/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "mcomp.h" #include "vpx_mem/vpx_mem.h" #include <stdio.h> #include <limits.h> #include <math.h> #ifdef ENTROPY_STATS static int mv_ref_ct [31] [4] [2]; static int mv_mode_cts [4] [2]; #endif static int mv_bits_sadcost[256]; void vp8cx_init_mv_bits_sadcost() { int i; for (i = 0; i < 256; i++) { mv_bits_sadcost[i] = (int)sqrt(i * 16); } } int vp8_mv_bit_cost(MV *mv, MV *ref, int *mvcost[2], int Weight) { // MV costing is based on the distribution of vectors in the previous frame and as such will tend to // over state the cost of vectors. In addition coding a new vector can have a knock on effect on the // cost of subsequent vectors and the quality of prediction from NEAR and NEAREST for subsequent blocks. // The "Weight" parameter allows, to a limited extent, for some account to be taken of these factors. return ((mvcost[0][(mv->row - ref->row) >> 1] + mvcost[1][(mv->col - ref->col) >> 1]) * Weight) >> 7; } int vp8_mv_err_cost(MV *mv, MV *ref, int *mvcost[2], int error_per_bit) { //int i; //return ((mvcost[0][(mv->row - ref->row)>>1] + mvcost[1][(mv->col - ref->col)>>1] + 128) * error_per_bit) >> 8; //return ( (vp8_mv_bit_cost(mv, ref, mvcost, 100) + 128) * error_per_bit) >> 8; //i = (vp8_mv_bit_cost(mv, ref, mvcost, 100) * error_per_bit + 128) >> 8; return ((mvcost[0][(mv->row - ref->row) >> 1] + mvcost[1][(mv->col - ref->col) >> 1]) * error_per_bit + 128) >> 8; //return (vp8_mv_bit_cost(mv, ref, mvcost, 128) * error_per_bit + 128) >> 8; } static int mv_bits(MV *mv, MV *ref, int *mvcost[2]) { // get the estimated number of bits for a motion vector, to be used for costing in SAD based // motion estimation return ((mvcost[0][(mv->row - ref->row) >> 1] + mvcost[1][(mv->col - ref->col)>> 1]) + 128) >> 8; } void vp8_init_dsmotion_compensation(MACROBLOCK *x, int stride) { int Len; int search_site_count = 0; // Generate offsets for 4 search sites per step. Len = MAX_FIRST_STEP; x->ss[search_site_count].mv.col = 0; x->ss[search_site_count].mv.row = 0; x->ss[search_site_count].offset = 0; search_site_count++; while (Len > 0) { // Compute offsets for search sites. x->ss[search_site_count].mv.col = 0; x->ss[search_site_count].mv.row = -Len; x->ss[search_site_count].offset = -Len * stride; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = 0; x->ss[search_site_count].mv.row = Len; x->ss[search_site_count].offset = Len * stride; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = -Len; x->ss[search_site_count].mv.row = 0; x->ss[search_site_count].offset = -Len; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = Len; x->ss[search_site_count].mv.row = 0; x->ss[search_site_count].offset = Len; search_site_count++; // Contract. Len /= 2; } x->ss_count = search_site_count; x->searches_per_step = 4; } void vp8_init3smotion_compensation(MACROBLOCK *x, int stride) { int Len; int search_site_count = 0; // Generate offsets for 8 search sites per step. Len = MAX_FIRST_STEP; x->ss[search_site_count].mv.col = 0; x->ss[search_site_count].mv.row = 0; x->ss[search_site_count].offset = 0; search_site_count++; while (Len > 0) { // Compute offsets for search sites. x->ss[search_site_count].mv.col = 0; x->ss[search_site_count].mv.row = -Len; x->ss[search_site_count].offset = -Len * stride; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = 0; x->ss[search_site_count].mv.row = Len; x->ss[search_site_count].offset = Len * stride; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = -Len; x->ss[search_site_count].mv.row = 0; x->ss[search_site_count].offset = -Len; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = Len; x->ss[search_site_count].mv.row = 0; x->ss[search_site_count].offset = Len; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = -Len; x->ss[search_site_count].mv.row = -Len; x->ss[search_site_count].offset = -Len * stride - Len; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = Len; x->ss[search_site_count].mv.row = -Len; x->ss[search_site_count].offset = -Len * stride + Len; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = -Len; x->ss[search_site_count].mv.row = Len; x->ss[search_site_count].offset = Len * stride - Len; search_site_count++; // Compute offsets for search sites. x->ss[search_site_count].mv.col = Len; x->ss[search_site_count].mv.row = Len; x->ss[search_site_count].offset = Len * stride + Len; search_site_count++; // Contract. Len /= 2; } x->ss_count = search_site_count; x->searches_per_step = 8; } #define MVC(r,c) (((mvcost[0][(r)-rr] + mvcost[1][(c) - rc]) * error_per_bit + 128 )>>8 ) // estimated cost of a motion vector (r,c) #define PRE(r,c) (*(d->base_pre) + d->pre + ((r)>>2) * d->pre_stride + ((c)>>2)) // pointer to predictor base of a motionvector #define SP(x) (((x)&3)<<1) // convert motion vector component to offset for svf calc #define DIST(r,c) vfp->svf( PRE(r,c), d->pre_stride, SP(c),SP(r), z,b->src_stride,&sse) // returns subpixel variance error function. #define IFMVCV(r,c,s,e) if ( c >= minc && c <= maxc && r >= minr && r <= maxr) s else e; #define ERR(r,c) (MVC(r,c)+DIST(r,c)) // returns distortion + motion vector cost #define CHECK_BETTER(v,r,c) IFMVCV(r,c,{if((v = ERR(r,c)) < besterr) { besterr = v; br=r; bc=c; }}, v=INT_MAX;)// checks if (r,c) has better score than previous best #define MIN(x,y) (((x)<(y))?