/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_ENCODER_VP9_ONYX_INT_H_ #define VP9_ENCODER_VP9_ONYX_INT_H_ #include #include "./vpx_config.h" #include "vpx_ports/mem.h" #include "vpx/internal/vpx_codec_internal.h" #include "vpx/vp8cx.h" #include "vp9/common/vp9_ppflags.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_onyxc_int.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_firstpass.h" #include "vp9/encoder/vp9_lookahead.h" #include "vp9/encoder/vp9_mbgraph.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/encoder/vp9_variance.h" #ifdef __cplusplus extern "C" { #endif // #define MODE_TEST_HIT_STATS #if CONFIG_MULTIPLE_ARF // Set MIN_GF_INTERVAL to 1 for the full decomposition. #define MIN_GF_INTERVAL 2 #else #define MIN_GF_INTERVAL 4 #endif #define DEFAULT_GF_INTERVAL 10 #define DEFAULT_KF_BOOST 2000 #define DEFAULT_GF_BOOST 2000 #define KEY_FRAME_CONTEXT 5 #define MAX_MODES 30 #define MAX_REFS 6 #define MIN_THRESHMULT 32 #define MAX_THRESHMULT 512 #define GF_ZEROMV_ZBIN_BOOST 0 #define LF_ZEROMV_ZBIN_BOOST 0 #define MV_ZBIN_BOOST 0 #define SPLIT_MV_ZBIN_BOOST 0 #define INTRA_ZBIN_BOOST 0 typedef struct { int nmvjointcost[MV_JOINTS]; int nmvcosts[2][MV_VALS]; int nmvcosts_hp[2][MV_VALS]; vp9_prob segment_pred_probs[PREDICTION_PROBS]; unsigned char *last_frame_seg_map_copy; // 0 = Intra, Last, GF, ARF signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; // 0 = ZERO_MV, MV signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; FRAME_CONTEXT fc; } CODING_CONTEXT; // This enumerator type needs to be kept aligned with the mode order in // const MODE_DEFINITION vp9_mode_order[MAX_MODES] used in the rd code. typedef enum { THR_NEARESTMV, THR_NEARESTA, THR_NEARESTG, THR_DC, THR_NEWMV, THR_NEWA, THR_NEWG, THR_NEARMV, THR_NEARA, THR_COMP_NEARESTLA, THR_COMP_NEARESTGA, THR_TM, THR_COMP_NEARLA, THR_COMP_NEWLA, THR_NEARG, THR_COMP_NEARGA, THR_COMP_NEWGA, THR_ZEROMV, THR_ZEROG, THR_ZEROA, THR_COMP_ZEROLA, THR_COMP_ZEROGA, THR_H_PRED, THR_V_PRED, THR_D135_PRED, THR_D207_PRED, THR_D153_PRED, THR_D63_PRED, THR_D117_PRED, THR_D45_PRED, } THR_MODES; typedef enum { THR_LAST, THR_GOLD, THR_ALTR, THR_COMP_LA, THR_COMP_GA, THR_INTRA, } THR_MODES_SUB8X8; typedef enum { DIAMOND = 0, NSTEP = 1, HEX = 2, BIGDIA = 3, SQUARE = 4, FAST_HEX = 5 } SEARCH_METHODS; typedef enum { USE_FULL_RD = 0, USE_LARGESTINTRA, USE_LARGESTINTRA_MODELINTER, USE_LARGESTALL } TX_SIZE_SEARCH_METHOD; typedef enum { NOT_IN_USE = 0, RELAXED_NEIGHBORING_MIN_MAX = 1, STRICT_NEIGHBORING_MIN_MAX = 2 } AUTO_MIN_MAX_MODE; typedef enum { // Values should be powers of 2 so that they can be selected as bits of // an integer flags field // terminate search early based on distortion so far compared to // qp step, distortion in the neighborhood of the frame, etc. FLAG_EARLY_TERMINATE = 1, // skips comp inter modes if the best so far is an intra mode FLAG_SKIP_COMP_BESTINTRA = 2, // skips comp inter modes if the best single intermode so far does // not have the same reference as one of the two references being // tested FLAG_SKIP_COMP_REFMISMATCH = 4, // skips oblique intra modes if the best so far is an inter mode FLAG_SKIP_INTRA_BESTINTER = 8, // skips oblique intra modes at angles 27, 63, 117, 153 if the best // intra so far is not one of the neighboring directions FLAG_SKIP_INTRA_DIRMISMATCH = 16, // skips intra modes other than DC_PRED if the source variance // is small FLAG_SKIP_INTRA_LOWVAR = 32, } MODE_SEARCH_SKIP_LOGIC; typedef enum { SUBPEL_TREE = 0, // Other methods to come } SUBPEL_SEARCH_METHODS; #define ALL_INTRA_MODES 0x3FF #define INTRA_DC_ONLY 0x01 #define INTRA_DC_TM ((1 << TM_PRED) | (1 << DC_PRED)) #define INTRA_DC_H_V ((1 << DC_PRED) | (1 << V_PRED) | (1 << H_PRED)) #define INTRA_DC_TM_H_V (INTRA_DC_TM | (1 << V_PRED) | (1 << H_PRED)) typedef enum { LAST_FRAME_PARTITION_OFF = 0, LAST_FRAME_PARTITION_LOW_MOTION = 