/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "vpx/vpx_encoder.h" #include "vpx_dsp/bitwriter_buffer.h" #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem_ops.h" #include "vpx_ports/system_state.h" #include "vp10/common/entropy.h" #include "vp10/common/entropymode.h" #include "vp10/common/entropymv.h" #include "vp10/common/mvref_common.h" #include "vp10/common/pred_common.h" #include "vp10/common/reconinter.h" #include "vp10/common/seg_common.h" #include "vp10/common/tile_common.h" #include "vp10/encoder/buf_ans.h" #include "vp10/encoder/cost.h" #include "vp10/encoder/bitstream.h" #include "vp10/encoder/encodemv.h" #include "vp10/encoder/mcomp.h" #include "vp10/encoder/segmentation.h" #include "vp10/encoder/subexp.h" #include "vp10/encoder/tokenize.h" static const struct vp10_token intra_mode_encodings[INTRA_MODES] = { {0, 1}, {6, 3}, {28, 5}, {30, 5}, {58, 6}, {59, 6}, {126, 7}, {127, 7}, {62, 6}, {2, 2}}; #if CONFIG_EXT_INTERP && SWITCHABLE_FILTERS == 4 static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] = {{0, 1}, {4, 3}, {3, 2}, {5, 3}}; #elif CONFIG_EXT_INTERP && SWITCHABLE_FILTERS == 5 static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] = {{0, 1}, {4, 3}, {6, 3}, {5, 3}, {7, 3}}; #else static const struct vp10_token switchable_interp_encodings[SWITCHABLE_FILTERS] = {{0, 1}, {2, 2}, {3, 2}}; #endif // CONFIG_EXT_INTERP && SWITCHABLE_FILTERS == 4 #if CONFIG_EXT_PARTITION_TYPES static const struct vp10_token ext_partition_encodings[EXT_PARTITION_TYPES] = {{0, 1}, {4, 3}, {12, 4}, {7, 3}, {10, 4}, {11, 4}, {26, 5}, {27, 5}}; #endif static const struct vp10_token partition_encodings[PARTITION_TYPES] = {{0, 1}, {2, 2}, {6, 3}, {7, 3}}; #if !CONFIG_REF_MV static const struct vp10_token inter_mode_encodings[INTER_MODES] = #if CONFIG_EXT_INTER {{2, 2}, {6, 3}, {0, 1}, {14, 4}, {15, 4}}; #else {{2, 2}, {6, 3}, {0, 1}, {7, 3}}; #endif // CONFIG_EXT_INTER #endif #if CONFIG_EXT_INTER static const struct vp10_token inter_compound_mode_encodings [INTER_COMPOUND_MODES] = { {2, 2}, {24, 5}, {25, 5}, {52, 6}, {53, 6}, {54, 6}, {55, 6}, {0, 1}, {7, 3} }; #endif // CONFIG_EXT_INTER static const struct vp10_token palette_size_encodings[] = { {0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {63, 6}, }; static const struct vp10_token palette_color_encodings[PALETTE_MAX_SIZE - 1][PALETTE_MAX_SIZE] = { {{0, 1}, {1, 1}}, // 2 colors {{0, 1}, {2, 2}, {3, 2}}, // 3 colors {{0, 1}, {2, 2}, {6, 3}, {7, 3}}, // 4 colors {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {15, 4}}, // 5 colors {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {31, 5}}, // 6 colors {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {63, 6}}, // 7 colors {{0, 1}, {2, 2}, {6, 3}, {14, 4}, {30, 5}, {62, 6}, {126, 7}, {127, 7}}, // 8 colors }; static const struct vp10_token tx_size_encodings[TX_SIZES - 1][TX_SIZES] = { {{0, 1}, {1, 1}}, // Max tx_size is 8X8 {{0, 1}, {2, 2}, {3, 2}}, // Max tx_size is 16X16 {{0, 1}, {2, 2}, {6, 3}, {7, 3}}, // Max tx_size is 32X32 }; static INLINE void write_uniform(vp10_writer *w, int n, int v) { int l = get_unsigned_bits(n); int m = (1 << l) - n; if (l == 0) return; if (v < m) { vp10_write_literal(w, v, l - 1); } else { vp10_write_literal(w, m + ((v - m) >> 1), l - 1); vp10_write_literal(w, (v - m) & 1, 1); } } #if CONFIG_EXT_TX static struct vp10_token ext_tx_inter_encodings[EXT_TX_SETS_INTER][TX_TYPES]; static struct vp10_token ext_tx_intra_encodings[EXT_TX_SETS_INTRA][TX_TYPES]; #else static struct vp10_token ext_tx_encodings[TX_TYPES]; #endif // CONFIG_EXT_TX #if