/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_header.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/common/vp9_systemdependent.h" #include #include #include #include "vp9/common/vp9_pragmas.h" #include "vpx/vpx_encoder.h" #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_bitstream.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_treecoder.h" #if defined(SECTIONBITS_OUTPUT) unsigned __int64 Sectionbits[500]; #endif #ifdef ENTROPY_STATS int intra_mode_stats[VP9_KF_BINTRAMODES] [VP9_KF_BINTRAMODES] [VP9_KF_BINTRAMODES]; vp9_coeff_stats tree_update_hist_4x4[BLOCK_TYPES_4X4]; vp9_coeff_stats hybrid_tree_update_hist_4x4[BLOCK_TYPES_4X4]; vp9_coeff_stats tree_update_hist_8x8[BLOCK_TYPES_8X8]; vp9_coeff_stats hybrid_tree_update_hist_8x8[BLOCK_TYPES_8X8]; vp9_coeff_stats tree_update_hist_16x16[BLOCK_TYPES_16X16]; vp9_coeff_stats hybrid_tree_update_hist_16x16[BLOCK_TYPES_16X16]; vp9_coeff_stats tree_update_hist_32x32[BLOCK_TYPES_32X32]; extern unsigned int active_section; #endif #ifdef MODE_STATS int count_mb_seg[4] = { 0, 0, 0, 0 }; #endif #define vp9_cost_upd ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd)) >> 8) #define vp9_cost_upd256 ((int)(vp9_cost_one(upd) - vp9_cost_zero(upd))) #define SEARCH_NEWP static int update_bits[255]; static void compute_update_table() { int i; for (i = 0; i < 255; i++) update_bits[i] = vp9_count_term_subexp(i, SUBEXP_PARAM, 255); } static int split_index(int i, int n, int modulus) { int max1 = (n - 1 - modulus / 2) / modulus + 1; if (i % modulus == modulus / 2) i = i / modulus; else i = max1 + i - (i + modulus - modulus / 2) / modulus; return i; } static int remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; int i; if ((m << 1) <= n) i = vp9_recenter_nonneg(v, m) - 1; else i = vp9_recenter_nonneg(n - 1 - v, n - 1 - m) - 1; i = split_index(i, n - 1, modulus); return i; } static void write_prob_diff_update(vp9_writer *const bc, vp9_prob newp, vp9_prob oldp) { int delp = remap_prob(newp, oldp); vp9_encode_term_subexp(bc, delp, SUBEXP_PARAM, 255); } static int prob_diff_update_cost(vp9_prob newp, vp9_prob oldp) { int delp = remap_prob(newp, oldp); return update_bits[delp] * 256; } static void update_mode( vp9_writer *const bc, int n, vp9_token tok [/* n */], vp9_tree tree, vp9_prob Pnew [/* n-1 */], vp9_prob Pcur [/* n-1 */], unsigned int bct [/* n-1 */] [2], const unsigned int num_events[/* n */] ) { unsigned int new_b = 0, old_b = 0; int i = 0; vp9_tree_probs_from_distribution(n--, tok, tree, Pnew, bct, num_events); do { new_b += cost_branch(bct[i], Pnew[i]); old_b += cost_branch(bct[i], Pcur[i]); } while (++i < n); if (new_b + (n << 8) < old_b) { int i = 0; vp9_write_bit(bc, 1); do { const vp9_prob p = Pnew[i]; vp9_write_literal(bc, Pcur[i] = p ? p : 1, 8); } while (++i < n); } else vp9_write_bit(bc, 0); } static void update_mbintra_mode_probs(VP9_COMP* const cpi, vp9_writer* const bc) { VP9_COMMON *const cm = &cpi->common; { vp9_prob Pnew [VP9_YMODES - 1]; unsigned int bct [VP9_YMODES - 1] [2]; update_mode( bc, VP9_YMODES, vp9_ymode_encodings, vp9_ymode_tree, Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count ); update_mode(bc, VP9_I32X32_MODES, vp9_sb_ymode_encodings, vp9_sb_ymode_tree, Pnew, cm->fc.sb_ymode_prob, bct, (unsigned int *)cpi->sb_ymode_count); } } void vp9_update_skip_probs(VP9_COMP *cpi) { VP9_COMMON *const pc = &cpi->common; int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) { pc->mbskip_pred_probs[k] = get_binary_prob(cpi->skip_false_count[k], cpi->skip_true_count[k]); } } static void update_switchable_interp_probs(VP9_COMP *cpi, vp9_writer* const bc) { VP9_COMMON *const pc = &cpi->common; unsigned int branch_ct[32][2]; int i, j; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { vp9_tree_probs_from_distribution( VP9_SWITCHABLE_FILTERS, vp9_switchable_interp_encodings, vp9_switchable_interp_tree, pc->fc.switchable_interp_prob[j], branch_ct, cpi->switchable_interp_count[j]); for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { if (pc->fc.switchable_interp_prob[j][i] < 1) pc->fc.switchable_interp_prob[j][i] = 1; vp9_write_literal(bc, pc->fc.switchable_interp_prob[j][i], 8); } } } // This function updates the reference frame prediction stats static void update_refpred_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; int i; vp9_prob new_pred_probs[PREDICTION_PROBS]; int old_cost, new_cost; // Set the prediction probability structures to defaults if (cm->frame_type != KEY_FRAME) { // From the prediction counts set the probabilities for each context for (i = 0; i < PREDICTION_PROBS; i++) { new_pred_probs[i] = get_binary_prob(cpi->ref_pred_count[i][0], cpi->ref_pred_count[i][1]); // Decide whether or not to update the reference frame probs. // Returned costs are in 1/256 bit units. old_cost = (cpi->ref_pred_count[i][0] * vp9_cost_zero(cm->ref_pred_probs[i])) + (cpi->ref_pred_count[i][1] * vp9_cost_one(cm->ref_pred_probs[i])); new_cost = (cpi->ref_pred_count[i][0] * vp9_cost_zero(new_pred_probs[i])) + (cpi->ref_pred_count[i][1] * vp9_cost_one(new_pred_probs[i])); // Cost saving must be >= 8 bits (2048 in these units) if ((old_cost - new_cost) >= 2048) { cpi->ref_pred_probs_update[i] = 1; cm->ref_pred_probs[i] = new_pred_probs[i]; } else cpi->ref_pred_probs_update[i] = 0; } } } // This function is called to update the mode probability context used to encode // inter modes. It assumes the branch counts table has already been populated // prior to the actual packing of the bitstream (in rd stage or dummy pack) // // The branch counts table is re-populated during the actual pack stage and in // the decoder to facilitate backwards update of the context. static void update_mode_probs(VP9_COMMON *cm, int mode_context[INTER_MODE_CONTEXTS][4]) { int i, j; unsigned int (*mv_ref_ct)[4][2]; vpx_memcpy(mode_context, cm->fc.vp9_mode_contexts, sizeof(cm->fc.vp9_mode_contexts)); mv_ref_ct = cm->fc.mv_ref_ct; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { int new_prob, old_cost, new_cost; // Work out cost of coding branches with the old and optimal probability old_cost = cost_branch256(mv_ref_ct[i][j], mode_context[i][j]); new_prob = get_binary_prob(mv_ref_ct[i][j][0], mv_ref_ct[i][j][1]); new_cost = cost_branch256(mv_ref_ct[i][j], new_prob); // If cost saving is >= 14 bits then update the mode probability. // This is the approximate net cost of updating one probability given // that the no update case ismuch more common than the update case. if (new_cost <= (old_cost - (14 << 8))) { mode_context[i][j] = new_prob; } } } } #if CONFIG_NEW_MVREF static void update_mv_ref_probs(VP9_COMP *cpi, int mvref_probs[MAX_REF_FRAMES] [MAX_MV_REF_CANDIDATES-1]) { MACROBLOCKD *xd = &cpi->mb.e_mbd; int rf; // Reference frame int ref_c; // Motion reference candidate int node; // Probability node index for (rf = 0; rf < MAX_REF_FRAMES; ++rf) { int count = 0; // Skip the dummy entry for intra ref frame. if (rf == INTRA_FRAME) { continue; } // Sum the counts for all candidates for (ref_c = 0; ref_c < MAX_MV_REF_CANDIDATES; ++ref_c) { count += cpi->mb_mv_ref_count[rf][ref_c]; } // Calculate the tree node probabilities for (node = 0; node < MAX_MV_REF_CANDIDATES-1; ++node) { int new_prob, old_cost, new_cost; unsigned int branch_cnts[2]; // How many hits on each branch at this node branch_cnts[0] = cpi->mb_mv_ref_count[rf][node]; branch_cnts[1] = count - cpi->mb_mv_ref_count[rf][node]; // Work out cost of coding branches with the old and optimal probability old_cost = cost_branch256(branch_cnts, xd->mb_mv_ref_probs[rf][node]); new_prob = get_prob(branch_cnts[0], count); new_cost = cost_branch256(branch_cnts, new_prob); // Take current 0 branch cases out of residual count count -= cpi->mb_mv_ref_count[rf][node]; if ((new_cost + VP9_MV_REF_UPDATE_COST) <= old_cost) { mvref_probs[rf][node] = new_prob; } else { mvref_probs[rf][node] = xd->mb_mv_ref_probs[rf][node]; } } } } #endif static void write_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_ymode_tree, p, vp9_ymode_encodings + m); } static void kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_kf_ymode_tree, p, vp9_kf_ymode_encodings + m); } static void write_sb_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_sb_ymode_tree, p, vp9_sb_ymode_encodings + m); } static void sb_kfwrite_ymode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_uv_mode_tree, p, vp9_sb_kf_ymode_encodings + m); } static void write_i8x8_mode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_i8x8_mode_tree, p, vp9_i8x8_mode_encodings + m); } static void write_uv_mode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_uv_mode_tree, p, vp9_uv_mode_encodings + m); } static void write_bmode(vp9_writer *bc, int m, const vp9_prob *p) { #if CONFIG_NEWBINTRAMODES assert(m < B_CONTEXT_PRED - CONTEXT_PRED_REPLACEMENTS || m == B_CONTEXT_PRED); if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS; #endif write_token(bc, vp9_bmode_tree, p, vp9_bmode_encodings + m); } static void write_kf_bmode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_kf_bmode_tree, p, vp9_kf_bmode_encodings + m); } static void write_split(vp9_writer *bc, int x, const vp9_prob *p) { write_token( bc, vp9_mbsplit_tree, p, vp9_mbsplit_encodings + x); } static int prob_update_savings(const unsigned int *ct, const vp9_prob oldp, const vp9_prob newp, const vp9_prob upd) { const int old_b = cost_branch256(ct, oldp); const int new_b = cost_branch256(ct, newp); const int update_b = 2048 + vp9_cost_upd256; return (old_b - new_b - update_b); } static int prob_diff_update_savings(const unsigned int *ct, const vp9_prob oldp, const vp9_prob newp, const vp9_prob upd) { const int old_b = cost_branch256(ct, oldp); const int new_b = cost_branch256(ct, newp); const int update_b = (newp == oldp ? 0 : prob_diff_update_cost(newp, oldp) + vp9_cost_upd256); return (old_b - new_b - update_b); } static int prob_diff_update_savings_search(const unsigned int *ct, const vp9_prob oldp, vp9_prob *bestp, const vp9_prob upd) { const int old_b = cost_branch256(ct, oldp); int new_b, update_b, savings, bestsavings, step; vp9_prob newp, bestnewp; bestsavings = 0; bestnewp = oldp; step = (*bestp > oldp ? -1 : 1); for (newp = *bestp; newp != oldp; newp += step) { new_b = cost_branch256(ct, newp); update_b = prob_diff_update_cost(newp, oldp) + vp9_cost_upd256; savings = old_b - new_b - update_b; if (savings > bestsavings) { bestsavings = savings; bestnewp = newp; } } *bestp = bestnewp; return bestsavings; } static void vp9_cond_prob_update(vp9_writer *bc, vp9_prob *oldp, vp9_prob upd, unsigned int *ct) { vp9_prob newp; int savings; newp = get_binary_prob(ct[0], ct[1]); savings = prob_update_savings(ct, *oldp, newp, upd); if (savings > 0) { vp9_write(bc, 1, upd); vp9_write_literal(bc, newp, 8); *oldp = newp; } else { vp9_write(bc, 0, upd); } } static void pack_mb_tokens(vp9_writer* const bc, TOKENEXTRA **tp, const TOKENEXTRA *const stop) { TOKENEXTRA *p = *tp; while (p < stop) { const int t = p->Token; vp9_token *const a = vp9_coef_encodings + t; const vp9_extra_bit_struct *const b = vp9_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; if (t == EOSB_TOKEN) { ++p; break; } /* skip one or two nodes */ if (p->skip_eob_node) { n -= p->skip_eob_node; i = 2 * p->skip_eob_node; } do { const int bb = (v >> --n) & 1; encode_bool(bc, bb, pp[i >> 1]); i = vp9_coef_tree[i + bb]; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *pp = b->prob; int v = e >> 1; int n = L; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; encode_bool(bc, bb, pp[i >> 1]); i = b->tree[i + bb]; } while (n); } encode_bool(bc, e & 1, 128); } ++p; } *tp = p; } static void write_partition_size(unsigned char *cx_data, int size) { signed char csize; csize = size & 0xff; *cx_data = csize; csize = (size >> 8) & 0xff; *(cx_data + 1) = csize; csize = (size >> 16) & 0xff; *(cx_data + 2) = csize; } static void write_mv_ref ( vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p ) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m <= SPLITMV); #endif write_token(bc, vp9_mv_ref_tree, p, vp9_mv_ref_encoding_array - NEARESTMV + m); } static void write_sb_mv_ref(vp9_writer *bc, MB_PREDICTION_MODE m, const vp9_prob *p) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m < SPLITMV); #endif write_token(bc, vp9_sb_mv_ref_tree, p, vp9_sb_mv_ref_encoding_array - NEARESTMV + m); } static void write_sub_mv_ref ( vp9_writer *bc, B_PREDICTION_MODE m, const vp9_prob *p ) { #if CONFIG_DEBUG assert(LEFT4X4 <= m && m <= NEW4X4); #endif write_token(bc, vp9_sub_mv_ref_tree, p, vp9_sub_mv_ref_encoding_array - LEFT4X4 + m); } static void write_nmv(VP9_COMP *cpi, vp9_writer *bc, const MV *mv, const int_mv *ref, const nmv_context *nmvc, int usehp) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp9_encode_nmv(bc, &e, &ref->as_mv, nmvc); vp9_encode_nmv_fp(bc, &e, &ref->as_mv, nmvc, usehp); } #if CONFIG_NEW_MVREF static void vp9_write_mv_ref_id(vp9_writer *w, vp9_prob * ref_id_probs, int mv_ref_id) { // Encode the index for the MV reference. switch (mv_ref_id) { case 0: vp9_write(w, 0, ref_id_probs[0]); break; case 1: vp9_write(w, 1, ref_id_probs[0]); vp9_write(w, 0, ref_id_probs[1]); break; case 2: vp9_write(w, 1, ref_id_probs[0]); vp9_write(w, 1, ref_id_probs[1]); vp9_write(w, 0, ref_id_probs[2]); break; case 3: vp9_write(w, 1, ref_id_probs[0]); vp9_write(w, 1, ref_id_probs[1]); vp9_write(w, 1, ref_id_probs[2]); break; // TRAP.. This should not happen default: assert(0); break; } } #endif // This function writes the current macro block's segnment id to the bitstream // It should only be called if a segment map update is indicated. static void write_mb_segid(vp9_writer *bc, const MB_MODE_INFO *mi, const MACROBLOCKD *xd) { // Encode the MB segment id. int seg_id = mi->segment_id; if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { switch (seg_id) { case 0: vp9_write(bc, 0, xd->mb_segment_tree_probs[0]); vp9_write(bc, 0, xd->mb_segment_tree_probs[1]); break; case 1: vp9_write(bc, 0, xd->mb_segment_tree_probs[0]); vp9_write(bc, 1, xd->mb_segment_tree_probs[1]); break; case 2: vp9_write(bc, 1, xd->mb_segment_tree_probs[0]); vp9_write(bc, 0, xd->mb_segment_tree_probs[2]); break; case 3: vp9_write(bc, 1, xd->mb_segment_tree_probs[0]); vp9_write(bc, 1, xd->mb_segment_tree_probs[2]); break; // TRAP.. This should not happen default: vp9_write(bc, 0, xd->mb_segment_tree_probs[0]); vp9_write(bc, 0, xd->mb_segment_tree_probs[1]); break; } } } static void write_mb_segid_except(VP9_COMMON *cm, vp9_writer *bc, const MB_MODE_INFO *mi, const MACROBLOCKD *xd, int mb_row, int mb_col) { // Encode the MB segment id. int seg_id = mi->segment_id; int pred_seg_id = vp9_get_pred_mb_segid(cm, xd, mb_row * cm->mb_cols + mb_col); const vp9_prob *p = xd->mb_segment_tree_probs; const vp9_prob p1 = xd->mb_segment_mispred_tree_probs[pred_seg_id]; if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { vp9_write(bc, seg_id >= 2, p1); if (pred_seg_id >= 2 && seg_id < 2) { vp9_write(bc, seg_id == 1, p[1]); } else if (pred_seg_id < 2 && seg_id >= 2) { vp9_write(bc, seg_id == 3, p[2]); } } } // This function encodes the reference frame static void encode_ref_frame(vp9_writer *const bc, VP9_COMMON *const cm, MACROBLOCKD *xd, int segment_id, MV_REFERENCE_FRAME rf) { int seg_ref_active; int seg_ref_count = 0; seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { seg_ref_count = vp9_check_segref(xd, segment_id, INTRA_FRAME) + vp9_check_segref(xd, segment_id, LAST_FRAME) + vp9_check_segref(xd, segment_id, GOLDEN_FRAME) + vp9_check_segref(xd, segment_id, ALTREF_FRAME); } // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (!seg_ref_active || (seg_ref_count > 1)) { // Values used in prediction model coding unsigned char prediction_flag; vp9_prob pred_prob; MV_REFERENCE_FRAME pred_rf; // Get the context probability the prediction flag pred_prob = vp9_get_pred_prob(cm, xd, PRED_REF); // Get the predicted value. pred_rf = vp9_get_pred_ref(cm, xd); // Did the chosen reference frame match its predicted value. prediction_flag = (xd->mode_info_context->mbmi.ref_frame == pred_rf); vp9_set_pred_flag(xd, PRED_REF, prediction_flag); vp9_write(bc, prediction_flag, pred_prob); // If not predicted correctly then code value explicitly if (!prediction_flag) { vp9_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_rf], sizeof(mod_refprobs)); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if (seg_ref_active) { mod_refprobs[INTRA_FRAME] *= vp9_check_segref(xd, segment_id, INTRA_FRAME); mod_refprobs[LAST_FRAME] *= vp9_check_segref(xd, segment_id, LAST_FRAME); mod_refprobs[GOLDEN_FRAME] *= (vp9_check_segref(xd, segment_id, GOLDEN_FRAME) * vp9_check_segref(xd, segment_id, ALTREF_FRAME)); } if (mod_refprobs[0]) { vp9_write(bc, (rf != INTRA_FRAME), mod_refprobs[0]); } // Inter coded if (rf != INTRA_FRAME) { if (mod_refprobs[1]) { vp9_write(bc, (rf != LAST_FRAME), mod_refprobs[1]); } if (rf != LAST_FRAME) { if (mod_refprobs[2]) { vp9_write(bc, (rf != GOLDEN_FRAME), mod_refprobs[2]); } } } } } // if using the prediction mdoel we have nothing further to do because // the reference frame is fully coded by the segment } // Update the probabilities used to encode reference frame data static void update_ref_probs(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; cm->prob_intra_coded = get_binary_prob(rf_intra, rf_inter); cm->prob_last_coded = get_prob(rfct[LAST_FRAME], rf_inter); cm->prob_gf_coded = get_binary_prob(rfct[GOLDEN_FRAME], rfct[ALTREF_FRAME]); // Compute a modified set of probabilities to use when prediction of the // reference frame fails vp9_compute_mod_refprobs(cm); } static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, int mb_rows_left, int mb_cols_left) { VP9_COMMON *const pc = &cpi->common; const nmv_context *nmvc = &pc->fc.nmvc; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mis = pc->mode_info_stride; MB_MODE_INFO *const mi = &m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame; const MB_PREDICTION_MODE mode = mi->mode; const int segment_id = mi->segment_id; const int mb_size = 1 << mi->sb_type; int skip_coeff; int mb_row = pc->mb_rows - mb_rows_left; int mb_col = pc->mb_cols - mb_cols_left; xd->prev_mode_info_context = pc->prev_mi + (m - pc->mi); x->partition_info = x->pi + (m - pc->mi); // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV // values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_right_edge = ((pc->mb_cols - mb_size - mb_col) * 16) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - mb_size - mb_row) * 16) << 3; #ifdef ENTROPY_STATS active_section = 9; #endif if (cpi->mb.e_mbd.update_mb_segmentation_map) { // Is temporal coding of the segment map enabled if (pc->temporal_update) { unsigned char prediction_flag = vp9_get_pred_flag(xd, PRED_SEG_ID); vp9_prob pred_prob = vp9_get_pred_prob(pc, xd, PRED_SEG_ID); // Code the segment id prediction flag for this mb vp9_write(bc, prediction_flag, pred_prob); // If the mb segment id wasn't predicted code explicitly if (!prediction_flag) write_mb_segid_except(pc, bc, mi, &cpi->mb.e_mbd, mb_row, mb_col); } else { // Normal unpredicted coding write_mb_segid(bc, mi, &cpi->mb.e_mbd); } } if (!pc->mb_no_coeff_skip) { skip_coeff = 0; } else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { skip_coeff = 1; } else { const int nmbs = mb_size; const int xmbs = MIN(nmbs, mb_cols_left); const int ymbs = MIN(nmbs, mb_rows_left); int x, y; skip_coeff = 1; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { skip_coeff = skip_coeff && m[y * mis + x].mbmi.mb_skip_coeff; } } vp9_write(bc, skip_coeff, vp9_get_pred_prob(pc, xd, PRED_MBSKIP)); } // Encode the reference frame. encode_ref_frame(bc, pc, xd, segment_id, rf); if (rf == INTRA_FRAME) { #ifdef ENTROPY_STATS active_section = 6; #endif if (m->mbmi.sb_type) write_sb_ymode(bc, mode, pc->fc.sb_ymode_prob); else write_ymode(bc, mode, pc->fc.ymode_prob); if (mode == B_PRED) { int j = 0; do { write_bmode(bc, m->bmi[j].as_mode.first, pc->fc.bmode_prob); } while (++j < 16); } if (mode == I8X8_PRED) { write_i8x8_mode(bc, m->bmi[0].as_mode.first, pc->fc.i8x8_mode_prob); write_i8x8_mode(bc, m->bmi[2].as_mode.first, pc->fc.i8x8_mode_prob); write_i8x8_mode(bc, m->bmi[8].as_mode.first, pc->fc.i8x8_mode_prob); write_i8x8_mode(bc, m->bmi[10].as_mode.first, pc->fc.i8x8_mode_prob); } else { write_uv_mode(bc, mi->uv_mode, pc->fc.uv_mode_prob[mode]); } } else { vp9_prob mv_ref_p[VP9_MVREFS - 1]; vp9_mv_ref_probs(&cpi->common, mv_ref_p, mi->mb_mode_context[rf]); #ifdef ENTROPY_STATS accum_mv_refs(mode, ct); active_section = 3; #endif // Is segment skip is not enabled code the mode. if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { if (mi->sb_type) { write_sb_mv_ref(bc, mode, mv_ref_p); } else { write_mv_ref(bc, mode, mv_ref_p); } vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]); } if (mode >= NEARESTMV && mode <= SPLITMV) { if (cpi->common.mcomp_filter_type == SWITCHABLE) { write_token(bc, vp9_switchable_interp_tree, vp9_get_pred_probs(&cpi->common, xd, PRED_SWITCHABLE_INTERP), vp9_switchable_interp_encodings + vp9_switchable_interp_map[mi->interp_filter]); } else { assert(mi->interp_filter == cpi->common.mcomp_filter_type); } } // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { vp9_write(bc, mi->second_ref_frame > INTRA_FRAME, vp9_get_pred_prob(pc, xd, PRED_COMP)); } #if CONFIG_COMP_INTERINTRA_PRED if (cpi->common.use_interintra && mode >= NEARESTMV && mode < SPLITMV && mi->second_ref_frame <= INTRA_FRAME) { vp9_write(bc, mi->second_ref_frame == INTRA_FRAME, pc->fc.interintra_prob); // if (!cpi->dummy_packing) // printf("-- %d (%d)\n", mi->second_ref_frame == INTRA_FRAME, // pc->fc.interintra_prob); if (mi->second_ref_frame == INTRA_FRAME) { // if (!cpi->dummy_packing) // printf("** %d %d\n", mi->interintra_mode, // mi->interintra_uv_mode); write_ymode(bc, mi->interintra_mode, pc->fc.ymode_prob); #if SEPARATE_INTERINTRA_UV write_uv_mode(bc, mi->interintra_uv_mode, pc->fc.uv_mode_prob[mi->interintra_mode]); #endif } } #endif #if CONFIG_NEW_MVREF // if ((mode == NEWMV) || (mode == SPLITMV)) { if (mode == NEWMV) { // Encode the index of the choice. vp9_write_mv_ref_id(bc, xd->mb_mv_ref_probs[rf], mi->best_index); if (mi->second_ref_frame > 0) { // Encode the index of the choice. vp9_write_mv_ref_id( bc, xd->mb_mv_ref_probs[mi->second_ref_frame], mi->best_second_index); } } #endif switch (mode) { /* new, split require MVs */ case NEWMV: #ifdef ENTROPY_STATS active_section = 5; #endif write_nmv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv, (const nmv_context*) nmvc, xd->allow_high_precision_mv); if (mi->second_ref_frame > 0) { write_nmv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv, (const nmv_context*) nmvc, xd->allow_high_precision_mv); } break; case SPLITMV: { int j = 0; #ifdef MODE_STATS ++count_mb_seg[mi->partitioning]; #endif write_split(bc, mi->partitioning, cpi->common.fc.mbsplit_prob); cpi->mbsplit_count[mi->partitioning]++; do { B_PREDICTION_MODE blockmode; int_mv blockmv; const int *const L = vp9_mbsplits[mi->partitioning]; int k = -1; /* first block in subset j */ int mv_contz; int_mv leftmv, abovemv; blockmode = cpi->mb.partition_info->bmi[j].mode; blockmv = cpi->mb.partition_info->bmi[j].mv; #if CONFIG_DEBUG while (j != L[++k]) if (k >= 16) assert(0); #else while (j != L[++k]); #endif leftmv.as_int = left_block_mv(xd, m, k); abovemv.as_int = above_block_mv(m, k, mis); mv_contz = vp9_mv_cont(&leftmv, &abovemv); write_sub_mv_ref(bc, blockmode, cpi->common.fc.sub_mv_ref_prob[mv_contz]); cpi->sub_mv_ref_count[mv_contz][blockmode - LEFT4X4]++; if (blockmode == NEW4X4) { #ifdef ENTROPY_STATS active_section = 11; #endif write_nmv(cpi, bc, &blockmv.as_mv, &mi->best_mv, (const nmv_context*) nmvc, xd->allow_high_precision_mv); if (mi->second_ref_frame > 0) { write_nmv(cpi, bc, &cpi->mb.partition_info->bmi[j].second_mv.as_mv, &mi->best_second_mv, (const nmv_context*) nmvc, xd->allow_high_precision_mv); } } } while (++j < cpi->mb.partition_info->count); break; } default: break; } } if (((rf == INTRA_FRAME && mode <= I8X8_PRED) || (rf != INTRA_FRAME && !(mode == SPLITMV && mi->partitioning == PARTITIONING_4X4))) && pc->txfm_mode == TX_MODE_SELECT && !((pc->mb_no_coeff_skip && skip_coeff) || (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) { TX_SIZE sz = mi->txfm_size; // FIXME(rbultje) code ternary symbol once all experiments are merged vp9_write(bc, sz != TX_4X4, pc->prob_tx[0]); if (sz != TX_4X4 && mode != I8X8_PRED && mode != SPLITMV) { vp9_write(bc, sz != TX_8X8, pc->prob_tx[1]); if (mi->sb_type && sz != TX_8X8) vp9_write(bc, sz != TX_16X16, pc->prob_tx[2]); } } } static void write_mb_modes_kf(const VP9_COMP *cpi, const MODE_INFO *m, vp9_writer *bc, int mb_rows_left, int mb_cols_left) { const VP9_COMMON *const c = &cpi->common; const MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int mis = c->mode_info_stride; const int ym = m->mbmi.mode; const int segment_id = m->mbmi.segment_id; int skip_coeff; if (xd->update_mb_segmentation_map) { write_mb_segid(bc, &m->mbmi, xd); } if (!c->mb_no_coeff_skip) { skip_coeff = 0; } else if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { skip_coeff = 1; } else { const int nmbs = 1 << m->mbmi.sb_type; const int xmbs = MIN(nmbs, mb_cols_left); const int ymbs = MIN(nmbs, mb_rows_left); int x, y; skip_coeff = 1; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { skip_coeff = skip_coeff && m[y * mis + x].mbmi.mb_skip_coeff; } } vp9_write(bc, skip_coeff, vp9_get_pred_prob(c, xd, PRED_MBSKIP)); } if (m->mbmi.sb_type) { sb_kfwrite_ymode(bc, ym, c->sb_kf_ymode_prob[c->kf_ymode_probs_index]); } else { kfwrite_ymode(bc, ym, c->kf_ymode_prob[c->kf_ymode_probs_index]); } if (ym == B_PRED) { int i = 0; do { const B_PREDICTION_MODE A = above_block_mode(m, i, mis); const B_PREDICTION_MODE L = (xd->left_available || (i & 3)) ? left_block_mode(m, i) : B_DC_PRED; const int bm = m->bmi[i].as_mode.first; #ifdef ENTROPY_STATS ++intra_mode_stats [A] [L] [bm]; #endif write_kf_bmode(bc, bm, c->kf_bmode_prob[A][L]); } while (++i < 16); } if (ym == I8X8_PRED) { write_i8x8_mode(bc, m->bmi[0].as_mode.first, c->fc.i8x8_mode_prob); // printf(" mode: %d\n", m->bmi[0].as_mode.first); fflush(stdout); write_i8x8_mode(bc, m->bmi[2].as_mode.first, c->fc.i8x8_mode_prob); // printf(" mode: %d\n", m->bmi[2].as_mode.first); fflush(stdout); write_i8x8_mode(bc, m->bmi[8].as_mode.first, c->fc.i8x8_mode_prob); // printf(" mode: %d\n", m->bmi[8].as_mode.first); fflush(stdout); write_i8x8_mode(bc, m->bmi[10].as_mode.first, c->fc.i8x8_mode_prob); // printf(" mode: %d\n", m->bmi[10].as_mode.first); fflush(stdout); } else write_uv_mode(bc, m->mbmi.uv_mode, c->kf_uv_mode_prob[ym]); if (ym <= I8X8_PRED && c->txfm_mode == TX_MODE_SELECT && !((c->mb_no_coeff_skip && skip_coeff) || (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) { TX_SIZE sz = m->mbmi.txfm_size; // FIXME(rbultje) code ternary symbol once all experiments are merged vp9_write(bc, sz != TX_4X4, c->prob_tx[0]); if (sz != TX_4X4 && ym <= TM_PRED) { vp9_write(bc, sz != TX_8X8, c->prob_tx[1]); if (m->mbmi.sb_type && sz != TX_8X8) vp9_write(bc, sz != TX_16X16, c->prob_tx[2]); } } } static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mb_row, int mb_col) { VP9_COMMON *const c = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; xd->mode_info_context = m; xd->left_available = mb_col > c->cur_tile_mb_col_start; xd->right_available = (mb_col + (1 << m->mbmi.sb_type)) < c->cur_tile_mb_col_end; xd->up_available = mb_row > 0; if (c->frame_type == KEY_FRAME) { write_mb_modes_kf(cpi, m, bc, c->mb_rows - mb_row, c->mb_cols - mb_col); #ifdef ENTROPY_STATS active_section = 8; #endif } else { pack_inter_mode_mvs(cpi, m, bc, c->mb_rows - mb_row, c->mb_cols - mb_col); #ifdef ENTROPY_STATS active_section = 1; #endif } assert(*tok < tok_end); pack_mb_tokens(bc, tok, tok_end); } static void write_modes(VP9_COMP *cpi, vp9_writer* const bc, TOKENEXTRA **tok) { VP9_COMMON *const c = &cpi->common; const int mis = c->mode_info_stride; MODE_INFO *m, *m_ptr = c->mi + c->cur_tile_mb_col_start; int i, mb_row, mb_col; TOKENEXTRA *tok_end = *tok + cpi->tok_count; for (mb_row = 