(x):(y)) #define MAX(x,y) (((x)>(y))?(x):(y)) //#define CHECK_BETTER(v,r,c) if((v = ERR(r,c)) < besterr) { besterr = v; br=r; bc=c; } int vp8_find_best_sub_pixel_step_iteratively(MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *bestmv, MV *ref_mv, int error_per_bit, const vp8_variance_fn_ptr_t *vfp, int *mvcost[2]) { unsigned char *y = *(d->base_pre) + d->pre + (bestmv->row) * d->pre_stride + bestmv->col; unsigned char *z = (*(b->base_src) + b->src); int rr = ref_mv->row >> 1, rc = ref_mv->col >> 1; int br = bestmv->row << 2, bc = bestmv->col << 2; int tr = br, tc = bc; unsigned int besterr = INT_MAX; unsigned int left, right, up, down, diag; unsigned int sse; unsigned int whichdir; unsigned int halfiters = 4; unsigned int quarteriters = 4; int minc = MAX(x->mv_col_min << 2, (ref_mv->col >> 1) - ((1 << mvlong_width) - 1)); int maxc = MIN(x->mv_col_max << 2, (ref_mv->col >> 1) + ((1 << mvlong_width) - 1)); int minr = MAX(x->mv_row_min << 2, (ref_mv->row >> 1) - ((1 << mvlong_width) - 1)); int maxr = MIN(x->mv_row_max << 2, (ref_mv->row >> 1) + ((1 << mvlong_width) - 1)); // central mv bestmv->row <<= 3; bestmv->col <<= 3; // calculate central point error besterr = vfp->vf(y, d->pre_stride, z, b->src_stride, &sse); besterr += vp8_mv_err_cost(bestmv, ref_mv, mvcost, error_per_bit); // TODO: Each subsequent iteration checks at least one point in common with the last iteration could be 2 ( if diag selected) while (--halfiters) { // 1/2 pel CHECK_BETTER(left, tr, tc - 2); CHECK_BETTER(right, tr, tc + 2); CHECK_BETTER(up, tr - 2, tc); CHECK_BETTER(down, tr + 2, tc); whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); switch (whichdir) { case 0: CHECK_BETTER(diag, tr - 2, tc - 2); break; case 1: CHECK_BETTER(diag, tr - 2, tc + 2); break; case 2: CHECK_BETTER(diag, tr + 2, tc - 2); break; case 3: CHECK_BETTER(diag, tr + 2, tc + 2); break; } // no reason to check the same one again. if (tr == br && tc == bc) break; tr = br; tc = bc; } // TODO: Each subsequent iteration checks at least one point in common with the last iteration could be 2 ( if diag selected) // 1/4 pel while (--quarteriters) { CHECK_BETTER(left, tr, tc - 1); CHECK_BETTER(right, tr, tc + 1); CHECK_BETTER(up, tr - 1, tc); CHECK_BETTER(down, tr + 1, tc); whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); switch (whichdir) { case 0: CHECK_BETTER(diag, tr - 1, tc - 1); break; case 1: CHECK_BETTER(diag, tr - 1, tc + 1); break; case 2: CHECK_BETTER(diag, tr + 1, tc - 1); break; case 3: CHECK_BETTER(diag, tr + 1, tc + 1); break; } // no reason to check the same one again. if (tr == br && tc == bc) break; tr = br; tc = bc; } bestmv->row = br << 1; bestmv->col = bc << 1; if ((abs(bestmv->col - ref_mv->col) > MAX_FULL_PEL_VAL) || (abs(bestmv->row - ref_mv->row) > MAX_FULL_PEL_VAL)) return INT_MAX; return besterr; } #undef MVC #undef PRE #undef SP #undef DIST #undef ERR #undef CHECK_BETTER #undef MIN #undef MAX int vp8_find_best_sub_pixel_step(MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *bestmv, MV *ref_mv, int error_per_bit, const vp8_variance_fn_ptr_t *vfp, int *mvcost[2]) { int bestmse = INT_MAX; MV startmv; //MV this_mv; MV this_mv; unsigned char *y = *(d->base_pre) + d->pre + (bestmv->row) * d->pre_stride + bestmv->col; unsigned char *z = (*(b->base_src) + b->src); int left, right, up, down, diag; unsigned int sse; int whichdir ; // Trap uncodable vectors if ((abs((bestmv->col << 3) - ref_mv->col) > MAX_FULL_PEL_VAL) || (abs((bestmv->row << 3) - ref_mv->row) > MAX_FULL_PEL_VAL)) { bestmv->row <<= 3; bestmv->col <<= 3; return INT_MAX; } // central mv bestmv->row <<= 3; bestmv->col <<= 3; startmv = *bestmv; // calculate central point error bestmse = vfp->vf(y, d->pre_stride, z, b->src_stride, &sse); bestmse += vp8_mv_err_cost(bestmv, ref_mv, mvcost, error_per_bit); // go left then right and check error this_mv.row = startmv.row; this_mv.col = ((startmv.col - 8) | 4); left = vfp->svf_halfpix_h(y - 1, d->pre_stride, z, b->src_stride, &sse); left += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (left < bestmse) { *bestmv = this_mv; bestmse = left; } this_mv.col += 8; right = vfp->svf_halfpix_h(y, d->pre_stride, z, b->src_stride, &sse); right += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (right < bestmse) { *bestmv = this_mv; bestmse = right; } // go up then down and check error this_mv.col = startmv.col; this_mv.row = ((startmv.row - 8) | 4); up = vfp->svf_halfpix_v(y - d->pre_stride, d->pre_stride, z, b->src_stride, &sse); up += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (up < bestmse) { *bestmv = this_mv; bestmse = up; } this_mv.row += 8; down = vfp->svf_halfpix_v(y, d->pre_stride, z, b->src_stride, &sse); down += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (down < bestmse) { *bestmv = this_mv; bestmse = down; } // now check 1 more diagonal whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); //for(whichdir =0;whichdir<4;whichdir++) //{ this_mv = startmv; switch (whichdir) { case 0: this_mv.col = (this_mv.col - 8) | 4; this_mv.row = (this_mv.row - 8) | 4; diag = vfp->svf_halfpix_hv(y - 1 - d->pre_stride, d->pre_stride, z, b->src_stride, &sse); break; case 1: this_mv.col += 4; this_mv.row = (this_mv.row - 8) | 4; diag = vfp->svf_halfpix_hv(y - d->pre_stride, d->pre_stride, z, b->src_stride, &sse); break; case 2: this_mv.col = (this_mv.col - 8) | 4; this_mv.row += 4; diag = vfp->svf_halfpix_hv(y - 1, d->pre_stride, z, b->src_stride, &sse); break; case 3: this_mv.col += 4; this_mv.row += 4; diag = vfp->svf_halfpix_hv(y, d->pre_stride, z, b->src_stride, &sse); break; } diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } // } // time to check quarter pels. if (bestmv->row < startmv.row) y -= d->pre_stride; if (bestmv->col < startmv.col) y--; startmv = *bestmv; // go left then right and check error this_mv.row = startmv.row; if (startmv.col & 7) { this_mv.col = startmv.col - 2; left = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); } else { this_mv.col = (startmv.col - 8) | 6; left = vfp->svf(y - 1, d->pre_stride, 6, this_mv.row & 7, z, b->src_stride, &sse); } left += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (left < bestmse) { *bestmv = this_mv; bestmse = left; } this_mv.col += 4; right = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); right += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (right < bestmse) { *bestmv = this_mv; bestmse = right; } // go up then down and check error this_mv.col = startmv.col; if (startmv.row & 7) { this_mv.row = startmv.row - 2; up = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); } else { this_mv.row = (startmv.row - 8) | 6; up = vfp->svf(y - d->pre_stride, d->pre_stride, this_mv.col & 7, 6, z, b->src_stride, &sse); } up += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (up < bestmse) { *bestmv = this_mv; bestmse = up; } this_mv.row += 4; down = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); down += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (down < bestmse) { *bestmv = this_mv; bestmse = down; } // now check 1 more diagonal whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); // for(whichdir=0;whichdir<4;whichdir++) // { this_mv = startmv; switch (whichdir) { case 0: if (startmv.row & 7) { this_mv.row -= 2; if (startmv.col & 7) { this_mv.col -= 2; diag = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); } else { this_mv.col = (startmv.col - 8) | 6; diag = vfp->svf(y - 1, d->pre_stride, 6, this_mv.row & 7, z, b->src_stride, &sse);; } } else { this_mv.row = (startmv.row - 8) | 6; if (startmv.col & 7) { this_mv.col -= 2; diag = vfp->svf(y - d->pre_stride, d->pre_stride, this_mv.col & 7, 6, z, b->src_stride, &sse); } else { this_mv.col = (startmv.col - 8) | 6; diag = vfp->svf(y - d->pre_stride - 1, d->pre_stride, 6, 6, z, b->src_stride, &sse); } } break; case 1: this_mv.col += 2; if (startmv.row & 7) { this_mv.row -= 2; diag = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); } else { this_mv.row = (startmv.row - 8) | 6; diag = vfp->svf(y - d->pre_stride, d->pre_stride, this_mv.col & 7, 6, z, b->src_stride, &sse); } break; case 2: this_mv.row += 2; if (startmv.col & 7) { this_mv.col -= 2; diag = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); } else { this_mv.col = (startmv.col - 8) | 6; diag = vfp->svf(y - 1, d->pre_stride, 6, this_mv.row & 7, z, b->src_stride, &sse);; } break; case 3: this_mv.col += 2; this_mv.row += 2; diag = vfp->svf(y, d->pre_stride, this_mv.col & 7, this_mv.row & 7, z, b->src_stride, &sse); break; } diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } // } return bestmse; } int vp8_find_best_half_pixel_step(MACROBLOCK *mb, BLOCK *b, BLOCKD *d, MV *bestmv, MV *ref_mv, int