1, LAST_FRAME_PARTITION_ALL = 2 } LAST_FRAME_PARTITION_METHOD; typedef enum { // No recode. DISALLOW_RECODE = 0, // Allow recode for KF and exceeding maximum frame bandwidth. ALLOW_RECODE_KFMAXBW = 1, // Allow recode only for KF/ARF/GF frames. ALLOW_RECODE_KFARFGF = 2, // Allow recode for all frames based on bitrate constraints. ALLOW_RECODE = 3, } RECODE_LOOP_TYPE; typedef enum { // encode_breakout is disabled. ENCODE_BREAKOUT_DISABLED = 0, // encode_breakout is enabled. ENCODE_BREAKOUT_ENABLED = 1, // encode_breakout is enabled with small max_thresh limit. ENCODE_BREAKOUT_LIMITED = 2 } ENCODE_BREAKOUT_TYPE; typedef enum { // Search partitions using RD/NONRD criterion SEARCH_PARTITION = 0, // Always use a fixed size partition FIXED_PARTITION = 1, // Use a fixed size partition in every 64X64 SB, where the size is // determined based on source variance VAR_BASED_FIXED_PARTITION = 2, // Use an arbitrary partitioning scheme based on source variance within // a 64X64 SB VAR_BASED_PARTITION } PARTITION_SEARCH_TYPE; typedef struct { // Frame level coding parameter update int frame_parameter_update; // Motion search method (Diamond, NSTEP, Hex, Big Diamond, Square, etc). SEARCH_METHODS search_method; RECODE_LOOP_TYPE recode_loop; // Subpel_search_method can only be subpel_tree which does a subpixel // logarithmic search that keeps stepping at 1/2 pixel units until // you stop getting a gain, and then goes on to 1/4 and repeats // the same process. Along the way it skips many diagonals. SUBPEL_SEARCH_METHODS subpel_search_method; // Maximum number of steps in logarithmic subpel search before giving up. int subpel_iters_per_step; // Control when to stop subpel search int subpel_force_stop; // Thresh_mult is used to set a threshold for the rd score. A higher value // means that we will accept the best mode so far more often. This number // is used in combination with the current block size, and thresh_freq_fact // to pick a threshold. int thresh_mult[MAX_MODES]; int thresh_mult_sub8x8[MAX_REFS]; // This parameter controls the number of steps we'll do in a diamond // search. int max_step_search_steps; // This parameter controls which step in the n-step process we start at. // It's changed adaptively based on circumstances. int reduce_first_step_size; // If this is set to 1, we limit the motion search range to 2 times the // largest motion vector found in the last frame. int auto_mv_step_size; // Trellis (dynamic programming) optimization of quantized values (+1, 0). int optimize_coefficients; // Always set to 0. If on it enables 0 cost background transmission // (except for the initial transmission of the segmentation). The feature is // disabled because the addition of very large block sizes make the // backgrounds very to cheap to encode, and the segmentation we have // adds overhead. int static_segmentation; // If 1 we iterate finding a best reference for 2 ref frames together - via // a log search that iterates 4 times (check around mv for last for best // error of combined predictor then check around mv for alt). If 0 we // we just use the best motion vector found for each frame by itself. int comp_inter_joint_search_thresh; // This variable is used to cap the maximum number of times we skip testing a // mode to be evaluated. A high value means we will be faster. int adaptive_rd_thresh; // Enables skipping the reconstruction step (idct, recon) in the // intermediate steps assuming the last frame didn't have too many intra // blocks and the q is less than a threshold. int skip_encode_sb; int skip_encode_frame; // This variable allows us to reuse the last frames partition choices // (64x64 v 32x32 etc) for this frame. It can be set to only use the last // frame as a starting point in low motion scenes or always use it. If set // we use last partitioning_redo frequency to determine how often to redo // the partitioning from