/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vp9_rtcd.h" #include "vpx_mem/vpx_mem.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_modecont.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/decoder/vp9_dboolhuff.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/decoder/vp9_read_bit_buffer.h" // #define DEC_DEBUG #ifdef DEC_DEBUG int dec_debug = 0; #endif static int read_be32(const uint8_t *p) { return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; } // len == 0 is not allowed static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return start + len > start && start + len <= end; } static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) { const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static void setup_txfm_mode(VP9_COMMON *pc, int lossless, vp9_reader *r) { if (lossless) { pc->txfm_mode = ONLY_4X4; } else { pc->txfm_mode = vp9_read_literal(r, 2); if (pc->txfm_mode == ALLOW_32X32) pc->txfm_mode += vp9_read_bit(r); if (pc->txfm_mode == TX_MODE_SELECT) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZE_MAX_SB - 3; ++j) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &pc->fc.tx_probs_8x8p[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZE_MAX_SB - 2; ++j) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &pc->fc.tx_probs_16x16p[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZE_MAX_SB - 1; ++j) if (vp9_read(r, VP9_MODE_UPDATE_PROB)) vp9_diff_update_prob(r, &pc->fc.tx_probs_32x32p[i][j]); } } } static void mb_init_dequantizer(VP9_COMMON *pc, MACROBLOCKD *xd) { int i; const int segment_id = xd->mode_info_context->mbmi.segment_id; xd->q_index = vp9_get_qindex(xd, segment_id, pc->base_qindex); xd->plane[0].dequant = pc->y_dequant[xd->q_index]; for (i = 1; i < MAX_MB_PLANE; i++) xd->plane[i].dequant = pc->uv_dequant[xd->q_index]; } static void decode_block(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { MACROBLOCKD* const xd = arg; struct macroblockd_plane *pd = &xd->plane[plane]; int16_t* const qcoeff = BLOCK_OFFSET(pd->qcoeff, block, 16); const int stride = pd->dst.stride; const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane, block, ss_txfrm_size); uint8_t* const dst = raster_block_offset_uint8(xd, bsize, plane, raster_block, pd->dst.buf, stride); TX_TYPE tx_type; switch (ss_txfrm_size / 2) { case TX_4X4: tx_type = plane == 0 ? get_tx_type_4x4(xd, raster_block) : DCT_DCT; if (tx_type == DCT_DCT) xd->itxm_add(qcoeff, dst, stride, pd->eobs[block]); else vp9_iht_add_c(tx_type, qcoeff, dst, stride, pd->eobs[block]); break; case TX_8X8: tx_type = plane == 0 ? get_tx_type_8x8(xd) : DCT_DCT; vp9_iht_add_8x8_c(tx_type, qcoeff, dst, stride, pd->eobs[block]); break; case TX_16X16: tx_type = plane == 0 ? get_tx_type_16x16(xd) : DCT_DCT; vp9_iht_add_16x16_c(tx_type, qcoeff, dst, stride, pd->eobs[block]); break; case TX_32X32: vp9_idct_add_32x32(qcoeff, dst, stride, pd->eobs[block]); break; } } static void decode_block_intra(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { MACROBLOCKD* const xd = arg; struct macroblockd_plane *pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mode_info_context; const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane, block, ss_txfrm_size); uint8_t* const dst = raster_block_offset_uint8(xd, bsize, plane, raster_block, pd->dst.buf, pd->dst.stride); const TX_SIZE tx_size = (TX_SIZE)(ss_txfrm_size / 2); int b_mode; int plane_b_size; const int tx_ib = raster_block >> tx_size; const int mode = plane == 0 ? mi->mbmi.mode : mi->mbmi.uv_mode; if (plane == 0 && mi->mbmi.sb_type < BLOCK_SIZE_SB8X8) { assert(bsize == BLOCK_SIZE_SB8X8); b_mode = mi->bmi[raster_block].as_mode.first; } else { b_mode = mode; } if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) extend_for_intra(xd, plane, block, bsize, ss_txfrm_size); plane_b_size = b_width_log2(bsize) - pd->subsampling_x; vp9_predict_intra_block(xd, tx_ib, plane_b_size, tx_size, b_mode, dst, pd->dst.stride, dst, pd->dst.stride); // Early exit if there are no coefficients if (mi->mbmi.mb_skip_coeff) return; decode_block(plane, block, bsize, ss_txfrm_size, arg); } static int decode_tokens(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize, vp9_reader *r) { MACROBLOCKD *const xd = &pbi->mb; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_sb_tokens_context(xd, bsize); return -1; } else { if (xd->segmentation_enabled) mb_init_dequantizer(&pbi->common, xd); // TODO(dkovalev) if (!vp9_reader_has_error(r)) return vp9_decode_tokens(pbi, r, bsize); } } static void decode_atom(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { BLOCK_SIZE_TYPE bsize = BLOCK_SIZE_SB8X8; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; assert(mbmi->ref_frame[0] != INTRA_FRAME); vp9_setup_interp_filters(xd, mbmi->interp_filter, &pbi->common); vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); if (decode_tokens(pbi, bsize, r) >= 0) foreach_transformed_block(xd, bsize, decode_block, xd); } static void decode_sb_intra(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &pbi->mb; decode_tokens(pbi, bsize, r); foreach_transformed_block(xd, bsize, decode_block_intra, xd); } static void decode_sb(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *const mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; int eobtotal; assert(mbmi->sb_type == bsize); assert(mbmi->ref_frame[0] != INTRA_FRAME); vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); eobtotal = decode_tokens(pbi, bsize, r); if (eobtotal == 0) { vp9_set_pred_flag(xd, bsize, PRED_MBSKIP, 1); // skip loopfilter } else if (eobtotal > 0) { foreach_transformed_block(xd, bsize, decode_block, xd); } } static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize, int mi_row, int mi_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int bh = 1 << mi_height_log2(bsize); const int bw = 1 << mi_width_log2(bsize); const int mi_idx = mi_row * cm->mode_info_stride + mi_col; int i; xd->mode_info_context = cm->mi + mi_idx; xd->mode_info_context->mbmi.sb_type = bsize; // Special case: if prev_mi is NULL, the previous mode info context // cannot be used. xd->prev_mode_info_context = cm->prev_mi ? cm->prev_mi + mi_idx : NULL; for (i = 0; i < MAX_MB_PLANE; i++) { struct macroblockd_plane *pd = &xd->plane[i]; pd->above_context = cm->above_context[i] + (mi_col * 2 >> pd->subsampling_x); pd->left_context = cm->left_context[i] + (((mi_row * 2) & 15) >> pd->subsampling_y); } xd->above_seg_context = cm->above_seg_context + mi_col; xd->left_seg_context = cm->left_seg_context + (mi_row & MI_MASK); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], mi_row, mi_col); } static void set_refs(VP9D_COMP *pbi, int mi_row, int mi_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; // Select the appropriate reference frame for this MB const int fb_idx = cm->active_ref_idx[mbmi->ref_frame[0] - 1]; const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx]; xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame[0] - 1]; xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame[0] - 1]; setup_pre_planes(xd, cfg, NULL, mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); xd->corrupted |= cfg->corrupted; if (mbmi->ref_frame[1] > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int second_fb_idx = cm->active_ref_idx[mbmi->ref_frame[1] - 1]; const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx]; xd->scale_factor[1] = cm->active_ref_scale[mbmi->ref_frame[1] - 1]; xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->ref_frame[1] - 1]; setup_pre_planes(xd, NULL, second_cfg, mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); xd->corrupted |= second_cfg->corrupted; } } static void decode_modes_b(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &pbi->mb; if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index > 0) return; set_offsets(pbi, bsize, mi_row, mi_col); vp9_read_mode_info(pbi, mi_row, mi_col, r); if (xd->mode_info_context->mbmi.ref_frame[0] == INTRA_FRAME) { decode_sb_intra(pbi, mi_row, mi_col, r, (bsize < BLOCK_SIZE_SB8X8) ? BLOCK_SIZE_SB8X8 : bsize); } else { set_refs(pbi, mi_row, mi_col); if (bsize < BLOCK_SIZE_SB8X8) decode_atom(pbi, mi_row, mi_col, r); else decode_sb(pbi, mi_row, mi_col, r, bsize); } xd->corrupted |= vp9_reader_has_error(r); } static void decode_modes_sb(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader* r, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int bs = (1 << mi_width_log2(bsize)) / 2, n; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE_TYPE subsize; if (mi_row >= pc->mi_rows || mi_col >= pc->mi_cols) return; if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index != 0) return; if (bsize >= BLOCK_SIZE_SB8X8) { int pl; int idx = check_bsize_coverage(pc, xd, mi_row, mi_col, bsize); // read the partition information xd->left_seg_context = pc->left_seg_context + (mi_row & MI_MASK); xd->above_seg_context = pc->above_seg_context + mi_col; pl = partition_plane_context(xd, bsize); if (idx == 0) partition = treed_read(r, vp9_partition_tree, pc->fc.partition_prob[pc->frame_type][pl]); else if (idx > 0 && !vp9_read(r, pc->fc.partition_prob[pc->frame_type][pl][idx])) partition = (idx == 1) ? PARTITION_HORZ : PARTITION_VERT; else partition = PARTITION_SPLIT; pc->fc.partition_counts[pl][partition]++; } subsize = get_subsize(bsize, partition); *(get_sb_index(xd, subsize)) = 0; switch (partition) { case PARTITION_NONE: decode_modes_b(pbi, mi_row, mi_col, r, subsize); break; case PARTITION_HORZ: decode_modes_b(pbi, mi_row, mi_col, r, subsize); *(get_sb_index(xd, subsize)) = 1; if (mi_row + bs < pc->mi_rows) decode_modes_b(pbi, mi_row + bs, mi_col, r, subsize); break; case PARTITION_VERT: decode_modes_b(pbi, mi_row, mi_col, r, subsize); *(get_sb_index(xd, subsize)) = 1; if (mi_col + bs < pc->mi_cols) decode_modes_b(pbi, mi_row, mi_col + bs, r, subsize); break; case PARTITION_SPLIT: for (n = 0; n < 4; n++) { int j = n >> 1, i = n & 0x01; *(get_sb_index(xd, subsize)) = n; decode_modes_sb(pbi, mi_row + j * bs, mi_col + i * bs, r, subsize); } break; default: assert(0); } // update partition context if (bsize >= BLOCK_SIZE_SB8X8 && (bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) { set_partition_seg_context(pc, xd, mi_row, mi_col); update_partition_context(xd, subsize, bsize); } } static void setup_token_decoder(VP9D_COMP *pbi, const uint8_t *data, size_t read_size, vp9_reader *r) { VP9_COMMON *pc = &pbi->common; const uint8_t *data_end = pbi->source + pbi->source_sz; // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, read_size, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); if (vp9_reader_init(r, data, read_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void read_coef_probs_common(FRAME_CONTEXT *fc, TX_SIZE tx_size, vp9_reader *r) { vp9_coeff_probs_model *coef_probs = fc->coef_probs[tx_size]; if (vp9_read_bit(r)) { int i, j, k, l, m; for (i = 0; i < BLOCK_TYPES; i++) { for (j = 0; j < REF_TYPES; j++) { for (k = 0; k < COEF_BANDS; k++) { for (l = 0; l < PREV_COEF_CONTEXTS; l++) { if (l >= 3 && k == 0) continue; for (m = 0; m < UNCONSTRAINED_NODES; m++) { vp9_prob *const p = coef_probs[i][j][k][l] + m; if (vp9_read(r, VP9_COEF_UPDATE_PROB)) vp9_diff_update_prob(r, p); } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, vp9_reader *r) { const TXFM_MODE txfm_mode = pbi->common.txfm_mode; FRAME_CONTEXT *const fc = &pbi->common.fc; read_coef_probs_common(fc, TX_4X4, r); if (txfm_mode > ONLY_4X4) read_coef_probs_common(fc, TX_8X8, r); if (txfm_mode > ALLOW_8X8) read_coef_probs_common(fc, TX_16X16, r); if (txfm_mode > ALLOW_16X16) read_coef_probs_common(fc, TX_32X32, r); } static void setup_segmentation(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { int i, j; VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; xd->segmentation_enabled = vp9_rb_read_bit(rb); if (!xd->segmentation_enabled) return; // Segmentation map update xd->update_mb_segmentation_map = vp9_rb_read_bit(rb); if (xd->update_mb_segmentation_map) { for (i = 0; i < MB_SEG_TREE_PROBS; i++) xd->mb_segment_tree_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; cm->temporal_update = vp9_rb_read_bit(rb); if (cm->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) cm->segment_pred_probs[i] = vp9_rb_read_bit(rb) ? vp9_rb_read_literal(rb, 8) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) cm->segment_pred_probs[i] = MAX_PROB; } } // Segmentation data update xd->update_mb_segmentation_data = vp9_rb_read_bit(rb); if (xd->update_mb_segmentation_data) { xd->mb_segment_abs_delta = vp9_rb_read_bit(rb); vp9_clearall_segfeatures(xd); for (i = 0; i < MAX_MB_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vp9_rb_read_bit(rb); if (feature_enabled) { vp9_enable_segfeature(xd, i, j); data = decode_unsigned_max(rb, vp9_seg_feature_data_max(j)); if (vp9_is_segfeature_signed(j)) data = vp9_rb_read_bit(rb) ? -data : data; } vp9_set_segdata(xd, i, j, data); } } } } static void setup_loopfilter(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; cm->filter_level = vp9_rb_read_literal(rb, 6); cm->sharpness_level = vp9_rb_read_literal(rb, 3); // Read in loop filter deltas applied at the MB level based on mode or ref // frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = vp9_rb_read_bit(rb); if (xd->mode_ref_lf_delta_enabled) { xd->mode_ref_lf_delta_update = vp9_rb_read_bit(rb); if (xd->mode_ref_lf_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_rb_read_bit(rb)) { const int value = vp9_rb_read_literal(rb, 6); xd->ref_lf_deltas[i] = vp9_rb_read_bit(rb) ? -value : value; } } for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_rb_read_bit(rb)) { const int value = vp9_rb_read_literal(rb, 6); xd->mode_lf_deltas[i] = vp9_rb_read_bit(rb) ? -value : value; } } } } } static int read_delta_q(struct vp9_read_bit_buffer *rb, int *delta_q) { const int old = *delta_q; if (vp9_rb_read_bit(rb)) { const int value = vp9_rb_read_literal(rb, 4); *delta_q = vp9_rb_read_bit(rb) ? -value : value; } return old != *delta_q; } static void setup_quantization(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { MACROBLOCKD *const xd = &pbi->mb; VP9_COMMON *const cm = &pbi->common; int update = 0; cm->base_qindex = vp9_rb_read_literal(rb, QINDEX_BITS); update |= read_delta_q(rb, &cm->y_dc_delta_q); update |= read_delta_q(rb, &cm->uv_dc_delta_q); update |= read_delta_q(rb, &cm->uv_ac_delta_q); if (update) vp9_init_dequantizer(cm); xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; xd->itxm_add = xd->lossless ? vp9_idct_add_lossless_c : vp9_idct_add; } static INTERPOLATIONFILTERTYPE read_interp_filter_type( struct vp9_read_bit_buffer *rb) { return vp9_rb_read_bit(rb) ? SWITCHABLE : vp9_rb_read_literal(rb, 2); } static void read_frame_size(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb, int *width, int *height) { const int w = vp9_rb_read_literal(rb, 16) + 1; const int h = vp9_rb_read_literal(rb, 16) + 1; *width = w; *height = h; } static void setup_display_size(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; cm->display_width = cm->width; cm->display_height = cm->height; if (vp9_rb_read_bit(rb)) read_frame_size(cm, rb, &cm->display_width, &cm->display_height); } static void apply_frame_size(VP9D_COMP *pbi, int width, int height) { VP9_COMMON *cm = &pbi->common; if (cm->width != width || cm->height != height) { if (!pbi->initial_width || !pbi->initial_height) { if (vp9_alloc_frame_buffers(cm, width, height)) vpx_internal_error(&cm->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); pbi->initial_width = width; pbi->initial_height = height; } else { if (width > pbi->initial_width) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Frame width too large"); if (height > pbi->initial_height) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Frame height too large"); } cm->width = width; cm->height = height; vp9_update_frame_size(cm); } vp9_realloc_frame_buffer(&cm->yv12_fb[cm->new_fb_idx], cm->width, cm->height, cm->subsampling_x, cm->subsampling_y, VP9BORDERINPIXELS); } static void setup_frame_size(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; int width, height; read_frame_size(cm, rb, &width, &height); setup_display_size(pbi, rb); apply_frame_size(pbi, width, height); } static