error_per_bit, const vp8_variance_fn_ptr_t *vfp, int *mvcost[2]) { int bestmse = INT_MAX; MV startmv; //MV this_mv; MV this_mv; unsigned char *y = *(d->base_pre) + d->pre + (bestmv->row) * d->pre_stride + bestmv->col; unsigned char *z = (*(b->base_src) + b->src); int left, right, up, down, diag; unsigned int sse; // Trap uncodable vectors if ((abs((bestmv->col << 3) - ref_mv->col) > MAX_FULL_PEL_VAL) || (abs((bestmv->row << 3) - ref_mv->row) > MAX_FULL_PEL_VAL)) { bestmv->row <<= 3; bestmv->col <<= 3; return INT_MAX; } // central mv bestmv->row <<= 3; bestmv->col <<= 3; startmv = *bestmv; // calculate central point error bestmse = vfp->vf(y, d->pre_stride, z, b->src_stride, &sse); bestmse += vp8_mv_err_cost(bestmv, ref_mv, mvcost, error_per_bit); // go left then right and check error this_mv.row = startmv.row; this_mv.col = ((startmv.col - 8) | 4); left = vfp->svf_halfpix_h(y - 1, d->pre_stride, z, b->src_stride, &sse); left += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (left < bestmse) { *bestmv = this_mv; bestmse = left; } this_mv.col += 8; right = vfp->svf_halfpix_h(y, d->pre_stride, z, b->src_stride, &sse); right += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (right < bestmse) { *bestmv = this_mv; bestmse = right; } // go up then down and check error this_mv.col = startmv.col; this_mv.row = ((startmv.row - 8) | 4); up = vfp->svf_halfpix_v(y - d->pre_stride, d->pre_stride, z, b->src_stride, &sse); up += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (up < bestmse) { *bestmv = this_mv; bestmse = up; } this_mv.row += 8; down = vfp->svf_halfpix_v(y, d->pre_stride, z, b->src_stride, &sse); down += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (down < bestmse) { *bestmv = this_mv; bestmse = down; } // somewhat strangely not doing all the diagonals for half pel is slower than doing them. #if 0 // now check 1 more diagonal - whichdir = (left < right ? 0 : 1) + (up < down ? 0 : 2); this_mv = startmv; switch (whichdir) { case 0: this_mv.col = (this_mv.col - 8) | 4; this_mv.row = (this_mv.row - 8) | 4; diag = vfp->svf(y - 1 - d->pre_stride, d->pre_stride, 4, 4, z, b->src_stride, &sse); break; case 1: this_mv.col += 4; this_mv.row = (this_mv.row - 8) | 4; diag = vfp->svf(y - d->pre_stride, d->pre_stride, 4, 4, z, b->src_stride, &sse); break; case 2: this_mv.col = (this_mv.col - 8) | 4; this_mv.row += 4; diag = vfp->svf(y - 1, d->pre_stride, 4, 4, z, b->src_stride, &sse); break; case 3: this_mv.col += 4; this_mv.row += 4; diag = vfp->svf(y, d->pre_stride, 4, 4, z, b->src_stride, &sse); break; } diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } #else this_mv.col = (this_mv.col - 8) | 4; this_mv.row = (this_mv.row - 8) | 4; diag = vfp->svf_halfpix_hv(y - 1 - d->pre_stride, d->pre_stride, z, b->src_stride, &sse); diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } this_mv.col += 8; diag = vfp->svf_halfpix_hv(y - d->pre_stride, d->pre_stride, z, b->src_stride, &sse); diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } this_mv.col = (this_mv.col - 8) | 4; this_mv.row = startmv.row + 4; diag = vfp->svf_halfpix_hv(y - 1, d->pre_stride, z, b->src_stride, &sse); diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } this_mv.col += 8; diag = vfp->svf_halfpix_hv(y, d->pre_stride, z, b->src_stride, &sse); diag += vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); if (diag < bestmse) { *bestmv = this_mv; bestmse = diag; } #endif return bestmse; } #define MVC(r,c) (((mvsadcost[0][((r)<<2)-rr] + mvsadcost[1][((c)<<2) - rc]) * error_per_bit + 128 )>>8 ) // estimated cost of a motion vector (r,c) #define PRE(r,c) (*(d->base_pre) + d->pre + (r) * d->pre_stride + (c)) // pointer to predictor base of a motionvector #define DIST(r,c,v) vfp->sdf( src,src_stride,PRE(r,c),d->pre_stride, v) // returns sad error score. #define ERR(r,c,v) (MVC(r,c)+DIST(r,c,v)) // returns distortion + motion vector cost #define CHECK_BETTER(v,r,c) if ((v = ERR(r,c,besterr)) < besterr) { besterr = v; br=r; bc=c; } // checks if (r,c) has better score than previous best static const MV next_chkpts[6][3] = { {{ -2, 0}, { -1, -2}, {1, -2}}, {{ -1, -2}, {1, -2}, {2, 0}}, {{1, -2}, {2, 0}, {1, 2}}, {{2, 0}, {1, 2}, { -1, 2}}, {{1, 2}, { -1, 2}, { -2, 0}}, {{ -1, 2}, { -2, 0}, { -1, -2}} }; int vp8_hex_search ( MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *ref_mv, MV *best_mv, int search_param, int error_per_bit, int *num00, const vp8_variance_fn_ptr_t *vfp, int *mvsadcost[2], int *mvcost[2] ) { MV hex[6] = { { -1, -2}, {1, -2}, {2, 0}, {1, 2}, { -1, 2}, { -2, 0} } ; MV neighbors[8] = { { -1, -1}, { -1, 0}, { -1, 1}, {0, -1}, {0, 1}, {1, -1}, {1, 0}, {1, 1} } ; int i, j; unsigned