scratch. Adjust_partitioning_from_last_frame // enables us to adjust up or down one partitioning from the last frames // partitioning. LAST_FRAME_PARTITION_METHOD use_lastframe_partitioning; // Determine which method we use to determine transform size. We can choose // between options like full rd, largest for prediction size, largest // for intra and model coefs for the rest. TX_SIZE_SEARCH_METHOD tx_size_search_method; // Low precision 32x32 fdct keeps everything in 16 bits and thus is less // precise but significantly faster than the non lp version. int use_lp32x32fdct; // TODO(JBB): remove this as its no longer used. // After looking at the first set of modes (set by index here), skip // checking modes for reference frames that don't match the reference frame // of the best so far. int mode_skip_start; // TODO(JBB): Remove this. int reference_masking; PARTITION_SEARCH_TYPE partition_search_type; // Used if partition_search_type = FIXED_SIZE_PARTITION BLOCK_SIZE always_this_block_size; // Skip rectangular partition test when partition type none gives better // rd than partition type split. int less_rectangular_check; // Disable testing non square partitions. (eg 16x32) int use_square_partition_only; // Sets min and max partition sizes for this 64x64 region based on the // same 64x64 in last encoded frame, and the left and above neighbor. AUTO_MIN_MAX_MODE auto_min_max_partition_size; // Min and max partition size we enable (block_size) as per auto // min max, but also used by adjust partitioning, and pick_partitioning. BLOCK_SIZE min_partition_size; BLOCK_SIZE max_partition_size; // Whether or not we allow partitions one smaller or one greater than the last // frame's partitioning. Only used if use_lastframe_partitioning is set. int adjust_partitioning_from_last_frame; // How frequently we re do the partitioning from scratch. Only used if // use_lastframe_partitioning is set. int last_partitioning_redo_frequency; // Disables sub 8x8 blocksizes in different scenarios: Choices are to disable // it always, to allow it for only Last frame and Intra, disable it for all // inter modes or to enable it always. int disable_split_mask; // TODO(jingning): combine the related motion search speed features // This allows us to use motion search at other sizes as a starting // point for this motion search and limits the search range around it. int adaptive_motion_search; // Allows sub 8x8 modes to use the prediction filter that was determined // best for 8x8 mode. If set to 0 we always re check all the filters for // sizes less than 8x8, 1 means we check all filter modes if no 8x8 filter // was selected, and 2 means we use 8 tap if no 8x8 filter mode was selected. int adaptive_pred_interp_filter; // Implements various heuristics to skip searching modes // The heuristics selected are based on flags // defined in the MODE_SEARCH_SKIP_HEURISTICS enum unsigned int mode_search_skip_flags; // A source variance threshold below which the split mode is disabled unsigned int disable_split_var_thresh; // A source variance threshold below which filter search is disabled // Choose a very large value (UINT_MAX) to use 8-tap always unsigned int disable_filter_search_var_thresh; // These bit masks allow you to enable or disable intra modes for each // transform size separately. int intra_y_mode_mask[TX_SIZES]; int intra_uv_mode_mask[TX_SIZES]; // This variable enables an early break out of mode testing if the model for // rd built from the prediction signal indicates a value that's much // higher than the best rd we've seen so far. int use_rd_breakout; // This enables us to use an estimate for intra rd based on dc mode rather // than choosing an actual uv mode in the stage of encoding before the actual // final encode. int use_uv_intra_rd_estimate; // This feature controls how the loop filter level is determined: // 0: Try the full image with different