CONFIG_EXT_INTRA static struct vp10_token intra_filter_encodings[INTRA_FILTERS]; #endif // CONFIG_EXT_INTRA #if CONFIG_EXT_INTER static struct vp10_token interintra_mode_encodings[INTERINTRA_MODES]; #endif // CONFIG_EXT_INTER void vp10_encode_token_init() { #if CONFIG_EXT_TX int s; for (s = 1; s < EXT_TX_SETS_INTER; ++s) { vp10_tokens_from_tree(ext_tx_inter_encodings[s], vp10_ext_tx_inter_tree[s]); } for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { vp10_tokens_from_tree(ext_tx_intra_encodings[s], vp10_ext_tx_intra_tree[s]); } #else vp10_tokens_from_tree(ext_tx_encodings, vp10_ext_tx_tree); #endif // CONFIG_EXT_TX #if CONFIG_EXT_INTRA vp10_tokens_from_tree(intra_filter_encodings, vp10_intra_filter_tree); #endif // CONFIG_EXT_INTRA #if CONFIG_EXT_INTER vp10_tokens_from_tree(interintra_mode_encodings, vp10_interintra_mode_tree); #endif // CONFIG_EXT_INTER } static void write_intra_mode(vp10_writer *w, PREDICTION_MODE mode, const vpx_prob *probs) { vp10_write_token(w, vp10_intra_mode_tree, probs, &intra_mode_encodings[mode]); } #if CONFIG_EXT_INTER static void write_interintra_mode(vpx_writer *w, INTERINTRA_MODE mode, const vpx_prob *probs) { vp10_write_token(w, vp10_interintra_mode_tree, probs, &interintra_mode_encodings[mode]); } #endif // CONFIG_EXT_INTER static void write_inter_mode(VP10_COMMON *cm, vp10_writer *w, PREDICTION_MODE mode, #if CONFIG_REF_MV && CONFIG_EXT_INTER int is_compound, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER const int16_t mode_ctx) { #if CONFIG_REF_MV const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; const vpx_prob newmv_prob = cm->fc->newmv_prob[newmv_ctx]; #if CONFIG_EXT_INTER vp10_write(w, mode != NEWMV && mode != NEWFROMNEARMV, newmv_prob); if (!is_compound && (mode == NEWMV || mode == NEWFROMNEARMV)) vp10_write(w, mode == NEWFROMNEARMV, cm->fc->new2mv_prob); if (mode != NEWMV && mode != NEWFROMNEARMV) { #else vp10_write(w, mode != NEWMV, newmv_prob); if (mode != NEWMV) { #endif // CONFIG_EXT_INTER const int16_t zeromv_ctx = (mode_ctx >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK; const vpx_prob zeromv_prob = cm->fc->zeromv_prob[zeromv_ctx]; if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) { assert(mode == ZEROMV); return; } vp10_write(w, mode != ZEROMV, zeromv_prob); if (mode != ZEROMV) { int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; vpx_prob refmv_prob; if (mode_ctx & (1 << SKIP_NEARESTMV_OFFSET)) refmv_ctx = 6; if (mode_ctx & (1 << SKIP_NEARMV_OFFSET)) refmv_ctx = 7; if (mode_ctx & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) refmv_ctx = 8; refmv_prob = cm->fc->refmv_prob[refmv_ctx]; vp10_write(w, mode != NEARESTMV, refmv_prob); } } #else const vpx_prob *const inter_probs = cm->fc->inter_mode_probs[mode_ctx]; assert(is_inter_mode(mode)); vp10_write_token(w, vp10_inter_mode_tree, inter_probs, &inter_mode_encodings[INTER_OFFSET(mode)]); #endif } #if CONFIG_REF_MV static void write_drl_idx(const VP10_COMMON *cm, const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext, vp10_writer *w) { uint8_t ref_frame_type = vp10_ref_frame_type(mbmi->ref_frame); assert(mbmi->ref_mv_idx < 3); if (mbmi->mode == NEWMV) { int idx; for (idx = 0; idx < 2; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); vpx_prob drl_prob = cm->fc->drl_prob[drl_ctx]; vp10_write(w, mbmi->ref_mv_idx != idx, drl_prob); if (mbmi->ref_mv_idx == idx) return; } } return; } if (mbmi->mode == NEARMV) { int idx; // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. for (idx = 1; idx < 3; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = vp10_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); vpx_prob drl_prob = cm->fc->drl_prob[drl_ctx]; vp10_write(w, mbmi->ref_mv_idx != (idx - 1), drl_prob); if (mbmi->ref_mv_idx == (idx - 1)) return; } } return; } } #endif #if CONFIG_EXT_INTER static void write_inter_compound_mode(VP10_COMMON *cm, vp10_writer *w, PREDICTION_MODE mode, const int16_t mode_ctx) { const vpx_prob *const inter_compound_probs = cm->fc->inter_compound_mode_probs[mode_ctx]; assert(is_inter_compound_mode(mode)); vp10_write_token(w, vp10_inter_compound_mode_tree, inter_compound_probs, &inter_compound_mode_encodings[INTER_COMPOUND_OFFSET(mode)]); } #endif // CONFIG_EXT_INTER static void encode_unsigned_max(struct vpx_write_bit_buffer *wb, int data, int max) { vpx_wb_write_literal(wb, data, get_unsigned_bits(max)); } static void prob_diff_update(const vpx_tree_index *tree, vpx_prob probs[/*n - 1*/], const unsigned int counts[/*n - 1*/], int n, vp10_writer *w) { int i; unsigned int branch_ct[32][2]; // Assuming max number of probabilities <= 32 assert(n <= 32); vp10_tree_probs_from_distribution(tree, branch_ct, counts); for (i = 0; i < n - 1; ++i) vp10_cond_prob_diff_update(w, &probs[i], branch_ct[i]); } static int prob_diff_update_savings(const vpx_tree_index *tree, vpx_prob probs[/*n - 1*/], const unsigned int counts[/*n - 1*/], int n) { int i; unsigned int branch_ct[32][2]; int savings = 0; // Assuming max number of probabilities <= 32 assert(n <= 32); vp10_tree_probs_from_distribution(tree, branch_ct, counts); for (i = 0; i < n - 1; ++i) { savings += vp10_cond_prob_diff_update_savings(&probs[i], branch_ct[i]); } return savings; } #if CONFIG_VAR_TX static void write_tx_size_inter(const VP10_COMMON *cm, const MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, TX_SIZE tx_size, int blk_row, int blk_col, vp10_writer *w) { const int tx_row = blk_row >> 1; const int tx_col = blk_col >> 1; int max_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; int max_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; int ctx = txfm_partition_context(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, tx_size); if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> 5; if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> 5; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == mbmi->inter_tx_size[tx_row][tx_col]) { vp10_write(w, 0, cm->fc->txfm_partition_prob[ctx]); txfm_partition_update(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, tx_size); } else { const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int bsl = b_width_log2_lookup[bsize]; int i; vp10_write(w, 1, cm->fc->txfm_partition_prob[ctx]); if (tx_size == TX_8X8) { txfm_partition_update(xd->above_txfm_context + tx_col, xd->left_txfm_context + tx_row, TX_4X4); return; } assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { int offsetr = blk_row + ((i >> 1) << bsl); int offsetc = blk_col + ((i & 0x01) << bsl); write_tx_size_inter(cm, xd, mbmi, tx_size - 1, offsetr, offsetc, w); } } } static void update_txfm_partition_probs(VP10_COMMON *cm, vp10_writer *w, FRAME_COUNTS *counts) { int k; for (k = 0; k < TXFM_PARTITION_CONTEXTS; ++k) vp10_cond_prob_diff_update(w, &cm->fc->txfm_partition_prob[k], counts->txfm_partition[k]); } #endif static void write_selected_tx_size(const VP10_COMMON *cm, const MACROBLOCKD *xd, vp10_writer *w) { TX_SIZE tx_size = xd->mi[0]->mbmi.tx_size; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; if (max_tx_size > TX_4X4) { vp10_write_token(w, vp10_tx_size_tree[max_tx_size - TX_8X8], cm->fc->tx_size_probs[max_tx_size - TX_8X8] [get_tx_size_context(xd)], &tx_size_encodings[max_tx_size - TX_8X8][tx_size]); } } #if CONFIG_REF_MV static void update_inter_mode_probs(VP10_COMMON *cm, vp10_writer *w, FRAME_COUNTS *counts) { int i; for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) vp10_cond_prob_diff_update(w, &cm->fc->newmv_prob[i], counts->newmv_mode[i]); for (i = 0; i < ZEROMV_MODE_CONTEXTS; ++i) vp10_cond_prob_diff_update(w, &cm->fc->zeromv_prob[i], counts->zeromv_mode[i]); for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) vp10_cond_prob_diff_update(w, &cm->fc->refmv_prob[i], counts->refmv_mode[i]); for (i = 0; i < DRL_MODE_CONTEXTS; ++i) vp10_cond_prob_diff_update(w, &cm->fc->drl_prob[i], counts->drl_mode[i]); #if CONFIG_EXT_INTER vp10_cond_prob_diff_update(w, &cm->fc->new2mv_prob, counts->new2mv_mode); #endif // CONFIG_EXT_INTER } #endif #if CONFIG_EXT_INTER static void update_inter_compound_mode_probs(VP10_COMMON *cm, vp10_writer *w) { const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); int i; int savings = 0; int do_update = 0; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { savings += prob_diff_update_savings(vp10_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[i], cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES); } do_update = savings > savings_thresh; vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = 0; i < INTER_MODE_CONTEXTS; ++i) { prob_diff_update(vp10_inter_compound_mode_tree, cm->fc->inter_compound_mode_probs[i], cm->counts.inter_compound_mode[i], INTER_COMPOUND_MODES, w); } } } #endif // CONFIG_EXT_INTER static int write_skip(const VP10_COMMON *cm, const MACROBLOCKD *xd, int segment_id, const MODE_INFO *mi, vp10_writer *w) { if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int skip = mi->mbmi.skip; vp10_write(w, skip, vp10_get_skip_prob(cm, xd)); return skip; } } static void update_skip_probs(VP10_COMMON *cm, vp10_writer *w, FRAME_COUNTS *counts) { int k; for (k = 0; k < SKIP_CONTEXTS; ++k) vp10_cond_prob_diff_update(w, &cm->fc->skip_probs[k], counts->skip[k]); } static void update_switchable_interp_probs(VP10_COMMON *cm, vp10_writer *w, FRAME_COUNTS *counts) { int j; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) prob_diff_update(vp10_switchable_interp_tree, cm->fc->switchable_interp_prob[j], counts->switchable_interp[j], SWITCHABLE_FILTERS, w); } #if CONFIG_EXT_TX static void update_ext_tx_probs(VP10_COMMON *cm, vp10_writer *w) { const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); int i, j; int s; for (s = 1; s < EXT_TX_SETS_INTER; ++s) { int savings = 0; int do_update = 0; for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_inter_ext_tx_for_txsize[s][i]) continue; savings += prob_diff_update_savings( vp10_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i], cm->counts.inter_ext_tx[s][i], num_ext_tx_set_inter[s]); } do_update = savings > savings_thresh; vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_inter_ext_tx_for_txsize[s][i]) continue; prob_diff_update(vp10_ext_tx_inter_tree[s], cm->fc->inter_ext_tx_prob[s][i], cm->counts.inter_ext_tx[s][i], num_ext_tx_set_inter[s], w); } } } for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { int savings = 0; int do_update = 0; for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_intra_ext_tx_for_txsize[s][i]) continue; for (j = 0; j < INTRA_MODES; ++j) savings += prob_diff_update_savings( vp10_ext_tx_intra_tree[s], cm->fc->intra_ext_tx_prob[s][i][j], cm->counts.intra_ext_tx[s][i][j], num_ext_tx_set_intra[s]); } do_update = savings > savings_thresh; vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { if (!use_intra_ext_tx_for_txsize[s][i]) continue; for (j = 0; j < INTRA_MODES; ++j) prob_diff_update(vp10_ext_tx_intra_tree[s], cm->fc->intra_ext_tx_prob[s][i][j], cm->counts.intra_ext_tx[s][i][j], num_ext_tx_set_intra[s], w); } } } } #else static void update_ext_tx_probs(VP10_COMMON *cm, vp10_writer *w) { const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); int i, j; int savings = 0; int do_update = 0; for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (j = 0; j < TX_TYPES; ++j) savings += prob_diff_update_savings( vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j], cm->counts.intra_ext_tx[i][j], TX_TYPES); } do_update = savings > savings_thresh; vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { for (j = 0; j < TX_TYPES; ++j) prob_diff_update(vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[i][j], cm->counts.intra_ext_tx[i][j], TX_TYPES, w); } } savings = 0; do_update = 0; for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { savings += prob_diff_update_savings( vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[i], cm->counts.inter_ext_tx[i], TX_TYPES); } do_update = savings > savings_thresh; vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { prob_diff_update(vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[i], cm->counts.inter_ext_tx[i], TX_TYPES, w); } } } #endif // CONFIG_EXT_TX static void pack_palette_tokens(vp10_writer *w, const TOKENEXTRA **tp, int n, int num) { int i; const TOKENEXTRA *p = *tp; for (i = 0; i < num; ++i) { vp10_write_token(w, vp10_palette_color_tree[n - 2], p->context_tree, &palette_color_encodings[n - 2][p->token]); ++p; } *tp = p; } #if CONFIG_SUPERTX static void update_supertx_probs(VP10_COMMON *cm, vp10_writer *w) { const int savings_thresh = vp10_cost_one(GROUP_DIFF_UPDATE_PROB) - vp10_cost_zero(GROUP_DIFF_UPDATE_PROB); int i, j; int savings = 0; int do_update = 0; for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = 1; j < TX_SIZES; ++j) { savings += vp10_cond_prob_diff_update_savings(&cm->fc->supertx_prob[i][j], cm->counts.supertx[i][j]); } } do_update = savings > savings_thresh; vp10_write(w, do_update, GROUP_DIFF_UPDATE_PROB); if (do_update) { for (i = 0; i < PARTITION_SUPERTX_CONTEXTS; ++i) { for (j = 1; j < TX_SIZES; ++j) { vp10_cond_prob_diff_update(w, &cm->fc->supertx_prob[i][j], cm->counts.supertx[i][j]); } } } } #endif // CONFIG_SUPERTX #if !CONFIG_ANS static void pack_mb_tokens(vp10_writer *w, const TOKENEXTRA **tp, const TOKENEXTRA *const stop, vpx_bit_depth_t bit_depth, const TX_SIZE tx) { const TOKENEXTRA *p = *tp; #if CONFIG_VAR_TX int count = 0; const int seg_eob = 16 << (tx << 1); #endif while (p < stop && p->token != EOSB_TOKEN) { const int t = p->token; const struct vp10_token *const a = &vp10_coef_encodings[t]; int v = a->value; int n = a->len; #if CONFIG_VP9_HIGHBITDEPTH const vp10_extra_bit *b; if (bit_depth == VPX_BITS_12) b = &vp10_extra_bits_high12[t]; else if (bit_depth == VPX_BITS_10) b = &vp10_extra_bits_high10[t]; else b = &vp10_extra_bits[t]; #else const vp10_extra_bit *const b = &vp10_extra_bits[t]; (void) bit_depth; #endif // CONFIG_VP9_HIGHBITDEPTH /* skip one or two nodes */ if (p->skip_eob_node) n -= p->skip_eob_node; else vp10_write(w, t != EOB_TOKEN, p->context_tree[0]); if (t != EOB_TOKEN) { vp10_write(w, t != ZERO_TOKEN, p->context_tree[1]); if (t != ZERO_TOKEN) { vp10_write(w, t != ONE_TOKEN, p->context_tree[2]); if (t != ONE_TOKEN) { int len = UNCONSTRAINED_NODES - p->skip_eob_node; vp10_write_tree(w, vp10_coef_con_tree, vp10_pareto8_full[p->context_tree[PIVOT_NODE] - 