char *src = (*(b->base_src) + b->src); int src_stride = b->src_stride; int rr = ref_mv->row, rc = ref_mv->col, br = rr >> 3, bc = rc >> 3, tr, tc; unsigned int besterr, thiserr = 0x7fffffff; int k = -1, tk; if (bc < x->mv_col_min) bc = x->mv_col_min; if (bc > x->mv_col_max) bc = x->mv_col_max; if (br < x->mv_row_min) br = x->mv_row_min; if (br > x->mv_row_max) br = x->mv_row_max; rr >>= 1; rc >>= 1; besterr = ERR(br, bc, thiserr); // hex search //j=0 tr = br; tc = bc; for (i = 0; i < 6; i++) { int nr = tr + hex[i].row, nc = tc + hex[i].col; if (nc < x->mv_col_min) continue; if (nc > x->mv_col_max) continue; if (nr < x->mv_row_min) continue; if (nr > x->mv_row_max) continue; //CHECK_BETTER(thiserr,nr,nc); if ((thiserr = ERR(nr, nc, besterr)) < besterr) { besterr = thiserr; br = nr; bc = nc; k = i; } } if (tr == br && tc == bc) goto cal_neighbors; for (j = 1; j < 127; j++) { tr = br; tc = bc; tk = k; for (i = 0; i < 3; i++) { int nr = tr + next_chkpts[tk][i].row, nc = tc + next_chkpts[tk][i].col; if (nc < x->mv_col_min) continue; if (nc > x->mv_col_max) continue; if (nr < x->mv_row_min) continue; if (nr > x->mv_row_max) continue; //CHECK_BETTER(thiserr,nr,nc); if ((thiserr = ERR(nr, nc, besterr)) < besterr) { besterr = thiserr; br = nr; bc = nc; //k=(tk+5+i)%6;} k = tk + 5 + i; if (k >= 12) k -= 12; else if (k >= 6) k -= 6; } } if (tr == br && tc == bc) break; } // check 8 1 away neighbors cal_neighbors: tr = br; tc = bc; for (i = 0; i < 8; i++) { int nr = tr + neighbors[i].row, nc = tc + neighbors[i].col; if (nc < x->mv_col_min) continue; if (nc > x->mv_col_max) continue; if (nr < x->mv_row_min) continue; if (nr > x->mv_row_max) continue; CHECK_BETTER(thiserr, nr, nc); } best_mv->row = br; best_mv->col = bc; return vfp->vf(src, src_stride, PRE(br, bc), d->pre_stride, &thiserr) + MVC(br, bc) ; } #undef MVC #undef PRE #undef SP #undef DIST #undef ERR #undef CHECK_BETTER int vp8_diamond_search_sad ( MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *ref_mv, MV *best_mv, int search_param, int error_per_bit, int *num00, vp8_variance_fn_ptr_t *fn_ptr, int *mvsadcost[2], int *mvcost[2] ) { int i, j, step; unsigned char *what = (*(b->base_src) + b->src); int what_stride = b->src_stride; unsigned char *in_what; int in_what_stride = d->pre_stride; unsigned char *best_address; int tot_steps; MV this_mv; int bestsad = INT_MAX; int best_site = 0; int last_site = 0; int ref_row = ref_mv->row >> 3; int ref_col = ref_mv->col >> 3; int this_row_offset; int this_col_offset; search_site *ss; unsigned char *check_here; int thissad; // Work out the start point for the search in_what = (unsigned char *)(*(d->base_pre) + d->pre + (ref_row * (d->pre_stride)) + ref_col); best_address = in_what; // We need to check that the starting point for the search (as indicated by ref_mv) is within the buffer limits if ((ref_col > x->mv_col_min) && (ref_col < x->mv_col_max) && (ref_row > x->mv_row_min) && (ref_row < x->mv_row_max)) { // Check the starting position bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride, 0x7fffffff) + vp8_mv_err_cost(ref_mv, ref_mv, mvsadcost, error_per_bit); } // search_param determines the length of the initial step and hence the number of iterations // 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 = (MAX_FIRST_STEP/4) pel... etc. ss = &x->ss[search_param * x->searches_per_step]; tot_steps = (x->ss_count / x->searches_per_step) - search_param; i = 1; best_mv->row = ref_row; best_mv->col = ref_col; *num00 = 0; for (step = 0; step < tot_steps ; step++) { for (j = 0 ; j < x->searches_per_step ; j++) { // Trap illegal vectors this_row_offset = best_mv->row + ss[i].mv.row; this_col_offset = best_mv->col + ss[i].mv.col; if ((this_col_offset > x->mv_col_min) && (this_col_offset < x->mv_col_max) && (this_row_offset > x->mv_row_min) && (this_row_offset < x->mv_row_max)) { check_here = ss[i].offset + best_address; thissad = fn_ptr->sdf(what, what_stride, check_here , in_what_stride, bestsad); if (thissad < bestsad) { this_mv.row = this_row_offset << 3; this_mv.col = this_col_offset << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_site = i; } } } i++; } if (best_site != last_site) { best_mv->row += ss[best_site].mv.row; best_mv->col += ss[best_site].mv.col; best_address += ss[best_site].offset; last_site = best_site; } else if (best_address == in_what) (*num00)++; } this_mv.row = best_mv->row << 3; this_mv.col = best_mv->col << 3; if (bestsad == INT_MAX) return INT_MAX; return fn_ptr->vf(what, what_stride, best_address, in_what_stride, (unsigned int *)(&thissad)) + vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); } int vp8_diamond_search_sadx4 ( MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *ref_mv, MV *best_mv, int search_param, int error_per_bit, int *num00, vp8_variance_fn_ptr_t *fn_ptr, int *mvsadcost[2], int *mvcost[2] ) { int i, j, step; unsigned char *what = (*(b->base_src) + b->src); int what_stride = b->src_stride; unsigned char *in_what; int in_what_stride = d->pre_stride; unsigned char *best_address; int tot_steps; MV this_mv; int bestsad = INT_MAX; int best_site = 0; int last_site = 0; int ref_row = ref_mv->row >> 3; int ref_col = ref_mv->col >> 3; int this_row_offset; int this_col_offset; search_site *ss; unsigned char *check_here; unsigned int thissad; // Work out the start point for the search in_what = (unsigned char *)(*(d->base_pre) + d->pre + (ref_row * (d->pre_stride)) + ref_col); best_address = in_what; // We need to check that the starting point for the search (as indicated by ref_mv) is within the buffer limits if ((ref_col > x->mv_col_min) && (ref_col < x->mv_col_max) && (ref_row > x->mv_row_min) && (ref_row < x->mv_row_max)) { // Check the starting position bestsad = fn_ptr->sdf(what, what_stride, in_what, in_what_stride, 0x7fffffff) + vp8_mv_err_cost(ref_mv, ref_mv, mvsadcost, error_per_bit); } // search_param determines the length of the initial step and hence the number of iterations // 0 = initial step (MAX_FIRST_STEP) pel : 1 = (MAX_FIRST_STEP/2) pel, 2 = (MAX_FIRST_STEP/4) pel... etc. ss = &x->ss[search_param * x->searches_per_step]; tot_steps = (x->ss_count / x->searches_per_step) - search_param; i = 1; best_mv->row = ref_row; best_mv->col = ref_col; *num00 = 0; for (step = 0; step < tot_steps ; step++) { int all_in = 1, t; // To know if all neighbor points are within the bounds, 4 bounds checking are enough instead of // checking 4 bounds for each points. all_in &= ((best_mv->row + ss[i].mv.row)> x->mv_row_min); all_in &= ((best_mv->row + ss[i+1].mv.row) < x->mv_row_max); all_in &= ((best_mv->col + ss[i+2].mv.col) > x->mv_col_min); all_in &= ((best_mv->col + ss[i+3].mv.col) < x->mv_col_max); if (all_in) { unsigned int sad_array[4]; for (j = 0 ; j < x->searches_per_step ; j += 4) { unsigned char *block_offset[4]; for (t = 0; t < 4; t++) block_offset[t] = ss[i+t].offset + best_address; fn_ptr->sdx4df(what, what_stride, block_offset, in_what_stride, sad_array); for (t = 0; t < 4; t++, i++) { if (sad_array[t] < bestsad) { this_mv.row = (best_mv->row + ss[i].mv.row) << 3; this_mv.col = (best_mv->col + ss[i].mv.col) << 3; sad_array[t] += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (sad_array[t] < bestsad) { bestsad = sad_array[t]; best_site = i; } } } } } else { for (j = 0 ; j < x->searches_per_step ; j++) { // Trap illegal vectors this_row_offset = best_mv->row + ss[i].mv.row; this_col_offset = best_mv->col + ss[i].mv.col; if ((this_col_offset > x->mv_col_min) && (this_col_offset < x->mv_col_max) && (this_row_offset > x->mv_row_min) && (this_row_offset < x->mv_row_max)) { check_here = ss[i].offset + best_address; thissad = fn_ptr->sdf(what, what_stride, check_here , in_what_stride, bestsad); if (thissad < bestsad) { this_mv.row = this_row_offset << 3; this_mv.col = this_col_offset << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_site = i; } } } i++; } } if (best_site != last_site) { best_mv->row += ss[best_site].mv.row; best_mv->col += ss[best_site].mv.col; best_address += ss[best_site].offset; last_site = best_site; } else if (best_address == in_what) (*num00)++; } this_mv.row = best_mv->row << 3; this_mv.col = best_mv->col << 3; if (bestsad == INT_MAX) return INT_MAX; return fn_ptr->vf(what, what_stride, best_address, in_what_stride, (unsigned int *)(&thissad)) + vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); } #if !(CONFIG_REALTIME_ONLY) int vp8_full_search_sad(MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *ref_mv, int error_per_bit, int distance, vp8_variance_fn_ptr_t *fn_ptr, int *mvcost[2], int *mvsadcost[2]) { unsigned char *what = (*(b->base_src) + b->src); int what_stride = b->src_stride; unsigned char *in_what; int in_what_stride = d->pre_stride; int mv_stride = d->pre_stride; unsigned char *bestaddress; MV *best_mv = &d->bmi.mv.as_mv; MV this_mv; int bestsad = INT_MAX; int r, c; unsigned char *check_here; int thissad; int ref_row = ref_mv->row >> 3; int ref_col = ref_mv->col >> 3; int row_min = ref_row - distance; int row_max = ref_row + distance; int col_min = ref_col - distance; int col_max = ref_col + distance; // Work out the mid point for the search in_what = *(d->base_pre) + d->pre; bestaddress = in_what + (ref_row * d->pre_stride) + ref_col; best_mv->row = ref_row; best_mv->col = ref_col; // We need to check that the starting point for