0; mb_row < c->mb_rows; mb_row += 4, m_ptr += 4 * mis) { m = m_ptr; for (mb_col = c->cur_tile_mb_col_start; mb_col < c->cur_tile_mb_col_end; mb_col += 4, m += 4) { vp9_write(bc, m->mbmi.sb_type == BLOCK_SIZE_SB64X64, c->sb64_coded); if (m->mbmi.sb_type == BLOCK_SIZE_SB64X64) { write_modes_b(cpi, m, bc, tok, tok_end, mb_row, mb_col); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; MODE_INFO *sb_m = m + y_idx_sb * mis + x_idx_sb; if (mb_col + x_idx_sb >= c->mb_cols || mb_row + y_idx_sb >= c->mb_rows) continue; vp9_write(bc, sb_m->mbmi.sb_type, c->sb32_coded); if (sb_m->mbmi.sb_type) { assert(sb_m->mbmi.sb_type == BLOCK_SIZE_SB32X32); write_modes_b(cpi, sb_m, bc, tok, tok_end, mb_row + y_idx_sb, mb_col + x_idx_sb); } else { // Process the 4 MBs in the order: // top-left, top-right, bottom-left, bottom-right for (i = 0; i < 4; i++) { const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); MODE_INFO *mb_m = m + x_idx + y_idx * mis; if (mb_row + y_idx >= c->mb_rows || mb_col + x_idx >= c->mb_cols) { // MB lies outside frame, move on continue; } assert(mb_m->mbmi.sb_type == BLOCK_SIZE_MB16X16); write_modes_b(cpi, mb_m, bc, tok, tok_end, mb_row + y_idx, mb_col + x_idx); } } } } } } } /* This function is used for debugging probability trees. */ static void print_prob_tree(vp9_coeff_probs *coef_probs) { /* print coef probability tree */ int i, j, k, l; FILE *f = fopen("enc_tree_probs.txt", "a"); fprintf(f, "{\n"); for (i = 0; i < BLOCK_TYPES_4X4; i++) { fprintf(f, " {\n"); for (j = 0; j < COEF_BANDS; j++) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; k++) { fprintf(f, " {"); for (l = 0; l < ENTROPY_NODES; l++) { fprintf(f, "%3u, ", (unsigned int)(coef_probs [i][j][k][l])); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, "}\n"); fclose(f); } static void build_tree_distribution(vp9_coeff_probs *coef_probs, vp9_coeff_count *coef_counts, #ifdef ENTROPY_STATS VP9_COMP *cpi, vp9_coeff_accum *context_counters, #endif vp9_coeff_stats *coef_branch_ct, int block_types) { int i = 0, j, k; #ifdef ENTROPY_STATS int t = 0; #endif for (i = 0; i < block_types; ++i) { for (j = 0; j < COEF_BANDS; ++j) { for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; vp9_tree_probs_from_distribution(MAX_ENTROPY_TOKENS, vp9_coef_encodings, vp9_coef_tree, coef_probs[i][j][k], coef_branch_ct[i][j][k], coef_counts[i][j][k]); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) context_counters[i][j][k][t] += coef_counts[i][j][k][t]; #endif } } } } static void build_coeff_contexts(VP9_COMP *cpi) { build_tree_distribution(cpi->frame_coef_probs_4x4, cpi->coef_counts_4x4, #ifdef ENTROPY_STATS cpi, context_counters_4x4, #endif cpi->frame_branch_ct_4x4, BLOCK_TYPES_4X4); build_tree_distribution(cpi->frame_hybrid_coef_probs_4x4, cpi->hybrid_coef_counts_4x4, #ifdef ENTROPY_STATS cpi, hybrid_context_counters_4x4, #endif cpi->frame_hybrid_branch_ct_4x4, BLOCK_TYPES_4X4); build_tree_distribution(cpi->frame_coef_probs_8x8, cpi->coef_counts_8x8, #ifdef ENTROPY_STATS cpi, context_counters_8x8, #endif cpi->frame_branch_ct_8x8, BLOCK_TYPES_8X8); build_tree_distribution(cpi->frame_hybrid_coef_probs_8x8, cpi->hybrid_coef_counts_8x8, #ifdef ENTROPY_STATS cpi, hybrid_context_counters_8x8, #endif cpi->frame_hybrid_branch_ct_8x8, BLOCK_TYPES_8X8); build_tree_distribution(cpi->frame_coef_probs_16x16, cpi->coef_counts_16x16, #ifdef ENTROPY_STATS cpi, context_counters_16x16, #endif cpi->frame_branch_ct_16x16, BLOCK_TYPES_16X16); build_tree_distribution(cpi->frame_hybrid_coef_probs_16x16, cpi->hybrid_coef_counts_16x16, #ifdef ENTROPY_STATS cpi, hybrid_context_counters_16x16, #endif cpi->frame_hybrid_branch_ct_16x16, BLOCK_TYPES_16X16); build_tree_distribution(cpi->frame_coef_probs_32x32, cpi->coef_counts_32x32, #ifdef ENTROPY_STATS cpi, context_counters_32x32, #endif cpi->frame_branch_ct_32x32, BLOCK_TYPES_32X32); } static void update_coef_probs_common(vp9_writer* const bc, #ifdef ENTROPY_STATS VP9_COMP *cpi, vp9_coeff_stats *tree_update_hist, #endif vp9_coeff_probs *new_frame_coef_probs, vp9_coeff_probs *old_frame_coef_probs, vp9_coeff_stats *frame_branch_ct, int block_types) { int i, j, k, t; int update[2] = {0, 0}; int savings; // vp9_prob bestupd = find_coef_update_prob(cpi); /* dry run to see if there is any udpate at all needed */ savings = 0; for (i = 0; i < block_types; ++i) { for (j = !i; j < COEF_BANDS; ++j) { int prev_coef_savings[ENTROPY_NODES] = {0}; for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { for (t = 0; t < ENTROPY_NODES; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][t]; const vp9_prob oldp = old_frame_coef_probs[i][j][k][t]; const vp9_prob upd = COEF_UPDATE_PROB; int s = prev_coef_savings[t]; int u = 0; if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #if defined(SEARCH_NEWP) s = prob_diff_update_savings_search( frame_branch_ct[i][j][k][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); #else s = prob_update_savings( frame_branch_ct[i][j][k][t], oldp, newp, upd); if (s > 0) u = 1; if (u) savings += s; #endif update[u]++; } } } } // printf("Update %d %d, savings %d\n", update[0], update[1], savings); /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp9_write_bit(bc, 0); } else { vp9_write_bit(bc, 1); for (i = 0; i < block_types; ++i) { for (j = !i; j < COEF_BANDS; ++j) { int prev_coef_savings[ENTROPY_NODES] = {0}; for (k = 0; k < PREV_COEF_CONTEXTS; ++k) { // calc probs and branch cts for this frame only for (t = 0; t < ENTROPY_NODES; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][t]; vp9_prob *oldp = old_frame_coef_probs[i][j][k] + t; const vp9_prob upd = COEF_UPDATE_PROB; int s = prev_coef_savings[t]; int u = 0; if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; #if defined(SEARCH_NEWP) s = prob_diff_update_savings_search( frame_branch_ct[i][j][k][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; #else s = prob_update_savings( frame_branch_ct[i][j][k][t], *oldp, newp, upd); if (s > 0) u = 1; #endif vp9_write(bc, u, upd); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) ++tree_update_hist[i][j][k][t][u]; #endif if (u) { /* send/use new probability */ write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } } static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { vp9_clear_system_state(); // Build the cofficient contexts based on counts collected in encode loop build_coeff_contexts(cpi); update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, tree_update_hist_4x4, #endif cpi->frame_coef_probs_4x4, cpi->common.fc.coef_probs_4x4, cpi->frame_branch_ct_4x4, BLOCK_TYPES_4X4); update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, hybrid_tree_update_hist_4x4, #endif cpi->frame_hybrid_coef_probs_4x4, cpi->common.fc.hybrid_coef_probs_4x4, cpi->frame_hybrid_branch_ct_4x4, BLOCK_TYPES_4X4); /* do not do this if not even allowed */ if (cpi->common.txfm_mode != ONLY_4X4) { update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, tree_update_hist_8x8, #endif