values. // 1: Try a small portion of the image with different values. // 2: Estimate the level based on quantizer and frame type int use_fast_lpf_pick; // This feature limits the number of coefficients updates we actually do // by only looking at counts from 1/2 the bands. int use_fast_coef_updates; // 0: 2-loop, 1: 1-loop, 2: 1-loop reduced // This flag controls the use of non-RD mode decision. int use_nonrd_pick_mode; // This variable sets the encode_breakout threshold. Currently, it is only // enabled in real time mode. int encode_breakout_thresh; // A binary mask indicating if NEARESTMV, NEARMV, ZEROMV, NEWMV // modes are disabled in order from LSB to MSB for each BLOCK_SIZE. int disable_inter_mode_mask[BLOCK_SIZES]; // This feature controls whether we do the expensive context update and // calculation in the rd coefficient costing loop. int use_fast_coef_costing; // This variable controls the maximum block size where intra blocks can be // used in inter frames. // TODO(aconverse): Fold this into one of the other many mode skips BLOCK_SIZE max_intra_bsize; } SPEED_FEATURES; typedef struct { RATE_CONTROL rc; int target_bandwidth; int64_t starting_buffer_level; int64_t optimal_buffer_level; int64_t maximum_buffer_size; double framerate; int avg_frame_size; } LAYER_CONTEXT; #define MAX_SEGMENTS 8 typedef enum { NORMAL = 0, FOURFIVE = 1, THREEFIVE = 2, ONETWO = 3 } VPX_SCALING; typedef enum { VP9_LAST_FLAG = 1, VP9_GOLD_FLAG = 2, VP9_ALT_FLAG = 4 } VP9_REFFRAME; typedef enum { USAGE_LOCAL_FILE_PLAYBACK = 0x0, USAGE_STREAM_FROM_SERVER = 0x1, USAGE_CONSTRAINED_QUALITY = 0x2, USAGE_CONSTANT_QUALITY = 0x3, } END_USAGE; typedef enum { MODE_GOODQUALITY = 0x1, MODE_BESTQUALITY = 0x2, MODE_FIRSTPASS = 0x3, MODE_SECONDPASS = 0x4, MODE_SECONDPASS_BEST = 0x5, MODE_REALTIME = 0x6, } MODE; typedef enum { FRAMEFLAGS_KEY = 1, FRAMEFLAGS_GOLDEN = 2, FRAMEFLAGS_ALTREF = 4, } FRAMETYPE_FLAGS; typedef enum { NO_AQ = 0, VARIANCE_AQ = 1, COMPLEXITY_AQ = 2, AQ_MODES_COUNT // This should always be the last member of the enum } AQ_MODES; typedef struct { int version; // 4 versions of bitstream defined: // 0 - best quality/slowest decode, // 3 - lowest quality/fastest decode int width; // width of data passed to the compressor int height; // height of data passed to the compressor double framerate; // set to passed in framerate int64_t target_bandwidth; // bandwidth to be used in kilobits per second int noise_sensitivity; // pre processing blur: recommendation 0 int sharpness; // sharpening output: recommendation 0: int cpu_used; unsigned int rc_max_intra_bitrate_pct; // mode -> // (0)=Realtime/Live Encoding. This mode is optimized for realtime // encoding (for example, capturing a television signal or feed from // a live camera). ( speed setting controls how fast ) // (1)=Good Quality Fast Encoding. The encoder balances quality with the // amount of time it takes to encode the output. ( speed setting // controls how fast ) // (2)=One Pass - Best Quality. The encoder places priority on the // quality of the output over encoding speed. The output is compressed // at the highest possible quality. This option takes the longest // amount of time to encode. ( speed setting ignored ) // (3)=Two Pass - First Pass. The encoder generates a file of statistics // for use in the second encoding pass. ( speed setting controls how // fast ) // (4)=Two Pass - Second Pass. The encoder uses the statistics that were // generated in the first encoding pass to create the compressed // output. ( speed setting controls how fast ) // (5)=Two Pass - Second Pass Best. The encoder uses the statistics that // were generated in the first encoding pass to create the compressed // output using the highest possible quality, and taking a // longer amount of time to encode.. ( speed setting ignored ) int mode; // Key Framing Operations int auto_key; // autodetect