the search (as indicated by ref_mv) is within the buffer limits if ((ref_col > x->mv_col_min) && (ref_col < x->mv_col_max) && (ref_row > x->mv_row_min) && (ref_row < x->mv_row_max)) { // Baseline value at the centre //bestsad = fn_ptr->sf( what,what_stride,bestaddress,in_what_stride) + (int)sqrt(vp8_mv_err_cost(ref_mv,ref_mv, mvcost,error_per_bit*14)); bestsad = fn_ptr->sdf(what, what_stride, bestaddress, in_what_stride, 0x7fffffff) + vp8_mv_err_cost(ref_mv, ref_mv, mvsadcost, error_per_bit); } // Apply further limits to prevent us looking using vectors that stretch beyiond the UMV border if (col_min < x->mv_col_min) col_min = x->mv_col_min; if (col_max > x->mv_col_max) col_max = x->mv_col_max; if (row_min < x->mv_row_min) row_min = x->mv_row_min; if (row_max > x->mv_row_max) row_max = x->mv_row_max; for (r = row_min; r < row_max ; r++) { this_mv.row = r << 3; check_here = r * mv_stride + in_what + col_min; for (c = col_min; c < col_max; c++) { thissad = fn_ptr->sdf(what, what_stride, check_here , in_what_stride, bestsad); this_mv.col = c << 3; //thissad += (int)sqrt(vp8_mv_err_cost(&this_mv,ref_mv, mvcost,error_per_bit*14)); //thissad += error_per_bit * mv_bits_sadcost[mv_bits(&this_mv, ref_mv, mvcost)]; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); //mv_bits(error_per_bit, &this_mv, ref_mv, mvsadcost); if (thissad < bestsad) { bestsad = thissad; best_mv->row = r; best_mv->col = c; bestaddress = check_here; } check_here++; } } this_mv.row = best_mv->row << 3; this_mv.col = best_mv->col << 3; if (bestsad < INT_MAX) return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride, (unsigned int *)(&thissad)) + vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); else return INT_MAX; } int vp8_full_search_sadx3(MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *ref_mv, int error_per_bit, int distance, vp8_variance_fn_ptr_t *fn_ptr, int *mvcost[2], int *mvsadcost[2]) { unsigned char *what = (*(b->base_src) + b->src); int what_stride = b->src_stride; unsigned char *in_what; int in_what_stride = d->pre_stride; int mv_stride = d->pre_stride; unsigned char *bestaddress; MV *best_mv = &d->bmi.mv.as_mv; MV this_mv; int bestsad = INT_MAX; int r, c; unsigned char *check_here; unsigned int thissad; int ref_row = ref_mv->row >> 3; int ref_col = ref_mv->col >> 3; int row_min = ref_row - distance; int row_max = ref_row + distance; int col_min = ref_col - distance; int col_max = ref_col + distance; unsigned int sad_array[3]; // Work out the mid point for the search in_what = *(d->base_pre) + d->pre; bestaddress = in_what + (ref_row * d->pre_stride) + ref_col; best_mv->row = ref_row; best_mv->col = ref_col; // We need to check that the starting point for the search (as indicated by ref_mv) is within the buffer limits if ((ref_col > x->mv_col_min) && (ref_col < x->mv_col_max) && (ref_row > x->mv_row_min) && (ref_row < x->mv_row_max)) { // Baseline value at the centre bestsad = fn_ptr->sdf(what, what_stride, bestaddress, in_what_stride, 0x7fffffff) + vp8_mv_err_cost(ref_mv, ref_mv, mvsadcost, error_per_bit); } // Apply further limits to prevent us looking using vectors that stretch beyiond the UMV border if (col_min < x->mv_col_min) col_min = x->mv_col_min; if (col_max > x->mv_col_max) col_max = x->mv_col_max; if (row_min < x->mv_row_min) row_min = x->mv_row_min; if (row_max > x->mv_row_max) row_max = x->mv_row_max; for (r = row_min; r < row_max ; r++) { this_mv.row = r << 3; check_here = r * mv_stride + in_what + col_min; c = col_min; while ((c + 2) < col_max) { int i; fn_ptr->sdx3f(what, what_stride, check_here , in_what_stride, sad_array); for (i = 0; i < 3; i++) { thissad = sad_array[i]; if (thissad < bestsad) { this_mv.col = c << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_mv->row = r; best_mv->col = c; bestaddress = check_here; } } check_here++; c++; } } while (c < col_max) { thissad = fn_ptr->sdf(what, what_stride, check_here , in_what_stride, bestsad); if (thissad < bestsad) { this_mv.col = c << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_mv->row = r; best_mv->col = c; bestaddress = check_here; } } check_here ++; c ++; } } this_mv.row = best_mv->row << 3; this_mv.col = best_mv->col << 3; if (bestsad < INT_MAX) return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride, (unsigned int *)(&thissad)) + vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); else return INT_MAX; } #endif int vp8_full_search_sadx8(MACROBLOCK *x, BLOCK *b, BLOCKD *d, MV *ref_mv, int error_per_bit, int distance, vp8_variance_fn_ptr_t *fn_ptr, int *mvcost[2], int *mvsadcost[2]) { unsigned char *what = (*(b->base_src) + b->src); int what_stride = b->src_stride; unsigned