cpi->frame_coef_probs_8x8, cpi->common.fc.coef_probs_8x8, cpi->frame_branch_ct_8x8, BLOCK_TYPES_8X8); update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, hybrid_tree_update_hist_8x8, #endif cpi->frame_hybrid_coef_probs_8x8, cpi->common.fc.hybrid_coef_probs_8x8, cpi->frame_hybrid_branch_ct_8x8, BLOCK_TYPES_8X8); } if (cpi->common.txfm_mode > ALLOW_8X8) { update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, tree_update_hist_16x16, #endif cpi->frame_coef_probs_16x16, cpi->common.fc.coef_probs_16x16, cpi->frame_branch_ct_16x16, BLOCK_TYPES_16X16); update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, hybrid_tree_update_hist_16x16, #endif cpi->frame_hybrid_coef_probs_16x16, cpi->common.fc.hybrid_coef_probs_16x16, cpi->frame_hybrid_branch_ct_16x16, BLOCK_TYPES_16X16); } if (cpi->common.txfm_mode > ALLOW_16X16) { update_coef_probs_common(bc, #ifdef ENTROPY_STATS cpi, tree_update_hist_32x32, #endif cpi->frame_coef_probs_32x32, cpi->common.fc.coef_probs_32x32, cpi->frame_branch_ct_32x32, BLOCK_TYPES_32X32); } } #ifdef PACKET_TESTING FILE *vpxlogc = 0; #endif static void put_delta_q(vp9_writer *bc, int delta_q) { if (delta_q != 0) { vp9_write_bit(bc, 1); vp9_write_literal(bc, abs(delta_q), 4); if (delta_q < 0) vp9_write_bit(bc, 1); else vp9_write_bit(bc, 0); } else vp9_write_bit(bc, 0); } static void decide_kf_ymode_entropy(VP9_COMP *cpi) { int mode_cost[MB_MODE_COUNT]; int cost; int bestcost = INT_MAX; int bestindex = 0; int i, j; for (i = 0; i < 8; i++) { vp9_cost_tokens(mode_cost, cpi->common.kf_ymode_prob[i], vp9_kf_ymode_tree); cost = 0; for (j = 0; j < VP9_YMODES; j++) { cost += mode_cost[j] * cpi->ymode_count[j]; } vp9_cost_tokens(mode_cost, cpi->common.sb_kf_ymode_prob[i], vp9_sb_ymode_tree); for (j = 0; j < VP9_I32X32_MODES; j++) { cost += mode_cost[j] * cpi->sb_ymode_count[j]; } if (cost < bestcost) { bestindex = i; bestcost = cost; } } cpi->common.kf_ymode_probs_index = bestindex; } static void segment_reference_frames(VP9_COMP *cpi) { VP9_COMMON *oci = &cpi->common; MODE_INFO *mi = oci->mi; int ref[MAX_MB_SEGMENTS] = {0}; int i, j; int mb_index = 0; MACROBLOCKD *const xd = &cpi->mb.e_mbd; for (i = 0; i < oci->mb_rows; i++) { for (j = 0; j < oci->mb_cols; j++, mb_index++) { ref[mi[mb_index].mbmi.segment_id] |= (1 << mi[mb_index].mbmi.ref_frame); } mb_index++; } for (i = 0; i < MAX_MB_SEGMENTS; i++) { vp9_enable_segfeature(xd, i, SEG_LVL_REF_FRAME); vp9_set_segdata(xd, i, SEG_LVL_REF_FRAME, ref[i]); } } void vp9_pack_bitstream(VP9_COMP *cpi, unsigned char *dest, unsigned long *size) { int i, j; VP9_HEADER oh; VP9_COMMON *const pc = &cpi->common; vp9_writer header_bc, residual_bc; MACROBLOCKD *const xd = &cpi->mb.e_mbd; int extra_bytes_packed = 0; unsigned char *cx_data = dest; oh.show_frame = (int) pc->show_frame; oh.type = (int)pc->frame_type; oh.version = pc->version; oh.first_partition_length_in_bytes = 0; cx_data += 3; #if defined(SECTIONBITS_OUTPUT) Sectionbits[active_section = 1] += sizeof(VP9_HEADER) * 8 * 256; #endif compute_update_table(); /* vp9_kf_default_bmode_probs() is called in vp9_setup_key_frame() once * for each K frame before encode frame. pc->kf_bmode_prob doesn't get * changed anywhere else. No need to call it again here. --yw * vp9_kf_default_bmode_probs( pc->kf_bmode_prob); */ /* every keyframe send startcode, width, height, scale factor, clamp * and color type. */ if (oh.type == KEY_FRAME) { int v; // Start / synch code cx_data[0] = 0x9D; cx_data[1] = 0x01; cx_data[2] = 0x2a; v = (pc->horiz_scale << 14) | pc->Width; cx_data[3] = v; cx_data[4] = v >> 8; v = (pc->vert_scale << 14) | pc->Height; cx_data[5] = v; cx_data[6] = v >> 8; extra_bytes_packed = 7; cx_data += extra_bytes_packed; vp9_start_encode(&header_bc, cx_data); // signal clr type vp9_write_bit(&header_bc, pc->clr_type); vp9_write_bit(&header_bc, pc->clamp_type); } else { vp9_start_encode(&header_bc, cx_data); } // error resilient mode vp9_write_bit(&header_bc, pc->error_resilient_mode); // Signal whether or not Segmentation is enabled vp9_write_bit(&header_bc, (xd->segmentation_enabled) ? 1 : 0); // Indicate which features are enabled if (xd->segmentation_enabled) { // Indicate whether or not the segmentation map is being updated. vp9_write_bit(&header_bc, (xd->update_mb_segmentation_map) ? 1 : 0); // If it is, then indicate the method that will be used. if (xd->update_mb_segmentation_map) { // Select the coding strategy (temporal or spatial) vp9_choose_segmap_coding_method(cpi); // Send the tree probabilities used to decode unpredicted // macro-block segments for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { int data = xd->mb_segment_tree_probs[i]; if (data != 255) { vp9_write_bit(&header_bc, 1); vp9_write_literal(&header_bc, data, 8); } else { vp9_write_bit(&header_bc, 0); } } // Write out the chosen coding method. vp9_write_bit(&header_bc, (pc->temporal_update) ? 1 : 0); if (pc->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) { int data = pc->segment_pred_probs[i]; if (data != 255) { vp9_write_bit(&header_bc, 1); vp9_write_literal(&header_bc, data, 8); } else { vp9_write_bit(&header_bc, 0); } } } } vp9_write_bit(&header_bc, (xd->update_mb_segmentation_data) ? 1 : 0); // segment_reference_frames(cpi); if (xd->update_mb_segmentation_data) { signed char Data; vp9_write_bit(&header_bc, (xd->mb_segment_abs_delta) ? 1 : 0); // For each segments id... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each segmentation codable feature... for (j = 0; j < SEG_LVL_MAX; j++) { Data = vp9_get_segdata(xd, i, j); // If the feature is enabled... if (vp9_segfeature_active(xd, i, j)) { vp9_write_bit(&header_bc, 1); // Is the segment data signed.. if (vp9_is_segfeature_signed(j)) { // Encode the relevant feature data if (Data < 0) { Data = - Data; vp9_encode_unsigned_max(&header_bc, Data, vp9_seg_feature_data_max(j)); vp9_write_bit(&header_bc, 1); } else { vp9_encode_unsigned_max(&header_bc, Data, vp9_seg_feature_data_max(j)); vp9_write_bit(&header_bc, 0); } } // Unsigned data element so no sign bit needed else vp9_encode_unsigned_max(&header_bc, Data, vp9_seg_feature_data_max(j)); } else vp9_write_bit(&header_bc, 0); } } } } // Encode the common prediction model status flag probability updates for // the reference frame update_refpred_stats(cpi); if (pc->frame_type != KEY_FRAME) { for (i = 0; i < PREDICTION_PROBS; i++) { if (cpi->ref_pred_probs_update[i]) { vp9_write_bit(&header_bc, 1); vp9_write_literal(&header_bc, pc->ref_pred_probs[i], 8); } else { vp9_write_bit(&header_bc, 0); } } } pc->sb64_coded = get_binary_prob(cpi->sb64_count[0], cpi->sb64_count[1]); vp9_write_literal(&header_bc, pc->sb64_coded, 8); pc->sb32_coded = get_binary_prob(cpi->sb32_count[0], cpi->sb32_count[1]); vp9_write_literal(&header_bc, pc->sb32_coded, 