cut scenes and set the keyframes int key_freq; // maximum distance to key frame. int lag_in_frames; // how many frames lag before we start encoding // ---------------------------------------------------------------- // DATARATE CONTROL OPTIONS int end_usage; // vbr or cbr // buffer targeting aggressiveness int under_shoot_pct; int over_shoot_pct; // buffering parameters int64_t starting_buffer_level; // in seconds int64_t optimal_buffer_level; int64_t maximum_buffer_size; // Frame drop threshold. int drop_frames_water_mark; // controlling quality int fixed_q; int worst_allowed_q; int best_allowed_q; int cq_level; int lossless; int aq_mode; // Adaptive Quantization mode // two pass datarate control int two_pass_vbrbias; // two pass datarate control tweaks int two_pass_vbrmin_section; int two_pass_vbrmax_section; // END DATARATE CONTROL OPTIONS // ---------------------------------------------------------------- // Spatial and temporal scalability. int ss_number_layers; // Number of spatial layers. int ts_number_layers; // Number of temporal layers. // Bitrate allocation for spatial layers. int ss_target_bitrate[VPX_SS_MAX_LAYERS]; // Bitrate allocation (CBR mode) and framerate factor, for temporal layers. int ts_target_bitrate[VPX_TS_MAX_LAYERS]; int ts_rate_decimator[VPX_TS_MAX_LAYERS]; // these parameters aren't to be used in final build don't use!!! int play_alternate; int alt_freq; int encode_breakout; // early breakout : for video conf recommend 800 /* Bitfield defining the error resiliency features to enable. * Can provide decodable frames after losses in previous * frames and decodable partitions after losses in the same frame. */ unsigned int error_resilient_mode; /* Bitfield defining the parallel decoding mode where the * decoding in successive frames may be conducted in parallel * just by decoding the frame headers. */ unsigned int frame_parallel_decoding_mode; int arnr_max_frames; int arnr_strength; int arnr_type; int tile_columns; int tile_rows; struct vpx_fixed_buf two_pass_stats_in; struct vpx_codec_pkt_list *output_pkt_list; vp8e_tuning tuning; } VP9_CONFIG; typedef struct VP9_COMP { DECLARE_ALIGNED(16, int16_t, y_quant[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, y_quant_shift[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, y_zbin[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, y_round[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, uv_quant[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, uv_quant_shift[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, uv_zbin[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, uv_round[QINDEX_RANGE][8]); #if CONFIG_ALPHA DECLARE_ALIGNED(16, int16_t, a_quant[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, a_quant_shift[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, a_zbin[QINDEX_RANGE][8]); DECLARE_ALIGNED(16, int16_t, a_round[QINDEX_RANGE][8]); #endif MACROBLOCK mb; VP9_COMMON common; VP9_CONFIG oxcf; struct lookahead_ctx *lookahead; struct lookahead_entry *source; #if CONFIG_MULTIPLE_ARF struct lookahead_entry *alt_ref_source[REF_FRAMES]; #else struct lookahead_entry *alt_ref_source; #endif YV12_BUFFER_CONFIG *Source; YV12_BUFFER_CONFIG *un_scaled_source; YV12_BUFFER_CONFIG scaled_source; int key_frame_frequency; int gold_is_last; // gold same as last frame ( short circuit gold searches) int alt_is_last; // Alt same as last ( short circuit altref search) int gold_is_alt; // don't do both alt and gold search ( just do gold). int scaled_ref_idx[3]; int lst_fb_idx; int gld_fb_idx; int alt_fb_idx; #if CONFIG_MULTIPLE_ARF int alt_ref_fb_idx[REF_FRAMES - 3]; #endif int refresh_last_frame; int refresh_golden_frame; int refresh_alt_ref_frame; int ext_refresh_frame_flags_pending; int ext_refresh_last_frame; int ext_refresh_golden_frame; int ext_refresh_alt_ref_frame; int ext_refresh_frame_context_pending; int