ZERO4X4: this_mv->row = this_mv->col = 0; break; default: break; } if (m == ABOVE4X4) // replace above with left if same { const MV mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv; if (mv.row == this_mv->row && mv.col == this_mv->col) m = LEFT4X4; } cost = x->inter_bmode_costs[ m]; } d->bmi.mode = m; d->bmi.mv.as_mv = *this_mv; } while (++i < 16); cost += thismvcost ; return cost; } static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels, int which_label, TEMP_CONTEXT *t) { int cost = 0; int b; MACROBLOCKD *x = &mb->e_mbd; for (b = 0; b < 16; b++) if (labels[ b] == which_label) cost += cost_coeffs(mb, x->block + b, 3, t->a + vp8_block2above[b], t->l + vp8_block2left[b]); return cost; } static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels, int which_label, const vp8_encodemb_rtcd_vtable_t *rtcd) { int i; unsigned int distortion = 0; for (i = 0; i < 16; i++) { if (labels[i] == which_label) { BLOCKD *bd = &x->e_mbd.block[i]; BLOCK *be = &x->block[i]; vp8_build_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict); ENCODEMB_INVOKE(rtcd, subb)(be, bd, 16); x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32); // set to 0 no way to account for 2nd order DC so discount //be->coeff[0] = 0; x->quantize_b(be, bd); distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff); } } return distortion; } static void macro_block_yrd(MACROBLOCK *mb, int *Rate, int *Distortion, const vp8_encodemb_rtcd_vtable_t *rtcd) { int b; MACROBLOCKD *const x = &mb->e_mbd; BLOCK *const mb_y2 = mb->block + 24; BLOCKD *const x_y2 = x->block + 24; short *Y2DCPtr = mb_y2->src_diff; BLOCK *beptr; int d; ENCODEMB_INVOKE(rtcd, submby)(mb->src_diff, mb->src.y_buffer, mb->e_mbd.predictor, mb->src.y_stride); // Fdct and building the 2nd order block for (beptr = mb->block; beptr < mb->block + 16; beptr += 2) { mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32); *Y2DCPtr++ = beptr->coeff[0]; *Y2DCPtr++ = beptr->coeff[16]; } // 2nd order fdct if (x->mbmi.mode != SPLITMV) { mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8); } // Quantization for (b = 0; b < 16; b++) { mb->quantize_b(&mb->block[b], &mb->e_mbd.block[b]); } // DC predication and Quantization of 2nd Order block if (x->mbmi.mode != SPLITMV) { { mb->quantize_b(mb_y2, x_y2); } } // Distortion if (x->mbmi.mode == SPLITMV) d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 0) << 2; else { d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 1) << 2; d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff); } *Distortion = (d >> 4); // rate *Rate = vp8_rdcost_mby(mb); } static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x, MV *best_ref_mv, int best_rd, int *mdcounts, int *returntotrate, int *returnyrate, int *returndistortion, int compressor_speed, int *mvcost[2], int mvthresh, int fullpixel) { int i, segmentation; B_PREDICTION_MODE this_mode; MACROBLOCKD *xc = &x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; BLOCK *c = &x->block[0]; BLOCKD *e = &x->e_mbd.block[0]; int const *labels; int best_segment_rd = INT_MAX; int best_seg = 0; int br = 0; int bd = 0; int bsr = 0; int bsd = 0; int bestsegmentyrate = 0; // FIX TO Rd error outrange bug PGW 9 june 2004 B_PREDICTION_MODE bmodes[16] = {ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4, ZERO4X4 }; MV bmvs[16]; int beobs[16]; vpx_memset(beobs, 0, sizeof(beobs)); for (segmentation = 0; segmentation < VP8_NUMMBSPLITS; segmentation++) { int label_count; int this_segment_rd = 0; int label_mv_thresh; int rate = 0; int sbr = 0; int sbd = 0; int UNINITIALIZED_IS_SAFE(sseshift); int segmentyrate = 0; vp8_variance_fn_ptr_t v_fn_ptr; TEMP_CONTEXT t; TEMP_CONTEXT tb; vp8_setup_temp_context(&t, xc->above_context[Y1CONTEXT], xc->left_context[Y1CONTEXT], 4); br = 0; bd = 0; switch (segmentation) { case 0: v_fn_ptr.vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x8); v_fn_ptr.svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x8); v_fn_ptr.sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8); v_fn_ptr.sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x3); v_fn_ptr.sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x8x4d); sseshift = 3; break; case 1: v_fn_ptr.vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x16); v_fn_ptr.svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x16); v_fn_ptr.sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16); v_fn_ptr.sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x3); v_fn_ptr.sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x16x4d); sseshift = 3; break; case 2: v_fn_ptr.vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var8x8); v_fn_ptr.svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar8x8); v_fn_ptr.sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8); v_fn_ptr.sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x3); v_fn_ptr.sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad8x8x4d); sseshift = 2; break; case 3: v_fn_ptr.vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var4x4); v_fn_ptr.svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar4x4); v_fn_ptr.sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4); v_fn_ptr.sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x3); v_fn_ptr.sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad4x4x4d); sseshift = 0; break; } labels = vp8_mbsplits[segmentation]; label_count = vp8_count_labels(labels); // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * mvthresh / label_count ; // Segmentation method overheads rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation); rate += vp8_cost_mv_ref(SPLITMV, mdcounts); this_segment_rd += RDFUNC(x->rdmult, x->rddiv, rate, 0, cpi->target_bits_per_mb); br += rate; for (i = 0; i < label_count; i++) { MV mode_mv[B_MODE_COUNT]; int best_label_rd = INT_MAX; B_PREDICTION_MODE mode_selected = ZERO4X4; int j; int bestlabelyrate = 0; b = &x->block[0]; d = &x->e_mbd.block[0]; // find first label for (j = 0; j < 16; j++) if (labels[j] == i) break; c = &x->block[j]; e = &x->e_mbd.block[j]; // search for the best motion vector on this segment for (this_mode = LEFT4X4; this_mode <= NEW4X4 ; this_mode ++) { int distortion; int this_rd; int num00; int labelyrate; TEMP_CONTEXT ts; vp8_setup_temp_context(&ts, &t.a[0], &t.l[0], 4); if (this_mode == NEW4X4) { int step_param = 0; int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; int n; int thissme; int bestsme = INT_MAX; MV temp_mv; // Is the best so far sufficiently good that we cant justify doing and new motion search. if (best_label_rd < label_mv_thresh) break; { int sadpb = x->sadperbit4; if (cpi->sf.search_method == HEX) bestsme = vp8_hex_search(x, c, e, best_ref_mv, &mode_mv[NEW4X4], step_param, sadpb/*x->errorperbit*/, &num00, v_fn_ptr.vf, v_fn_ptr.sdf, x->mvsadcost, mvcost); else { bestsme = cpi->diamond_search_sad(x, c, e, best_ref_mv, &mode_mv[NEW4X4], step_param, sadpb / 2/*x->errorperbit*/, &num00, &v_fn_ptr, x->mvsadcost, mvcost); n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { thissme = cpi->diamond_search_sad(x, c, e, best_ref_mv, &temp_mv, step_param + n, sadpb / 2/*x->errorperbit*/, &num00, &v_fn_ptr, x->mvsadcost, mvcost); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEW4X4].row = temp_mv.row; mode_mv[NEW4X4].col = temp_mv.col; } } } } // Should we do a full search (best quality only) if ((compressor_speed == 0) && (bestsme >> sseshift) > 4000) { thissme = cpi->full_search_sad(x, c, e, best_ref_mv, sadpb / 4, 16, &v_fn_ptr, x->mvcost, x->mvsadcost); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEW4X4] = e->bmi.mv.as_mv; } else { // The full search result is actually worse so re-instate the previous best vector e->bmi.mv.as_mv = mode_mv[NEW4X4]; } } } if (bestsme < INT_MAX) { if (!fullpixel) cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], best_ref_mv, x->errorperbit / 