char *in_what; int in_what_stride = d->pre_stride; int mv_stride = d->pre_stride; unsigned char *bestaddress; MV *best_mv = &d->bmi.mv.as_mv; MV this_mv; int bestsad = INT_MAX; int r, c; unsigned char *check_here; unsigned int thissad; int ref_row = ref_mv->row >> 3; int ref_col = ref_mv->col >> 3; int row_min = ref_row - distance; int row_max = ref_row + distance; int col_min = ref_col - distance; int col_max = ref_col + distance; unsigned short sad_array8[8]; unsigned int sad_array[3]; // Work out the mid point for the search in_what = *(d->base_pre) + d->pre; bestaddress = in_what + (ref_row * d->pre_stride) + ref_col; best_mv->row = ref_row; best_mv->col = ref_col; // We need to check that the starting point for the search (as indicated by ref_mv) is within the buffer limits if ((ref_col > x->mv_col_min) && (ref_col < x->mv_col_max) && (ref_row > x->mv_row_min) && (ref_row < x->mv_row_max)) { // Baseline value at the centre bestsad = fn_ptr->sdf(what, what_stride, bestaddress, in_what_stride, 0x7fffffff) + vp8_mv_err_cost(ref_mv, ref_mv, mvsadcost, error_per_bit); } // Apply further limits to prevent us looking using vectors that stretch beyiond the UMV border if (col_min < x->mv_col_min) col_min = x->mv_col_min; if (col_max > x->mv_col_max) col_max = x->mv_col_max; if (row_min < x->mv_row_min) row_min = x->mv_row_min; if (row_max > x->mv_row_max) row_max = x->mv_row_max; for (r = row_min; r < row_max ; r++) { this_mv.row = r << 3; check_here = r * mv_stride + in_what + col_min; c = col_min; while ((c + 7) < col_max) { int i; fn_ptr->sdx8f(what, what_stride, check_here , in_what_stride, sad_array8); for (i = 0; i < 8; i++) { thissad = (unsigned int)sad_array8[i]; if (thissad < bestsad) { this_mv.col = c << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_mv->row = r; best_mv->col = c; bestaddress = check_here; } } check_here++; c++; } } while ((c + 2) < col_max) { int i; fn_ptr->sdx3f(what, what_stride, check_here , in_what_stride, sad_array); for (i = 0; i < 3; i++) { thissad = sad_array[i]; if (thissad < bestsad) { this_mv.col = c << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_mv->row = r; best_mv->col = c; bestaddress = check_here; } } check_here++; c++; } } while (c < col_max) { thissad = fn_ptr->sdf(what, what_stride, check_here , in_what_stride, bestsad); if (thissad < bestsad) { this_mv.col = c << 3; thissad += vp8_mv_err_cost(&this_mv, ref_mv, mvsadcost, error_per_bit); if (thissad < bestsad) { bestsad = thissad; best_mv->row = r; best_mv->col = c; bestaddress = check_here; } } check_here ++; c ++; } } this_mv.row = best_mv->row << 3; this_mv.col = best_mv->col << 3; if (bestsad < INT_MAX) return fn_ptr->vf(what, what_stride, bestaddress, in_what_stride, (unsigned int *)(&thissad)) + vp8_mv_err_cost(&this_mv, ref_mv, mvcost, error_per_bit); else return INT_MAX; } #ifdef ENTROPY_STATS void print_mode_context(void) { FILE *f = fopen("modecont.c", "w"); int i, j; fprintf(f, "#include \"entropy.h\"\n"); fprintf(f, "const int vp8_mode_contexts[6][4] =\n"); fprintf(f, "{\n"); for (j = 0; j < 6; j++) { fprintf(f, " { // %d \n", j); fprintf(f, " "); for (i = 0; i < 4; i++) { int overal_prob; int this_prob; int count; // = mv_ref_ct[j][i][0]+mv_ref_ct[j][i][1]; // Overall probs count = mv_mode_cts[i][0] + mv_mode_cts[i][1]; if (count) overal_prob = 256 * mv_mode_cts[i][0] / count; else overal_prob = 128; if (overal_prob == 0) overal_prob = 1; // context probs count = mv_ref_ct[j][i][0] + mv_ref_ct[j][i][1]; if (count) this_prob = 256 * mv_ref_ct[j][i][0] / count; else this_prob = 128; if (this_prob == 0) this_prob = 1; fprintf(f, "%5d, ", this_prob); //fprintf(f,"%5d, %5d, %8d,", this_prob, overal_prob, (this_prob << 10)/overal_prob); //fprintf(f,"%8d, ", (this_prob << 10)/overal_prob); } fprintf(f, " },\n"); } fprintf(f, "};\n"); fclose(f); } /* MV ref count ENTROPY_STATS stats code */ #ifdef ENTROPY_STATS void init_mv_ref_counts() { vpx_memset(mv_ref_ct, 0, sizeof(mv_ref_ct)); vpx_memset(mv_mode_cts, 0, sizeof(mv_mode_cts)); } void accum_mv_refs(MB_PREDICTION_MODE m, const int ct[4]) { if (m == ZEROMV) { ++mv_ref_ct [ct[0]] [0] [0]; ++mv_mode_cts[0][0]; } else { ++mv_ref_ct [ct[0]] [0] [1]; ++mv_mode_cts[0][1]; if (m == NEARESTMV) { ++mv_ref_ct [ct[1]] [1] [0]; ++mv_mode_cts[1][0]; } else { ++mv_ref_ct [ct[1]] [1] [1]; ++mv_mode_cts[1][1]; if (m == NEARMV) { ++mv_ref_ct [ct[2]] [2] [0]; ++mv_mode_cts[2][0]; } else { ++mv_ref_ct [ct[2]] [2] [1]; ++mv_mode_cts[2][1]; if (m == NEWMV) { ++mv_ref_ct [ct[3]] [3] [0]; ++mv_mode_cts[3][0]; } else { ++mv_ref_ct [ct[3]] [3] [1]; ++mv_mode_cts[3][1]; } } } } } #endif/* END MV ref count ENTROPY_STATS stats code */ #endif