ext_refresh_frame_context; YV12_BUFFER_CONFIG last_frame_uf; TOKENEXTRA *tok; unsigned int tok_count[4][1 << 6]; #if CONFIG_MULTIPLE_ARF // Position within a frame coding order (including any additional ARF frames). unsigned int sequence_number; // Next frame in naturally occurring order that has not yet been coded. int next_frame_in_order; #endif // Ambient reconstruction err target for force key frames int ambient_err; int rd_threshes[MAX_SEGMENTS][BLOCK_SIZES][MAX_MODES]; int rd_thresh_freq_fact[BLOCK_SIZES][MAX_MODES]; int rd_thresh_sub8x8[MAX_SEGMENTS][BLOCK_SIZES][MAX_REFS]; int rd_thresh_freq_sub8x8[BLOCK_SIZES][MAX_REFS]; int64_t rd_comp_pred_diff[REFERENCE_MODES]; int64_t rd_prediction_type_threshes[4][REFERENCE_MODES]; int64_t rd_tx_select_diff[TX_MODES]; // FIXME(rbultje) can this overflow? int rd_tx_select_threshes[4][TX_MODES]; int64_t rd_filter_diff[SWITCHABLE_FILTER_CONTEXTS]; int64_t rd_filter_threshes[4][SWITCHABLE_FILTER_CONTEXTS]; int64_t rd_filter_cache[SWITCHABLE_FILTER_CONTEXTS]; int64_t mask_filter_rd; int RDMULT; int RDDIV; CODING_CONTEXT coding_context; int zbin_mode_boost; int zbin_mode_boost_enabled; int active_arnr_frames; // <= cpi->oxcf.arnr_max_frames int active_arnr_strength; // <= cpi->oxcf.arnr_max_strength double output_framerate; int64_t last_time_stamp_seen; int64_t last_end_time_stamp_seen; int64_t first_time_stamp_ever; RATE_CONTROL rc; int cq_target_quality; vp9_coeff_count coef_counts[TX_SIZES][PLANE_TYPES]; vp9_coeff_probs_model frame_coef_probs[TX_SIZES][PLANE_TYPES]; vp9_coeff_stats frame_branch_ct[TX_SIZES][PLANE_TYPES]; struct vpx_codec_pkt_list *output_pkt_list; MBGRAPH_FRAME_STATS mbgraph_stats[MAX_LAG_BUFFERS]; int mbgraph_n_frames; // number of frames filled in the above int static_mb_pct; // % forced skip mbs by segmentation int seg0_progress, seg0_idx, seg0_cnt; // for real time encoding int speed; int cpu_used; int pass; vp9_prob last_skip_false_probs[3][SKIP_CONTEXTS]; int last_skip_probs_q[3]; int ref_frame_flags; SPEED_FEATURES sf; unsigned int max_mv_magnitude; int mv_step_param; // Default value is 1. From first pass stats, encode_breakout may be disabled. ENCODE_BREAKOUT_TYPE allow_encode_breakout; // Get threshold from external input. In real time mode, it can be // overwritten according to encoding speed. int encode_breakout; unsigned char *segmentation_map; // segment threashold for encode breakout int segment_encode_breakout[MAX_SEGMENTS]; unsigned char *complexity_map; unsigned char *active_map; unsigned int active_map_enabled; fractional_mv_step_fp *find_fractional_mv_step; fractional_mv_step_comp_fp *find_fractional_mv_step_comp; vp9_full_search_fn_t full_search_sad; vp9_refining_search_fn_t refining_search_sad; vp9_diamond_search_fn_t diamond_search_sad; vp9_variance_fn_ptr_t fn_ptr[BLOCK_SIZES]; uint64_t time_receive_data; uint64_t time_compress_data; uint64_t time_pick_lpf; uint64_t time_encode_sb_row; struct twopass_rc twopass; YV12_BUFFER_CONFIG alt_ref_buffer; YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS]; int fixed_divide[512]; #if CONFIG_INTERNAL_STATS unsigned int mode_chosen_counts[MAX_MODES]; int count; double total_y; double total_u; double total_v; double total; uint64_t total_sq_error; uint64_t total_samples; double totalp_y; double totalp_u; double totalp_v; double totalp; uint64_t totalp_sq_error; uint64_t totalp_samples; int bytes; double summed_quality; double summed_weights; double summedp_quality; double summedp_weights; unsigned int tot_recode_hits; double total_ssimg_y; double total_ssimg_u; double total_ssimg_v; double total_ssimg_all; int b_calculate_ssimg; #endif int b_calculate_psnr; // Per MB activity measurement unsigned int activity_avg; unsigned int *mb_activity_map; int *mb_norm_activity_map; int output_partition; // Force next frame to intra when kf_auto says so. int force_next_frame_intra; int droppable; int