2, v_fn_ptr.svf, v_fn_ptr.vf, mvcost); else vp8_skip_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], best_ref_mv, x->errorperbit, v_fn_ptr.svf, v_fn_ptr.vf, mvcost); } } rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], best_ref_mv, mvcost); // Trap vectors that reach beyond the UMV borders if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max)) { continue; } distortion = vp8_encode_inter_mb_segment(x, labels, i, IF_RTCD(&cpi->rtcd.encodemb)) / 4; labelyrate = rdcost_mbsegment_y(x, labels, i, &ts); rate += labelyrate; this_rd = RDFUNC(x->rdmult, x->rddiv, rate, distortion, cpi->target_bits_per_mb); if (this_rd < best_label_rd) { sbr = rate; sbd = distortion; bestlabelyrate = labelyrate; mode_selected = this_mode; best_label_rd = this_rd; vp8_setup_temp_context(&tb, &ts.a[0], &ts.l[0], 4); } } vp8_setup_temp_context(&t, &tb.a[0], &tb.l[0], 4); labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], best_ref_mv, mvcost); br += sbr; bd += sbd; segmentyrate += bestlabelyrate; this_segment_rd += best_label_rd; if ((this_segment_rd > best_rd) || (this_segment_rd > best_segment_rd)) break; } if ((this_segment_rd <= best_rd) && (this_segment_rd < best_segment_rd)) { bsr = br; bsd = bd; bestsegmentyrate = segmentyrate; best_segment_rd = this_segment_rd; best_seg = segmentation; // store everything needed to come back to this!! for (i = 0; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; bmvs[i] = bd->bmi.mv.as_mv; bmodes[i] = bd->bmi.mode; beobs[i] = bd->eob; } } } // set it to the best for (i = 0; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; bd->bmi.mv.as_mv = bmvs[i]; bd->bmi.mode = bmodes[i]; bd->eob = beobs[i]; } // Trap cases where the best split mode has all vectors coded 0,0 (or all the same) if (FALSE) { int allsame = 1; for (i = 1; i < 16; i++) { if ((bmvs[i].col != bmvs[i-1].col) || (bmvs[i].row != bmvs[i-1].row)) { allsame = 0; break; } } if (allsame) { best_segment_rd = INT_MAX; } } *returntotrate = bsr; *returndistortion = bsd; *returnyrate = bestsegmentyrate; // save partitions labels = vp8_mbsplits[best_seg]; x->e_mbd.mbmi.partitioning = best_seg; x->e_mbd.mbmi.partition_count = vp8_count_labels(labels); for (i = 0; i < x->e_mbd.mbmi.partition_count; i++) { int j; for (j = 0; j < 16; j++) { if (labels[j] == i) break; } x->e_mbd.mbmi.partition_bmi[i].mode = x->e_mbd.block[j].bmi.mode; x->e_mbd.mbmi.partition_bmi[i].mv.as_mv = x->e_mbd.block[j].bmi.mv.as_mv; } return best_segment_rd; } int vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int *returnintra) { BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; MACROBLOCKD *xd = &x->e_mbd; B_MODE_INFO best_bmodes[16]; MB_MODE_INFO best_mbmode; MV best_ref_mv; MV mode_mv[MB_MODE_COUNT]; MB_PREDICTION_MODE this_mode; int num00; int best_mode_index = 0; int i; int mode_index; int mdcounts[4]; int rate; int distortion; int best_rd = INT_MAX; // 1 << 30; int ref_frame_cost[MAX_REF_FRAMES]; int rate2, distortion2; int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly; int rate_y, UNINITIALIZED_IS_SAFE(rate_uv); //int all_rds[MAX_MODES]; // Experimental debug code. //int all_rates[MAX_MODES]; //int all_dist[MAX_MODES]; //int intermodecost[MAX_MODES]; MB_PREDICTION_MODE uv_intra_mode; int sse; int sum; int uvintra_eob = 0; int tteob = 0; int force_no_skip = 0; *returnintra = INT_MAX; vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); // clean cpi->mbs_tested_so_far++; // Count of the number of MBs tested so far this frame x->skip = 0; ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded); // Experimental code // Adjust the RD multiplier based on the best case distortion we saw in the most recently coded mb //if ( (cpi->last_mb_distortion) > 0 && (cpi->target_bits_per_mb > 0) ) /*{ int tmprdmult; //tmprdmult = (cpi->last_mb_distortion * 256) / ((cpi->av_per_frame_bandwidth*256)/cpi->common.MBs); tmprdmult = (cpi->last_mb_distortion * 256) / cpi->target_bits_per_mb; //tmprdmult = tmprdmult; //if ( tmprdmult > cpi->RDMULT * 2 ) // tmprdmult = cpi->RDMULT * 2; //else if ( tmprdmult < cpi->RDMULT / 2 ) // tmprdmult = cpi->RDMULT / 2; //tmprdmult = (tmprdmult < 25) ? 