8); { if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = get_prob(cpi->txfm_count_32x32p[TX_4X4] + cpi->txfm_count_16x16p[TX_4X4] + cpi->txfm_count_8x8p[TX_4X4], cpi->txfm_count_32x32p[TX_4X4] + cpi->txfm_count_32x32p[TX_8X8] + cpi->txfm_count_32x32p[TX_16X16] + cpi->txfm_count_32x32p[TX_32X32] + cpi->txfm_count_16x16p[TX_4X4] + cpi->txfm_count_16x16p[TX_8X8] + cpi->txfm_count_16x16p[TX_16X16] + cpi->txfm_count_8x8p[TX_4X4] + cpi->txfm_count_8x8p[TX_8X8]); pc->prob_tx[1] = get_prob(cpi->txfm_count_32x32p[TX_8X8] + cpi->txfm_count_16x16p[TX_8X8], cpi->txfm_count_32x32p[TX_8X8] + cpi->txfm_count_32x32p[TX_16X16] + cpi->txfm_count_32x32p[TX_32X32] + cpi->txfm_count_16x16p[TX_8X8] + cpi->txfm_count_16x16p[TX_16X16]); pc->prob_tx[2] = get_prob(cpi->txfm_count_32x32p[TX_16X16], cpi->txfm_count_32x32p[TX_16X16] + cpi->txfm_count_32x32p[TX_32X32]); } else { pc->prob_tx[0] = 128; pc->prob_tx[1] = 128; pc->prob_tx[2] = 128; } vp9_write_literal(&header_bc, pc->txfm_mode <= 3 ? pc->txfm_mode : 3, 2); if (pc->txfm_mode > ALLOW_16X16) { vp9_write_bit(&header_bc, pc->txfm_mode == TX_MODE_SELECT); } if (pc->txfm_mode == TX_MODE_SELECT) { vp9_write_literal(&header_bc, pc->prob_tx[0], 8); vp9_write_literal(&header_bc, pc->prob_tx[1], 8); vp9_write_literal(&header_bc, pc->prob_tx[2], 8); } } // Encode the loop filter level and type vp9_write_bit(&header_bc, pc->filter_type); vp9_write_literal(&header_bc, pc->filter_level, 6); vp9_write_literal(&header_bc, pc->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled). vp9_write_bit(&header_bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated int send_update = xd->mode_ref_lf_delta_update; vp9_write_bit(&header_bc, send_update); if (send_update) { int Data; // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { Data = xd->ref_lf_deltas[i]; // Frame level data if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i]) { xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i]; vp9_write_bit(&header_bc, 1); if (Data > 0) { vp9_write_literal(&header_bc, (Data & 0x3F), 6); vp9_write_bit(&header_bc, 0); // sign } else { Data = -Data; vp9_write_literal(&header_bc, (Data & 0x3F), 6); vp9_write_bit(&header_bc, 1); // sign } } else { vp9_write_bit(&header_bc, 0); } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { Data = xd->mode_lf_deltas[i]; if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i]) { xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i]; vp9_write_bit(&header_bc, 1); if (Data > 0) { vp9_write_literal(&header_bc, (Data & 0x3F), 6); vp9_write_bit(&header_bc, 0); // sign } else { Data = -Data; vp9_write_literal(&header_bc, (Data & 0x3F), 6); vp9_write_bit(&header_bc, 1); // sign } } else { vp9_write_bit(&header_bc, 0); } } } } // signal here is multi token partition is enabled // vp9_write_literal(&header_bc, pc->multi_token_partition, 2); vp9_write_literal(&header_bc, 0, 2); // Frame Q baseline quantizer index vp9_write_literal(&header_bc, pc->base_qindex, QINDEX_BITS); // Transmit Dc, Second order and Uv quantizer delta information put_delta_q(&header_bc, pc->y1dc_delta_q); put_delta_q(&header_bc, pc->y2dc_delta_q); put_delta_q(&header_bc, pc->y2ac_delta_q); put_delta_q(&header_bc, pc->uvdc_delta_q); put_delta_q(&header_bc, pc->uvac_delta_q); // When there is a key frame all reference buffers are updated using the new key frame if (pc->frame_type != KEY_FRAME) { int refresh_mask; // Should the GF or ARF be updated using the transmitted frame or buffer if (cpi->refresh_golden_frame && !cpi->refresh_alt_ref_frame) { /* Preserve the previously existing golden frame and update the frame in * the alt ref slot instead. This is highly specific to the use of * alt-ref as a forward reference, and this needs to be generalized as * other uses are implemented (like RTC/temporal scaling) * * gld_fb_idx and alt_fb_idx need to be swapped for future frames, but * that happens in vp9_onyx_if.c:update_reference_frames() so that it can * be done outside of the recode loop. */ refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->alt_fb_idx); } else { refresh_mask = (cpi->refresh_last_frame << cpi->lst_fb_idx) | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | (cpi->refresh_alt_ref_frame << cpi->alt_fb_idx); } vp9_write_literal(&header_bc, refresh_mask, NUM_REF_FRAMES); vp9_write_literal(&header_bc, cpi->lst_fb_idx, NUM_REF_FRAMES_LG2); vp9_write_literal(&header_bc, cpi->gld_fb_idx, NUM_REF_FRAMES_LG2); vp9_write_literal(&header_bc, cpi->alt_fb_idx, NUM_REF_FRAMES_LG2); // Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer) vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]); vp9_write_bit(&header_bc, pc->ref_frame_sign_bias[ALTREF_FRAME]); // Signal whether to allow high MV precision vp9_write_bit(&header_bc, (xd->allow_high_precision_mv) ? 1 : 0); if (pc->mcomp_filter_type == SWITCHABLE) { /* Check to see if only one of the filters is actually used */ int count[VP9_SWITCHABLE_FILTERS]; int i, j, c = 0; for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { count[i] += cpi->switchable_interp_count[j][i]; } c += (count[i] > 0); } if (c == 1) { /* Only one filter is used. So set the filter at frame level */ for (i = 0; i < VP9_SWITCHABLE_FILTERS; ++i) { if (count[i]) { pc->mcomp_filter_type = vp9_switchable_interp[i]; break; } } } } // Signal the type of subpel filter to use vp9_write_bit(&header_bc, (pc->mcomp_filter_type == SWITCHABLE)); if (pc->mcomp_filter_type != SWITCHABLE) vp9_write_literal(&header_bc, (pc->mcomp_filter_type), 2); #if CONFIG_COMP_INTERINTRA_PRED // printf("Counts: %d %d\n", cpi->interintra_count[0], // cpi->interintra_count[1]); if (!cpi->dummy_packing && pc->use_interintra) pc->use_interintra = (cpi->interintra_count[1] > 0); vp9_write_bit(&header_bc, pc->use_interintra); if (!pc->use_interintra) vp9_zero(cpi->interintra_count); #endif } if (!pc->error_resilient_mode) { vp9_write_bit(&header_bc, pc->refresh_entropy_probs); vp9_write_bit(&header_bc, pc->frame_parallel_decoding_mode); } vp9_write_literal(&header_bc, pc->frame_context_idx, NUM_FRAME_CONTEXTS_LG2); #ifdef ENTROPY_STATS if (pc->frame_type == INTER_FRAME) active_section = 0; else active_section = 7; #endif // If appropriate update the inter mode probability context and code the // changes in the bitstream. if (pc->frame_type != KEY_FRAME) { int i, j; int new_context[INTER_MODE_CONTEXTS][4]; update_mode_probs(pc, new_context); for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (new_context[i][j] != pc->fc.vp9_mode_contexts[i][j]) { vp9_write(&header_bc, 1, 252); vp9_write_literal(&header_bc, new_context[i][j], 8); // Only update the persistent copy if this is the "real pack" if (!cpi->dummy_packing) { pc->fc.vp9_mode_contexts[i][j] = new_context[i][j]; } } else { vp9_write(&header_bc, 0, 252); } } } } #if CONFIG_NEW_MVREF if ((pc->frame_type != KEY_FRAME)) { int new_mvref_probs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES-1]; int i, j; update_mv_ref_probs(cpi, new_mvref_probs); for (i = 0; i < MAX_REF_FRAMES; ++i) { // Skip the dummy entry for intra ref frame. if (i == INTRA_FRAME) { continue; } // Encode any mandated updates to probabilities for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) { if (new_mvref_probs[i][j] != xd->mb_mv_ref_probs[i][j]) { vp9_write(&header_bc, 1, VP9_MVREF_UPDATE_PROB); vp9_write_literal(&header_bc, new_mvref_probs[i][j], 