void setup_frame_size_with_refs(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; int width, height; int found = 0, i; for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { if (vp9_rb_read_bit(rb)) { YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[cm->active_ref_idx[i]]; width = cfg->y_crop_width; height = cfg->y_crop_height; found = 1; break; } } if (!found) read_frame_size(cm, rb, &width, &height); if (!width || !height) vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Referenced frame with invalid size"); setup_display_size(pbi, rb); apply_frame_size(pbi, width, height); } static void update_frame_context(FRAME_CONTEXT *fc) { vp9_copy(fc->pre_coef_probs, fc->coef_probs); vp9_copy(fc->pre_y_mode_prob, fc->y_mode_prob); vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob); vp9_copy(fc->pre_partition_prob, fc->partition_prob[1]); vp9_copy(fc->pre_intra_inter_prob, fc->intra_inter_prob); vp9_copy(fc->pre_comp_inter_prob, fc->comp_inter_prob); vp9_copy(fc->pre_single_ref_prob, fc->single_ref_prob); vp9_copy(fc->pre_comp_ref_prob, fc->comp_ref_prob); fc->pre_nmvc = fc->nmvc; vp9_copy(fc->pre_switchable_interp_prob, fc->switchable_interp_prob); vp9_copy(fc->pre_inter_mode_probs, fc->inter_mode_probs); vp9_copy(fc->pre_tx_probs_8x8p, fc->tx_probs_8x8p); vp9_copy(fc->pre_tx_probs_16x16p, fc->tx_probs_16x16p); vp9_copy(fc->pre_tx_probs_32x32p, fc->tx_probs_32x32p); vp9_copy(fc->pre_mbskip_probs, fc->mbskip_probs); vp9_zero(fc->coef_counts); vp9_zero(fc->eob_branch_counts); vp9_zero(fc->y_mode_counts); vp9_zero(fc->uv_mode_counts); vp9_zero(fc->NMVcount); vp9_zero(fc->inter_mode_counts); vp9_zero(fc->partition_counts); vp9_zero(fc->switchable_interp_count); vp9_zero(fc->intra_inter_count); vp9_zero(fc->comp_inter_count); vp9_zero(fc->single_ref_count); vp9_zero(fc->comp_ref_count); vp9_zero(fc->tx_count_8x8p); vp9_zero(fc->tx_count_16x16p); vp9_zero(fc->tx_count_32x32p); vp9_zero(fc->mbskip_count); } static void decode_tile(VP9D_COMP *pbi, vp9_reader *r) { VP9_COMMON *const pc = &pbi->common; int mi_row, mi_col; for (mi_row = pc->cur_tile_mi_row_start; mi_row < pc->cur_tile_mi_row_end; mi_row += 64 / MI_SIZE) { // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(&pc->left_context, 0, sizeof(pc->left_context)); vpx_memset(pc->left_seg_context, 0, sizeof(pc->left_seg_context)); for (mi_col = pc->cur_tile_mi_col_start; mi_col < pc->cur_tile_mi_col_end; mi_col += 64 / MI_SIZE) decode_modes_sb(pbi, mi_row, mi_col, r, BLOCK_SIZE_SB64X64); } } static void setup_tile_info(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { int delta_log2_tiles; vp9_get_tile_n_bits(cm, &cm->log2_tile_columns, &delta_log2_tiles); while (delta_log2_tiles--) { if (vp9_rb_read_bit(rb)) { cm->log2_tile_columns++; } else { break; } } cm->log2_tile_rows = vp9_rb_read_bit(rb); if (cm->log2_tile_rows) cm->log2_tile_rows += vp9_rb_read_bit(rb); cm->tile_columns = 1 << cm->log2_tile_columns; cm->tile_rows = 1 << cm->log2_tile_rows; } static void decode_tiles(VP9D_COMP *pbi, const uint8_t *data, size_t first_partition_size, vp9_reader *residual_bc) { VP9_COMMON *const pc = &pbi->common; const uint8_t *data_ptr = data + first_partition_size; const uint8_t* const data_end = pbi->source + pbi->source_sz; int tile_row, tile_col; // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(pc->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 2 * MAX_MB_PLANE * mi_cols_aligned_to_sb(pc)); vpx_memset(pc->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * mi_cols_aligned_to_sb(pc)); if (pbi->oxcf.inv_tile_order) { const int n_cols = pc->tile_columns; const uint8_t *data_ptr2[4][1 << 6]; vp9_reader bc_bak = {0}; // pre-initialize the offsets, we're going to read in inverse order data_ptr2[0][0] = data_ptr; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { if (tile_row) { const int size = read_be32(data_ptr2[tile_row - 1][n_cols - 1]); data_ptr2[tile_row - 1][n_cols - 1] += 4; data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size; } for (tile_col = 1; tile_col < n_cols; tile_col++) { const int size = read_be32(data_ptr2[tile_row][tile_col - 1]); data_ptr2[tile_row][tile_col - 1] += 4; data_ptr2[tile_row][tile_col] = data_ptr2[tile_row][tile_col - 1] + size; } } for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) { vp9_get_tile_col_offsets(pc, tile_col); setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], data_end - data_ptr2[tile_row][tile_col], residual_bc); decode_tile(pbi, residual_bc); if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1) bc_bak = *residual_bc; } } *residual_bc = bc_bak; } else { int has_more; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) { size_t size; vp9_get_tile_col_offsets(pc, tile_col); has_more = tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1; if (has_more) { if (!read_is_valid(data_ptr, 4, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt tile length"); size = read_be32(data_ptr); data_ptr += 4; } else { size = data_end - data_ptr; } setup_token_decoder(pbi, data_ptr, size, residual_bc); decode_tile(pbi, residual_bc); data_ptr += size; } } } } static void check_sync_code(VP9_COMMON *cm, struct vp9_read_bit_buffer *rb) { if (vp9_rb_read_literal(rb, 8) != SYNC_CODE_0 || vp9_rb_read_literal(rb, 8) != SYNC_CODE_1 || vp9_rb_read_literal(rb, 8) != SYNC_CODE_2) { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } } static void error_handler(void *data, size_t bit_offset) { VP9_COMMON *const cm = (VP9_COMMON *)data; vpx_internal_error(&cm->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } static void setup_inter_inter(VP9_COMMON *cm) { int i; cm->allow_comp_inter_inter = 0; for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { cm->allow_comp_inter_inter |= i > 0 && cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1]; } if (cm->allow_comp_inter_inter) { // which one is always-on in comp inter-inter? if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) { cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } else if (cm->ref_frame_sign_bias[LAST_FRAME] == cm->ref_frame_sign_bias[ALTREF_FRAME]) { cm->comp_fixed_ref = GOLDEN_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } else { cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } } } #define RESERVED \ if (vp9_rb_read_bit(rb)) \ vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, \ "Reserved bit must be unset") static size_t read_uncompressed_header(VP9D_COMP *pbi, struct vp9_read_bit_buffer *rb) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int i; cm->last_frame_type = cm->frame_type; if (vp9_rb_read_literal(rb, 2) != 0x2) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame marker"); cm->version = vp9_rb_read_bit(rb); RESERVED; if (vp9_rb_read_bit(rb)) { // show an existing frame directly int frame_to_show = cm->ref_frame_map[vp9_rb_read_literal(rb, 3)]; ref_cnt_fb(cm->fb_idx_ref_cnt, &cm->new_fb_idx, frame_to_show); pbi->refresh_frame_flags = 0; cm->filter_level = 0; return 0; } cm->frame_type = (FRAME_TYPE) vp9_rb_read_bit(rb); cm->show_frame = vp9_rb_read_bit(rb); cm->error_resilient_mode = vp9_rb_read_bit(rb); if (cm->frame_type == KEY_FRAME) { int csp; check_sync_code(cm, rb); csp = vp9_rb_read_literal(rb, 3); // colorspace if (csp != 7) { // != sRGB vp9_rb_read_bit(rb); // [16,235] (including xvycc) vs [0,255] range if (cm->version == 1) { cm->subsampling_x = vp9_rb_read_bit(rb); cm->subsampling_y = vp9_rb_read_bit(rb); vp9_rb_read_bit(rb); // has extra plane } else { cm->subsampling_y = cm->subsampling_x = 1; } } else { if (cm->version == 1) { cm->subsampling_y = cm->subsampling_x = 0; vp9_rb_read_bit(rb); // has extra plane } else { vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "RGB not supported in profile 0"); } } pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) cm->active_ref_idx[i] = cm->new_fb_idx; setup_frame_size(pbi, rb); } else { cm->intra_only = cm->show_frame ? 0 : vp9_rb_read_bit(rb); cm->reset_frame_context = cm->error_resilient_mode ? 