25 : tmprdmult; //x->rdmult = tmprdmult; }*/ // Special case treatment when GF and ARF are not sensible options for reference if (cpi->ref_frame_flags == VP8_LAST_FLAG) { ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(255); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_zero(128); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_one(128); } else { ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(cpi->prob_last_coded); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_zero(cpi->prob_gf_coded); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_one(cpi->prob_gf_coded); } vpx_memset(mode_mv, 0, sizeof(mode_mv)); x->e_mbd.mbmi.ref_frame = INTRA_FRAME; vp8_rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate, &uv_intra_rate_tokenonly, &uv_intra_distortion); uv_intra_mode = x->e_mbd.mbmi.uv_mode; { uvintra_eob = 0; for (i = 16; i < 24; i++) uvintra_eob += x->e_mbd.block[i].eob; } for (mode_index = 0; mode_index < MAX_MODES; mode_index++) { int frame_cost; int this_rd = INT_MAX; int lf_or_gf = 0; // Lat Frame (01) or gf/arf (1) int disable_skip = 0; force_no_skip = 0; // Experimental debug code. // Record of rd values recorded for this MB. -1 indicates not measured //all_rds[mode_index] = -1; //all_rates[mode_index] = -1; //all_dist[mode_index] = -1; //intermodecost[mode_index] = -1; // Test best rd so far against threshold for trying this mode. if (best_rd <= cpi->rd_threshes[mode_index]) continue; // These variables hold are rolling total cost and distortion for this mode rate2 = 0; distortion2 = 0; // Where skip is allowable add in the default per mb cost for the no skip case. // where we then decide to skip we have to delete this and replace it with the // cost of signallying a skip if (cpi->common.mb_no_coeff_skip) { rate2 += vp8_cost_bit(cpi->prob_skip_false, 0); } this_mode = vp8_mode_order[mode_index]; x->e_mbd.mbmi.mode = this_mode; x->e_mbd.mbmi.uv_mode = DC_PRED; x->e_mbd.mbmi.ref_frame = vp8_ref_frame_order[mode_index]; //Only consider ZEROMV/ALTREF_FRAME for alt ref frame. if (cpi->is_src_frame_alt_ref) { if (this_mode != ZEROMV || x->e_mbd.mbmi.ref_frame != ALTREF_FRAME) continue; } if (x->e_mbd.mbmi.ref_frame == LAST_FRAME) { if (!(cpi->ref_frame_flags & VP8_LAST_FLAG)) continue; lf_or_gf = 0; // Local last frame vs Golden frame flag // Set up pointers for this macro block into the previous frame recon buffer x->e_mbd.pre.y_buffer = cpi->common.last_frame.y_buffer + recon_yoffset; x->e_mbd.pre.u_buffer = cpi->common.last_frame.u_buffer + recon_uvoffset; x->e_mbd.pre.v_buffer = cpi->common.last_frame.v_buffer + recon_uvoffset; } else if (x->e_mbd.mbmi.ref_frame == GOLDEN_FRAME) { // not supposed to reference gold frame if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG)) continue; lf_or_gf = 1; // Local last frame vs Golden frame flag // Set up pointers for this macro block into the previous frame recon buffer x->e_mbd.pre.y_buffer = cpi->common.golden_frame.y_buffer + recon_yoffset; x->e_mbd.pre.u_buffer = cpi->common.golden_frame.u_buffer + recon_uvoffset; x->e_mbd.pre.v_buffer = cpi->common.golden_frame.v_buffer + recon_uvoffset; } else if (x->e_mbd.mbmi.ref_frame == ALTREF_FRAME) { // not supposed to reference alt ref frame if (!