dummy_packing; /* flag to indicate if packing is dummy */ unsigned int tx_stepdown_count[TX_SIZES]; int initial_width; int initial_height; int use_svc; struct svc { int spatial_layer_id; int temporal_layer_id; int number_spatial_layers; int number_temporal_layers; // Layer context used for rate control in CBR mode, only defined for // temporal layers for now. LAYER_CONTEXT layer_context[VPX_TS_MAX_LAYERS]; } svc; #if CONFIG_MULTIPLE_ARF // ARF tracking variables. int multi_arf_enabled; unsigned int frame_coding_order_period; unsigned int new_frame_coding_order_period; int frame_coding_order[MAX_LAG_BUFFERS * 2]; int arf_buffer_idx[MAX_LAG_BUFFERS * 3 / 2]; int arf_weight[MAX_LAG_BUFFERS]; int arf_buffered; int this_frame_weight; int max_arf_level; #endif #ifdef MODE_TEST_HIT_STATS // Debug / test stats int64_t mode_test_hits[BLOCK_SIZES]; #endif // Y,U,V,(A) ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; ENTROPY_CONTEXT left_context[MAX_MB_PLANE][16]; PARTITION_CONTEXT *above_seg_context; PARTITION_CONTEXT left_seg_context[8]; } VP9_COMP; void vp9_initialize_enc(); struct VP9_COMP *vp9_create_compressor(VP9_CONFIG *oxcf); void vp9_remove_compressor(VP9_COMP *cpi); void vp9_change_config(VP9_COMP *cpi, VP9_CONFIG *oxcf); // receive a frames worth of data. caller can assume that a copy of this // frame is made and not just a copy of the pointer.. int vp9_receive_raw_frame(VP9_COMP *cpi, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time_stamp); int vp9_get_compressed_data(VP9_COMP *cpi, unsigned int *frame_flags, size_t *size, uint8_t *dest, int64_t *time_stamp, int64_t *time_end, int flush); int vp9_get_preview_raw_frame(VP9_COMP *cpi, YV12_BUFFER_CONFIG *dest, vp9_ppflags_t *flags); int vp9_use_as_reference(VP9_COMP *cpi, int ref_frame_flags); int vp9_update_reference(VP9_COMP *cpi, int ref_frame_flags); int vp9_copy_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd); int vp9_get_reference_enc(VP9_COMP *cpi, int index, YV12_BUFFER_CONFIG **fb); int vp9_set_reference_enc(VP9_COMP *cpi, VP9_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd); int vp9_update_entropy(VP9_COMP *cpi, int update); int vp9_set_roimap(VP9_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[MAX_SEGMENTS], int delta_lf[MAX_SEGMENTS], unsigned int threshold[MAX_SEGMENTS]); int vp9_set_active_map(VP9_COMP *cpi, unsigned char *map, unsigned int rows, unsigned int cols); int vp9_set_internal_size(VP9_COMP *cpi, VPX_SCALING horiz_mode, VPX_SCALING vert_mode); int vp9_set_size_literal(VP9_COMP *cpi, unsigned int width, unsigned int height); void vp9_set_svc(VP9_COMP *cpi, int use_svc); int vp9_get_quantizer(struct VP9_COMP *cpi); static int get_ref_frame_idx(const VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) { if (ref_frame == LAST_FRAME) { return cpi->lst_fb_idx; } else if (ref_frame == GOLDEN_FRAME) { return cpi->gld_fb_idx; } else { return cpi->alt_fb_idx; } } static YV12_BUFFER_CONFIG *get_ref_frame_buffer(VP9_COMP *cpi, MV_REFERENCE_FRAME ref_frame) { VP9_COMMON *const cm = &cpi->common; return &cm->frame_bufs[cm->ref_frame_map[get_ref_frame_idx(cpi, ref_frame)]].buf; } void vp9_encode_frame(VP9_COMP *cpi); void vp9_set_speed_features(VP9_COMP *cpi); int vp9_calc_ss_err(const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *reference); void vp9_alloc_compressor_data(VP9_COMP *cpi); int vp9_compute_qdelta(const VP9_COMP *cpi, double qstart, double qtarget); static int get_token_alloc(int mb_rows, int mb_cols) { return mb_rows * mb_cols * (48 * 16 + 4); } static void set_ref_ptrs(VP9_COMMON *cm, MACROBLOCKD *xd, MV_REFERENCE_FRAME ref0, MV_REFERENCE_FRAME ref1) { xd->block_refs[0] = &cm->frame_refs[ref0 >= LAST_FRAME ? ref0 - LAST_FRAME : 0]; xd->block_refs[1] = &cm->frame_refs[ref1 >= LAST_FRAME ? ref1 - LAST_FRAME : 0]; } #ifdef __cplusplus } // extern "C" #endif #endif // VP9_ENCODER_VP9_ONYX_INT_H_