0 : vp9_rb_read_literal(rb, 2); if (cm->intra_only) { check_sync_code(cm, rb); pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES); setup_frame_size(pbi, rb); } else { pbi->refresh_frame_flags = vp9_rb_read_literal(rb, NUM_REF_FRAMES); for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { const int ref = vp9_rb_read_literal(rb, NUM_REF_FRAMES_LG2); cm->active_ref_idx[i] = cm->ref_frame_map[ref]; cm->ref_frame_sign_bias[LAST_FRAME + i] = vp9_rb_read_bit(rb); } setup_frame_size_with_refs(pbi, rb); xd->allow_high_precision_mv = vp9_rb_read_bit(rb); cm->mcomp_filter_type = read_interp_filter_type(rb); for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) vp9_setup_scale_factors(cm, i); setup_inter_inter(cm); } } if (!cm->error_resilient_mode) { cm->refresh_frame_context = vp9_rb_read_bit(rb); cm->frame_parallel_decoding_mode = vp9_rb_read_bit(rb); } else { cm->refresh_frame_context = 0; cm->frame_parallel_decoding_mode = 1; } cm->frame_context_idx = vp9_rb_read_literal(rb, NUM_FRAME_CONTEXTS_LG2); if (cm->frame_type == KEY_FRAME || cm->error_resilient_mode || cm->intra_only) vp9_setup_past_independence(cm, xd); setup_loopfilter(pbi, rb); setup_quantization(pbi, rb); setup_segmentation(pbi, rb); setup_tile_info(cm, rb); return vp9_rb_read_literal(rb, 16); } void vp9_init_dequantizer(VP9_COMMON *pc) { int q; for (q = 0; q < QINDEX_RANGE; q++) { // DC value pc->y_dequant[q][0] = vp9_dc_quant(q, pc->y_dc_delta_q); pc->uv_dequant[q][0] = vp9_dc_quant(q, pc->uv_dc_delta_q); // AC values pc->y_dequant[q][1] = vp9_ac_quant(q, 0); pc->uv_dequant[q][1] = vp9_ac_quant(q, pc->uv_ac_delta_q); } } int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) { int i; vp9_reader header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data = pbi->source; const uint8_t *data_end = pbi->source + pbi->source_sz; struct vp9_read_bit_buffer rb = { data, data_end, 0, pc, error_handler }; const size_t first_partition_size = read_uncompressed_header(pbi, &rb); const int keyframe = pc->frame_type == KEY_FRAME; YV12_BUFFER_CONFIG *new_fb = &pc->yv12_fb[pc->new_fb_idx]; if (!first_partition_size) { // showing a frame directly *p_data_end = data + 1; return 0; } data += vp9_rb_bytes_read(&rb); xd->corrupted = 0; new_fb->corrupted = 0; if (!pbi->decoded_key_frame && !keyframe) return -1; if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt header length"); xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_stride = pc->mode_info_stride; if (vp9_reader_init(&header_bc, data, first_partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); mb_init_dequantizer(pc, &pbi->mb); // MB level dequantizer setup if (!keyframe) vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); pc->fc = pc->frame_contexts[pc->frame_context_idx]; update_frame_context(&pc->fc); setup_txfm_mode(pc, xd->lossless, &header_bc); read_coef_probs(pbi, &header_bc); // Initialize xd pointers. Any reference should do for xd->pre, so use 0. setup_pre_planes(xd, &pc->yv12_fb[pc->active_ref_idx[0]], NULL, 0, 0, NULL, NULL); setup_dst_planes(xd, new_fb, 0, 0); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc, pc->last_frame_seg_map, vpx_calloc((pc->mi_rows * pc->mi_cols), 1)); vp9_setup_block_dptrs(xd, pc->subsampling_x, pc->subsampling_y); // clear out the coeff buffer for (i = 0; i < MAX_MB_PLANE; ++i) vp9_zero(xd->plane[i].qcoeff); set_prev_mi(pc); vp9_prepare_read_mode_info(pbi, &header_bc); decode_tiles(pbi, data, first_partition_size, &residual_bc); pc->last_width = pc->width; pc->last_height = pc->height; new_fb->corrupted = vp9_reader_has_error(&header_bc) | xd->corrupted; if (!pbi->decoded_key_frame) { if (keyframe && !new_fb->corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } // Adaptation if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(pc); if ((!keyframe) && (!pc->intra_only)) { vp9_adapt_mode_probs(pc); vp9_adapt_mode_context(pc); vp9_adapt_mv_probs(pc, xd->allow_high_precision_mv); } } if (pc->refresh_frame_context) pc->frame_contexts[pc->frame_context_idx] = pc->fc; *p_data_end = vp9_reader_find_end(&residual_bc); return 0; }