(cpi->ref_frame_flags & VP8_ALT_FLAG)) continue; //if ( !cpi->source_alt_ref_active ) // continue; lf_or_gf = 1; // Local last frame vs Golden frame flag // Set up pointers for this macro block into the previous frame recon buffer x->e_mbd.pre.y_buffer = cpi->common.alt_ref_frame.y_buffer + recon_yoffset; x->e_mbd.pre.u_buffer = cpi->common.alt_ref_frame.u_buffer + recon_uvoffset; x->e_mbd.pre.v_buffer = cpi->common.alt_ref_frame.v_buffer + recon_uvoffset; } vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, &mode_mv[NEARESTMV], &mode_mv[NEARMV], &best_ref_mv, mdcounts, x->e_mbd.mbmi.ref_frame, cpi->common.ref_frame_sign_bias); // Estimate the reference frame signaling cost and add it to the rolling cost variable. frame_cost = ref_frame_cost[x->e_mbd.mbmi.ref_frame]; rate2 += frame_cost; if (this_mode <= B_PRED) { for (i = 0; i < 16; i++) { vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO)); } } // Check to see if the testing frequency for this mode is at its max // If so then prevent it from being tested and increase the threshold for its testing if (cpi->mode_test_hit_counts[mode_index] && (cpi->mode_check_freq[mode_index] > 1)) { if (cpi->mbs_tested_so_far <= cpi->mode_check_freq[mode_index] * cpi->mode_test_hit_counts[mode_index]) { // Increase the threshold for coding this mode to make it less likely to be chosen cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; continue; } } // We have now reached the point where we are going to test the current mode so increment the counter for the number of times it has been tested cpi->mode_test_hit_counts[mode_index] ++; // Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise if (cpi->zbin_mode_boost_enabled) { if ((vp8_mode_order[mode_index] == ZEROMV) && (vp8_ref_frame_order[mode_index] != LAST_FRAME)) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = 0; vp8cx_mb_init_quantizer(cpi, x); } switch (this_mode) { case B_PRED: // Note the rate value returned here includes the cost of coding the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED]; vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion); rate2 += rate; //rate_y = rate; distortion2 += distortion; rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; break; case SPLITMV: { int frame_cost_rd = RDFUNC(x->rdmult, x->rddiv, frame_cost, 0, cpi->target_bits_per_mb); int saved_rate = rate2; // vp8_rd_pick_best_mbsegmentation looks only at Y and does not account for frame_cost. // (best_rd - frame_cost_rd) is thus a conservative breakout number. int breakout_rd = best_rd - frame_cost_rd; int tmp_rd; if (x->e_mbd.mbmi.ref_frame == LAST_FRAME) tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, breakout_rd, mdcounts, &rate, &rate_y, &distortion, cpi->compressor_speed, x->mvcost, cpi->rd_threshes[THR_NEWMV], cpi->common.full_pixel) ; else if (x->e_mbd.mbmi.ref_frame == GOLDEN_FRAME) tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, breakout_rd, mdcounts, &rate, &rate_y, &distortion, cpi->compressor_speed, x->mvcost, cpi->rd_threshes[THR_NEWG], cpi->common.full_pixel) ; else tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, breakout_rd, mdcounts, &rate, &rate_y, &distortion, cpi->compressor_speed, x->mvcost, cpi->rd_threshes[THR_NEWA], cpi->common.full_pixel) ; rate2 += rate; distortion2 += distortion; // If even the 'Y' rd value of split is higher than best so far then dont bother looking at UV if (tmp_rd < breakout_rd) { // Now work out UV cost and add it in vp8_rd_inter_uv(cpi, x, &rate, &distortion, cpi->common.full_pixel); rate2 += rate; rate_uv = rate; distortion2 += distortion; } else { this_rd = INT_MAX; disable_skip = 1; } // Trap cases where the best split mode has all vectors coded 0,0 (or all the same) if (0) { int allsame = 1; for (i = 1; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; if (bd->bmi.mv.as_int != x->e_mbd.block[0].bmi.mv.as_int) //(bmvs[i].col != bmvs[i-1].col) || (bmvs[i].row != bmvs[i-1].row ) ) { allsame = 0; break; } } if (allsame) { // reset mode and mv and jump to newmv this_mode = NEWMV; distortion2 = 0; rate2 = saved_rate; mode_mv[NEWMV].row = x->e_mbd.block[0].bmi.mv.as_mv.row; mode_mv[NEWMV].col = x->e_mbd.block[0].bmi.mv.as_mv.col; rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96); goto mv_selected; } } // trap cases where the 8x8s can be promoted to 8x16s or 16x8s if (0)//x->e_mbd.mbmi.partition_count == 4) { if (x->e_mbd.mbmi.partition_bmi[0].mv.as_int == x->e_mbd.mbmi.partition_bmi[1].mv.as_int && x->e_mbd.mbmi.partition_bmi[2].mv.as_int == x->e_mbd.mbmi.partition_bmi[3].mv.as_int) { const int *labels = vp8_mbsplits[2]; x->e_mbd.mbmi.partitioning = 0; rate -= vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + 2); rate += vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings); //rate -= x->inter_bmode_costs[ x->e_mbd.mbmi.partition_bmi[1]]; //rate -= x->inter_bmode_costs[ x->e_mbd.mbmi.partition_bmi[3]]; x->e_mbd.mbmi.partition_bmi[1] = x->e_mbd.mbmi.partition_bmi[2]; } } } break; case DC_PRED: case V_PRED: case H_PRED: case TM_PRED: x->e_mbd.mbmi.ref_frame = INTRA_FRAME; vp8_build_intra_predictors_mby_ptr(&x->e_mbd); { macro_block_yrd(x, &rate, &distortion, IF_RTCD(&cpi->rtcd.encodemb)) ; rate2 += rate; rate_y = rate; distortion2 += distortion; rate2 += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mbmi.mode]; rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; } break; case NEWMV: // Decrement full search counter if (cpi->check_freq[lf_or_gf] > 0) cpi->check_freq[lf_or_gf] --; { int thissme; int bestsme = INT_MAX; int step_param = cpi->sf.first_step; int search_range; int further_steps; int n; // Work out how long a search we should do search_range = MAXF(abs(best_ref_mv.col), abs(best_ref_mv.row)) >> 3; if (search_range >= x->vector_range) x->vector_range = search_range; else if (x->vector_range > cpi->sf.min_fs_radius) x->vector_range--; // Initial step/diamond search { int sadpb = x->sadperbit16; if (cpi->sf.search_method == HEX) { bestsme = vp8_hex_search(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb/*x->errorperbit*/, &num00, cpi->fn_ptr.vf, cpi->fn_ptr.sdf, x->mvsadcost, x->mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { bestsme = cpi->diamond_search_sad(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb / 2/*x->errorperbit*/, &num00, &cpi->fn_ptr, x->mvsadcost, x->mvcost); //sadpb < 9 mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // Further step/diamond searches as necessary n = 0; further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { thissme = cpi->diamond_search_sad(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param + n, sadpb / 4/*x->errorperbit*/, &num00, &cpi->fn_ptr, x->mvsadcost, x->mvcost); //sadpb = 9 if (thissme < bestsme) { bestsme = thissme; mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; } else { d->bmi.mv.as_mv.row = mode_mv[NEWMV].row; d->bmi.mv.as_mv.col = mode_mv[NEWMV].col; } } } } } // Should we do a full search if (!cpi->check_freq[lf_or_gf] || cpi->do_full[lf_or_gf]) { int thissme; int full_flag_thresh = 0; // Update x->vector_range based on best vector found in step search search_range = MAXF(abs(d->bmi.mv.as_mv.row), abs(d->bmi.mv.as_mv.col)); if (search_range > x->vector_range) x->vector_range = search_range; else search_range = x->vector_range; // Apply limits search_range = (search_range > cpi->sf.max_fs_radius) ? cpi->sf.max_fs_radius : search_range; { int sadpb = x->sadperbit16 >> 2; thissme = cpi->full_search_sad(x, b, d, &best_ref_mv, sadpb, search_range, &cpi->fn_ptr, x->mvcost, x->mvsadcost); } // Barrier threshold to initiating full search // full_flag_thresh = 10 + (thissme >> 7); if ((thissme + full_flag_thresh) < bestsme) { cpi->do_full[lf_or_gf] ++; bestsme = thissme; } else if (thissme < bestsme) bestsme = thissme; else { cpi->do_full[lf_or_gf] = cpi->do_full[lf_or_gf] >> 1; cpi->check_freq[lf_or_gf] = cpi->sf.full_freq[lf_or_gf]; // The full search result is actually worse so re-instate the previous best vector d->bmi.mv.as_mv.row = mode_mv[NEWMV].row; d->bmi.mv.as_mv.col = mode_mv[NEWMV].col; } } if (bestsme < INT_MAX) // cpi->find_fractional_mv_step(x,b,d,&d->bmi.mv.as_mv,&best_ref_mv,x->errorperbit/2,cpi->fn_ptr.svf,cpi->fn_ptr.vf,x->mvcost); // normal mvc=11 cpi->find_fractional_mv_step(x, b, d, &d->bmi.mv.as_mv, &best_ref_mv, x->errorperbit / 4, cpi->fn_ptr.svf, cpi->fn_ptr.vf, x->mvcost); mode_mv[NEWMV].row = d->bmi.mv.as_mv.row; mode_mv[NEWMV].col = d->bmi.mv.as_mv.col; // Add the new motion vector cost to our rolling cost variable rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96); } case NEARESTMV: case NEARMV: // Clip "next_nearest" so that it does not extend to far out of image if (mode_mv[this_mode].col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN)) mode_mv[this_mode].col = xd->mb_to_left_edge - LEFT_TOP_MARGIN; else if (mode_mv[this_mode].col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN) mode_mv[this_mode].col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; if (mode_mv[this_mode].row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN)) mode_mv[this_mode].row = xd->mb_to_top_edge - LEFT_TOP_MARGIN; else if (mode_mv[this_mode].row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN) mode_mv[this_mode].row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; // Do not bother proceeding if the vector (from newmv,nearest or near) is 0,0 as this should then be coded using the zeromv mode. if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) && ((mode_mv[this_mode].row == 0) && (mode_mv[this_mode].col == 0))) continue; case ZEROMV: mv_selected: // Trap vectors that reach beyond the UMV borders // Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point // because of the lack of break statements in the previous two cases. if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max)) continue; vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]); vp8_build_inter_predictors_mby(&x->e_mbd); VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, (unsigned int *)(&sse), &sum); if (cpi->active_map_enabled && x->active_ptr[0] == 0) { x->skip = 1; } else if (sse < x->encode_breakout) { // Check u and v to make sure skip is ok int sse2 = 0; sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance)); if (sse2 * 2 < x->encode_breakout) { x->skip = 1; distortion2 = sse; rate2 = 500; disable_skip = 1; // We have no real rate data so trying to adjust for rate_y and rate_uv below will cause problems. this_rd = RDFUNC(x->rdmult, x->rddiv, rate2, distortion2, cpi->target_bits_per_mb); break; // (PGW) Move break here from below - for now at least } else x->skip = 0; } //intermodecost[mode_index] = vp8_cost_mv_ref(this_mode, mdcounts); // Experimental debug code // Add in the Mv/mode cost rate2 += vp8_cost_mv_ref(this_mode, mdcounts); // Y cost and distortion macro_block_yrd(x, &rate, &distortion, IF_RTCD(&cpi->rtcd.encodemb)); rate2 += rate; rate_y = rate; distortion2 += distortion; // UV cost and distortion vp8_rd_inter_uv(cpi, x, &rate, &distortion, cpi->common.full_pixel); rate2 += rate; rate_uv = rate; distortion2 += distortion; break; default: break; } if (!disable_skip) { // Test for the condition where skip block will be activated because there are no non zero coefficients and make any necessary adjustment for rate if (cpi->common.mb_no_coeff_skip) { tteob = 0; for (i = 0; i <= 24; i++) { tteob += x->e_mbd.block[i].eob; } if (tteob == 0) { #if 1 rate2 -= (rate_y + rate_uv); // Back out no skip flag costing and add in skip flag costing if (cpi->prob_skip_false) { rate2 += vp8_cost_bit(cpi->prob_skip_false, 1); rate2 -= vp8_cost_bit(cpi->prob_skip_false, 0); } #else int rateuseskip; int ratenotuseskip; ratenotuseskip = rate_y + rate_uv + vp8_cost_bit(cpi->prob_skip_false, 0); rateuseskip = vp8_cost_bit(cpi->prob_skip_false, 1); if (1) // rateuseskipprob_skip_false, 0); rateuseskip = vp8_cost_bit(cpi->prob_skip_false, 1); minrate = rateuseskip - ratenotuseskip; skip_rd = RDFUNC(x->rdmult, x->rddiv, minrate, maxdistortion - distortion2, cpi->target_bits_per_mb); if (skip_rd + 50 < 0 && x->e_mbd.mbmi.ref_frame != INTRA_FRAME && rate_y + rate_uv < 4000) { force_no_skip = 1; rate2 = rate2 + rateuseskip - ratenotuseskip; distortion2 = maxdistortion; } else { force_no_skip = 0; } } #endif } // Calculate the final RD estimate for this mode this_rd = RDFUNC(x->rdmult, x->rddiv, rate2, distortion2, cpi->target_bits_per_mb); } // Experimental debug code. //all_rds[mode_index] = this_rd; //all_rates[mode_index] = rate2; //all_dist[mode_index] = distortion2; if ((x->e_mbd.mbmi.ref_frame == INTRA_FRAME) && (this_rd < *returnintra)) { *returnintra = this_rd ; } // Did this mode help.. i.i is it the new best mode if (this_rd < best_rd || x->skip) { // Note index of best mode so far best_mode_index = mode_index; x->e_mbd.mbmi.force_no_skip = force_no_skip; if (this_mode <= B_PRED) { x->e_mbd.mbmi.uv_mode = uv_intra_mode; } *returnrate = rate2; *returndistortion = distortion2; best_rd = this_rd; vpx_memcpy(&best_mbmode, &x->e_mbd.mbmi, sizeof(MB_MODE_INFO)); for (i = 0; i < 16; i++) { vpx_memcpy(&best_bmodes[i], &x->e_mbd.block[i].bmi, sizeof(B_MODE_INFO)); } // Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } // If the mode did not help improve the best error case then raise the threshold for testing that mode next time around. else { cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } if (x->skip) break; } // Reduce the activation RD thresholds for the best choice mode if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2); cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT; cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index]; // If we chose a split mode then reset the new MV thresholds as well /*if ( vp8_mode_order[best_mode_index] == SPLITMV ) { best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWMV] >> 4); cpi->rd_thresh_mult[THR_NEWMV] = (cpi->rd_thresh_mult[THR_NEWMV] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWMV]-best_adjustment: MIN_THRESHMULT; cpi->rd_threshes[THR_NEWMV] = (cpi->rd_baseline_thresh[THR_NEWMV] >> 7) * cpi->rd_thresh_mult[THR_NEWMV]; best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWG] >> 4); cpi->rd_thresh_mult[THR_NEWG] = (cpi->rd_thresh_mult[THR_NEWG] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWG]-best_adjustment: MIN_THRESHMULT; cpi->rd_threshes[THR_NEWG] = (cpi->rd_baseline_thresh[THR_NEWG] >> 7) * cpi->rd_thresh_mult[THR_NEWG]; best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWA] >> 4); cpi->rd_thresh_mult[THR_NEWA] = (cpi->rd_thresh_mult[THR_NEWA] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWA]-best_adjustment: MIN_THRESHMULT; cpi->rd_threshes[THR_NEWA] = (cpi->rd_baseline_thresh[THR_NEWA] >> 7) * cpi->rd_thresh_mult[THR_NEWA]; }*/ } // If we have chosen new mv or split then decay the full search check count more quickly. if ((vp8_mode_order[best_mode_index] == NEWMV) || (vp8_mode_order[best_mode_index] == SPLITMV)) { int lf_or_gf = (vp8_ref_frame_order[best_mode_index] == LAST_FRAME) ? 0 : 1; if (cpi->check_freq[lf_or_gf] && !cpi->do_full[lf_or_gf]) { cpi->check_freq[lf_or_gf] --; } } // Keep a record of best mode index that we chose cpi->last_best_mode_index = best_mode_index; // Note how often each mode chosen as best cpi->mode_chosen_counts[best_mode_index] ++; if (cpi->is_src_frame_alt_ref && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) { best_mbmode.mode = ZEROMV; best_mbmode.ref_frame = ALTREF_FRAME; best_mbmode.mv.as_int = 0; best_mbmode.uv_mode = 0; best_mbmode.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; best_mbmode.partitioning = 0; best_mbmode.dc_diff = 0; vpx_memcpy(&x->e_mbd.mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); for (i = 0; i < 16; i++) { vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO)); } x->e_mbd.mbmi.mv.as_int = 0; return best_rd; } // macroblock modes vpx_memcpy(&x->e_mbd.mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); for (i = 0; i < 16; i++) { vpx_memcpy(&x->e_mbd.block[i].bmi, &best_bmodes[i], sizeof(B_MODE_INFO)); } x->e_mbd.mbmi.mv.as_mv = x->e_mbd.block[15].bmi.mv.as_mv; return best_rd; } #endif