8); // Only update the persistent copy if this is the "real pack" if (!cpi->dummy_packing) { xd->mb_mv_ref_probs[i][j] = new_mvref_probs[i][j]; } } else { vp9_write(&header_bc, 0, VP9_MVREF_UPDATE_PROB); } } } } #endif vp9_clear_system_state(); // __asm emms; vp9_copy(cpi->common.fc.pre_coef_probs_4x4, cpi->common.fc.coef_probs_4x4); vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_4x4, cpi->common.fc.hybrid_coef_probs_4x4); vp9_copy(cpi->common.fc.pre_coef_probs_8x8, cpi->common.fc.coef_probs_8x8); vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_8x8, cpi->common.fc.hybrid_coef_probs_8x8); vp9_copy(cpi->common.fc.pre_coef_probs_16x16, cpi->common.fc.coef_probs_16x16); vp9_copy(cpi->common.fc.pre_hybrid_coef_probs_16x16, cpi->common.fc.hybrid_coef_probs_16x16); vp9_copy(cpi->common.fc.pre_coef_probs_32x32, cpi->common.fc.coef_probs_32x32); vp9_copy(cpi->common.fc.pre_sb_ymode_prob, cpi->common.fc.sb_ymode_prob); vp9_copy(cpi->common.fc.pre_ymode_prob, cpi->common.fc.ymode_prob); vp9_copy(cpi->common.fc.pre_uv_mode_prob, cpi->common.fc.uv_mode_prob); vp9_copy(cpi->common.fc.pre_bmode_prob, cpi->common.fc.bmode_prob); vp9_copy(cpi->common.fc.pre_sub_mv_ref_prob, cpi->common.fc.sub_mv_ref_prob); vp9_copy(cpi->common.fc.pre_mbsplit_prob, cpi->common.fc.mbsplit_prob); vp9_copy(cpi->common.fc.pre_i8x8_mode_prob, cpi->common.fc.i8x8_mode_prob); cpi->common.fc.pre_nmvc = cpi->common.fc.nmvc; #if CONFIG_COMP_INTERINTRA_PRED cpi->common.fc.pre_interintra_prob = cpi->common.fc.interintra_prob; #endif vp9_zero(cpi->sub_mv_ref_count); vp9_zero(cpi->mbsplit_count); vp9_zero(cpi->common.fc.mv_ref_ct) update_coef_probs(cpi, &header_bc); #ifdef ENTROPY_STATS active_section = 2; #endif // Write out the mb_no_coeff_skip flag vp9_write_bit(&header_bc, pc->mb_no_coeff_skip); if (pc->mb_no_coeff_skip) { int k; vp9_update_skip_probs(cpi); for (k = 0; k < MBSKIP_CONTEXTS; ++k) vp9_write_literal(&header_bc, pc->mbskip_pred_probs[k], 8); } if (pc->frame_type == KEY_FRAME) { if (!pc->kf_ymode_probs_update) { vp9_write_literal(&header_bc, pc->kf_ymode_probs_index, 3); } } else { // Update the probabilities used to encode reference frame data update_ref_probs(cpi); #ifdef ENTROPY_STATS active_section = 1; #endif if (pc->mcomp_filter_type == SWITCHABLE) update_switchable_interp_probs(cpi, &header_bc); #if CONFIG_COMP_INTERINTRA_PRED if (pc->use_interintra) { vp9_cond_prob_update(&header_bc, &pc->fc.interintra_prob, VP9_UPD_INTERINTRA_PROB, cpi->interintra_count); } #endif vp9_write_literal(&header_bc, pc->prob_intra_coded, 8); vp9_write_literal(&header_bc, pc->prob_last_coded, 8); vp9_write_literal(&header_bc, pc->prob_gf_coded, 8); { const int comp_pred_mode = cpi->common.comp_pred_mode; const int use_compound_pred = (comp_pred_mode != SINGLE_PREDICTION_ONLY); const int use_hybrid_pred = (comp_pred_mode == HYBRID_PREDICTION); vp9_write(&header_bc, use_compound_pred, 128); if (use_compound_pred) { vp9_write(&header_bc, use_hybrid_pred, 128); if (use_hybrid_pred) { for (i = 0; i < COMP_PRED_CONTEXTS; i++) { pc->prob_comppred[i] = get_binary_prob(cpi->single_pred_count[i], cpi->comp_pred_count[i]); vp9_write_literal(&header_bc, pc->prob_comppred[i], 8); } } } } update_mbintra_mode_probs(cpi, &header_bc); vp9_write_nmv_probs(cpi, xd->allow_high_precision_mv, &header_bc); } /* tiling */ vp9_write(&header_bc, pc->tile_columns > 1, 128); if (pc->tile_columns > 1) { vp9_write(&header_bc, pc->tile_columns > 2, 128); } vp9_stop_encode(&header_bc); oh.first_partition_length_in_bytes = header_bc.pos; /* update frame tag */ { int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) | (oh.version << 1) | oh.type; dest[0] = v; dest[1] = v >> 8; dest[2] = v >> 16; } *size = VP9_HEADER_SIZE + extra_bytes_packed + header_bc.pos; if (pc->frame_type == KEY_FRAME) { decide_kf_ymode_entropy(cpi); } else { /* This is not required if the counts in cpi are consistent with the * final packing pass */ // if (!cpi->dummy_packing) vp9_zero(cpi->NMVcount); } { int mb_start = 0, tile; int total_size = 0; unsigned char *data_ptr = cx_data + header_bc.pos; TOKENEXTRA *tok = cpi->tok; for (tile = 0; tile < pc->tile_columns; tile++) { // calculate end of tile column const int sb_cols = (pc->mb_cols + 3) >> 2; const int sb_end = (sb_cols * (tile + 1)) >> cpi->oxcf.tile_columns; const int mb_end = ((sb_end << 2) > pc->mb_cols) ? pc->mb_cols : (sb_end << 2); pc->cur_tile_idx = tile; pc->cur_tile_mb_col_start = mb_start; pc->cur_tile_mb_col_end = mb_end; if (tile < pc->tile_columns - 1) vp9_start_encode(&residual_bc, data_ptr + total_size + 4); else vp9_start_encode(&residual_bc, data_ptr + total_size); write_modes(cpi, &residual_bc, &tok); vp9_stop_encode(&residual_bc); if (tile < pc->tile_columns - 1) { /* size of this tile */ data_ptr[total_size + 0] = residual_bc.pos; data_ptr[total_size + 1] = residual_bc.pos >> 8; data_ptr[total_size + 2] = residual_bc.pos >> 16; data_ptr[total_size + 3] = residual_bc.pos >> 24; total_size += 4; } mb_start = mb_end; total_size += residual_bc.pos; } *size += total_size; } if (pc->frame_type != KEY_FRAME && !cpi->common.error_resilient_mode) { vp9_adapt_mode_context(&cpi->common); } } #ifdef ENTROPY_STATS static void print_tree_update_for_type(FILE *f, vp9_coeff_stats *tree_update_hist, int block_types, const char *header) { int i, j, k, l; fprintf(f, "const vp9_coeff_prob %s = {\n", header); for (i = 0; i < block_types; i++) { fprintf(f, " { \n"); for (j = 0; j < COEF_BANDS; j++) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; k++) { fprintf(f, " {"); for (l = 0; l < ENTROPY_NODES; l++) { fprintf(f, "%3d, ", get_binary_prob(tree_update_hist[i][j][k][l][0], tree_update_hist[i][j][k][l][1])); } fprintf(f, "},\n"); } fprintf(f, " },\n"); } fprintf(f, " },\n"); } fprintf(f, "};\n"); } void print_tree_update_probs() { FILE *f = fopen("coefupdprob.h", "w"); fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); print_tree_update_for_type(f, tree_update_hist_4x4, BLOCK_TYPES_4X4, "vp9_coef_update_probs_4x4[BLOCK_TYPES_4X4]"); print_tree_update_for_type(f, hybrid_tree_update_hist_4x4, BLOCK_TYPES_4X4, "vp9_coef_update_probs_4x4[BLOCK_TYPES_4X4]"); print_tree_update_for_type(f, tree_update_hist_8x8, BLOCK_TYPES_8X8, "vp9_coef_update_probs_8x8[BLOCK_TYPES_8X8]"); print_tree_update_for_type(f, hybrid_tree_update_hist_8x8, BLOCK_TYPES_8X8, "vp9_coef_update_probs_8x8[BLOCK_TYPES_8X8]"); print_tree_update_for_type(f, tree_update_hist_16x16, BLOCK_TYPES_16X16, "vp9_coef_update_probs_16x16[BLOCK_TYPES_16X16]"); print_tree_update_for_type(f, hybrid_tree_update_hist_16x16, BLOCK_TYPES_16X16, "vp9_coef_update_probs_16x16[BLOCK_TYPES_16X16]"); print_tree_update_for_type(f, tree_update_hist_32x32, BLOCK_TYPES_32X32, "vp9_coef_update_probs_32x32[BLOCK_TYPES_32X32]"); fclose(f); f = fopen("treeupdate.bin", "wb"); fwrite(tree_update_hist_4x4, sizeof(tree_update_hist_4x4), 1, f); fwrite(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f); fwrite(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f); fclose(f); } #endif