1], v, n - len, 0); } } } if (b->base_val) { const int e = p->extra, l = b->len; int skip_bits = (b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0; if (l) { const unsigned char *pb = b->prob; int v = e >> 1; int n = l; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; if (skip_bits) { skip_bits--; assert(!bb); } else { vp10_write(w, bb, pb[i >> 1]); } i = b->tree[i + bb]; } while (n); } vp10_write_bit(w, e & 1); } ++p; #if CONFIG_VAR_TX ++count; if (t == EOB_TOKEN || count == seg_eob) break; #endif } *tp = p; } #else // This function serializes the tokens in forward order using a buffered ans // coder. static void pack_mb_tokens_ans(struct BufAnsCoder *ans, const rans_dec_lut token_tab[COEFF_PROB_MODELS], const TOKENEXTRA **tp, const TOKENEXTRA *const stop, vpx_bit_depth_t bit_depth, const TX_SIZE tx) { const TOKENEXTRA *p = *tp; #if CONFIG_VAR_TX int count = 0; const int seg_eob = 16 << (tx << 1); #endif // CONFIG_VAR_TX while (p < stop && p->token != EOSB_TOKEN) { const int t = p->token; #if CONFIG_VP9_HIGHBITDEPTH const vp10_extra_bit *b; if (bit_depth == VPX_BITS_12) b = &vp10_extra_bits_high12[t]; else if (bit_depth == VPX_BITS_10) b = &vp10_extra_bits_high10[t]; else b = &vp10_extra_bits[t]; #else const vp10_extra_bit *const b = &vp10_extra_bits[t]; (void)bit_depth; #endif // CONFIG_VP9_HIGHBITDEPTH /* skip one or two nodes */ if (!p->skip_eob_node) buf_uabs_write(ans, t != EOB_TOKEN, p->context_tree[0]); if (t != EOB_TOKEN) { buf_uabs_write(ans, t != ZERO_TOKEN, p->context_tree[1]); if (t != ZERO_TOKEN) { struct rans_sym s; const rans_dec_lut *token_cdf = &token_tab[p->context_tree[PIVOT_NODE] - 1]; s.cum_prob = (*token_cdf)[t - ONE_TOKEN]; s.prob = (*token_cdf)[t - ONE_TOKEN + 1] - s.cum_prob; buf_rans_write(ans, &s); } } if (b->base_val) { const int e = p->extra, l = b->len; int skip_bits = (b->base_val == CAT6_MIN_VAL) ? TX_SIZES - 1 - tx : 0; if (l) { const unsigned char *pb = b->prob; int v = e >> 1; int n = l; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; if (skip_bits) { skip_bits--; assert(!bb); } else { buf_uabs_write(ans, bb, pb[i >> 1]); } i = b->tree[i + bb]; } while (n); } buf_uabs_write(ans, e & 1, 128); } ++p; #if CONFIG_VAR_TX ++count; if (t == EOB_TOKEN || count == seg_eob) break; #endif // CONFIG_VAR_TX } *tp = p; } #endif // !CONFIG_ANS #if CONFIG_VAR_TX static void pack_txb_tokens(vp10_writer *w, const TOKENEXTRA **tp, const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, MB_MODE_INFO *mbmi, int plane, BLOCK_SIZE plane_bsize, vpx_bit_depth_t bit_depth, int block, int blk_row, int blk_col, TX_SIZE tx_size) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); const TX_SIZE plane_tx_size = plane ? get_uv_tx_size_impl(mbmi->inter_tx_size[tx_row][tx_col], bsize, 0, 0) : mbmi->inter_tx_size[tx_row][tx_col]; int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize]; if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { pack_mb_tokens(w, tp, tok_end, bit_depth, tx_size); } else { int bsl = b_width_log2_lookup[bsize]; int i; assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { const int offsetr = blk_row + ((i >> 1) << bsl); const int offsetc = blk_col + ((i & 0x01) << bsl); int step = 1 << (2 * (tx_size - 1)); if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; pack_txb_tokens(w, tp, tok_end, xd, mbmi, plane, plane_bsize, bit_depth, block + i * step, offsetr, offsetc, tx_size - 1); } } } #endif static void write_segment_id(vp10_writer *w, const struct segmentation *seg, const struct segmentation_probs *segp, int segment_id) { if (seg->enabled && seg->update_map) vp10_write_tree(w, vp10_segment_tree, segp->tree_probs, segment_id, 3, 0); } // This function encodes the reference frame static void write_ref_frames(const VP10_COMMON *cm, const MACROBLOCKD *xd, vp10_writer *w) { const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int is_compound = has_second_ref(mbmi); const int segment_id = mbmi->segment_id; // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { assert(!is_compound); assert(mbmi->ref_frame[0] == get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); } else { // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (cm->reference_mode == REFERENCE_MODE_SELECT) { vp10_write(w, is_compound, vp10_get_reference_mode_prob(cm, xd)); } else { assert(!is_compound == (cm->reference_mode == SINGLE_REFERENCE)); } if (is_compound) { #if CONFIG_EXT_REFS const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || mbmi->ref_frame[0] == LAST3_FRAME || mbmi->ref_frame[0] == LAST4_FRAME); #else const int bit = mbmi->ref_frame[0] == GOLDEN_FRAME; #endif // CONFIG_EXT_REFS vp10_write(w, bit, vp10_get_pred_prob_comp_ref_p(cm, xd)); #if CONFIG_EXT_REFS if (!bit) { const int bit1 = mbmi->ref_frame[0] == LAST_FRAME; vp10_write(w, bit1, vp10_get_pred_prob_comp_ref_p1(cm, xd)); } else { const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; vp10_write(w, bit2, vp10_get_pred_prob_comp_ref_p2(cm, xd)); if (!bit2) { const int bit3 = mbmi->ref_frame[0] == LAST3_FRAME; vp10_write(w, bit3, vp10_get_pred_prob_comp_ref_p3(cm, xd)); } } #endif // CONFIG_EXT_REFS } else { #if CONFIG_EXT_REFS const int bit0 = (mbmi->ref_frame[0] == GOLDEN_FRAME || mbmi->ref_frame[0] == ALTREF_FRAME); vp10_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd)); if (bit0) { const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME; vp10_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd)); } else { const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || mbmi->ref_frame[0] == LAST4_FRAME); vp10_write(w, bit2, vp10_get_pred_prob_single_ref_p3(cm, xd)); if (!bit2) { const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; vp10_write(w, bit3, vp10_get_pred_prob_single_ref_p4(cm, xd)); } else { const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; vp10_write(w, bit4, vp10_get_pred_prob_single_ref_p5(cm, xd)); } } #else const int bit0 = mbmi->ref_frame[0] != LAST_FRAME; vp10_write(w, bit0, vp10_get_pred_prob_single_ref_p1(cm, xd)); if (bit0) { const int bit1 = mbmi->ref_frame[0] != GOLDEN_FRAME; vp10_write(w, bit1, vp10_get_pred_prob_single_ref_p2(cm, xd)); } #endif // CONFIG_EXT_REFS } } } #if CONFIG_EXT_INTRA static void write_ext_intra_mode_info(const VP10_COMMON *const cm, const MB_MODE_INFO *const mbmi, vp10_writer *w) { #if !ALLOW_FILTER_INTRA_MODES return; #endif if (mbmi->mode == DC_PRED && mbmi->palette_mode_info.palette_size[0] == 0) { vp10_write(w, mbmi->ext_intra_mode_info.use_ext_intra_mode[0], cm->fc->ext_intra_probs[0]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[0]) { EXT_INTRA_MODE mode = mbmi->ext_intra_mode_info.ext_intra_mode[0]; write_uniform(w, FILTER_INTRA_MODES, mode); } } if (mbmi->uv_mode == DC_PRED && mbmi->palette_mode_info.palette_size[1] == 0) { vp10_write(w, mbmi->ext_intra_mode_info.use_ext_intra_mode[1], cm->fc->ext_intra_probs[1]); if (mbmi->ext_intra_mode_info.use_ext_intra_mode[1]) { EXT_INTRA_MODE mode = mbmi->ext_intra_mode_info.ext_intra_mode[1]; write_uniform(w, FILTER_INTRA_MODES, mode); } } } #endif // CONFIG_EXT_INTRA static void write_switchable_interp_filter(VP10_COMP *cpi, const MACROBLOCKD *xd, vp10_writer *w) { VP10_COMMON *const cm = &cpi->common; const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; if (cm->interp_filter == SWITCHABLE) { const int ctx = vp10_get_pred_context_switchable_interp(xd); #if CONFIG_EXT_INTERP if (!vp10_is_interp_needed(xd)) { assert(mbmi->interp_filter == EIGHTTAP_REGULAR); return; } #endif vp10_write_token(w, vp10_switchable_interp_tree, cm->fc->switchable_interp_prob[ctx], &switchable_interp_encodings[mbmi->interp_filter]); ++cpi->interp_filter_selected[0][mbmi->interp_filter]; } } static void write_palette_mode_info(const VP10_COMMON *cm, const MACROBLOCKD *xd, const MODE_INFO *const mi, vp10_writer *w) { const MB_MODE_INFO *const mbmi = &mi->mbmi; const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const BLOCK_SIZE bsize = mbmi->sb_type; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; int palette_ctx = 0; int n, i; if (mbmi->mode == DC_PRED) { n = pmi->palette_size[0]; if (above_mi) palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0); if (left_mi) palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0); vp10_write(w, n > 0, vp10_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx]); if (n > 0) { vp10_write_token(w, vp10_palette_size_tree, vp10_default_palette_y_size_prob[bsize - BLOCK_8X8], &palette_size_encodings[n - 2]); for (i = 0; i < n; ++i) vp10_write_literal(w, pmi->palette_colors[i], cm->bit_depth); write_uniform(w, n, pmi->palette_first_color_idx[0]); } } if (mbmi->uv_mode == DC_PRED) { n = pmi->palette_size[1]; vp10_write(w, n > 0, vp10_default_palette_uv_mode_prob[pmi->palette_size[0] > 0]); if (n > 0) { vp10_write_token(w, vp10_palette_size_tree, vp10_default_palette_uv_size_prob[bsize - BLOCK_8X8], &palette_size_encodings[n - 2]); for (i = 0; i < n; ++i) { vp10_write_literal(w, pmi->palette_colors[PALETTE_MAX_SIZE + i], cm->bit_depth); vp10_write_literal(w, pmi->palette_colors[2 * PALETTE_MAX_SIZE + i], cm->bit_depth); } write_uniform(w, n, pmi->palette_first_color_idx[1]); } } } static void pack_inter_mode_mvs(VP10_COMP *cpi, const MODE_INFO *mi, #if CONFIG_SUPERTX int supertx_enabled, #endif vp10_writer *w) { VP10_COMMON *const cm = &cpi->common; #if !CONFIG_REF_MV const nmv_context *nmvc = &cm->fc->nmvc; #endif const MACROBLOCK *x = &cpi->td.mb; const MACROBLOCKD *xd = &x->e_mbd; const struct segmentation *const seg = &cm->seg; const struct segmentation_probs *const segp = &cm->fc->seg; const MB_MODE_INFO *const mbmi = &mi->mbmi; const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; const PREDICTION_MODE mode = mbmi->mode; const int segment_id = mbmi->segment_id; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = cm->allow_high_precision_mv; const int is_inter = is_inter_block(mbmi); const int is_compound = has_second_ref(mbmi); int skip, ref; if (seg->update_map) { if (seg->temporal_update) { const int pred_flag = mbmi->seg_id_predicted; vpx_prob pred_prob = vp10_get_pred_prob_seg_id(segp, xd); vp10_write(w, pred_flag, pred_prob); if (!pred_flag) write_segment_id(w, seg, segp, segment_id); } else { write_segment_id(w, seg, segp, segment_id); } } #if CONFIG_SUPERTX if (supertx_enabled) skip = mbmi->skip; else skip = write_skip(cm, xd, segment_id, mi, w); #else skip = write_skip(cm, xd, segment_id, mi, w); #endif // CONFIG_SUPERTX #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) vp10_write(w, is_inter, vp10_get_intra_inter_prob(cm, xd)); if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !(is_inter && skip) && !xd->lossless[segment_id]) { #if CONFIG_VAR_TX if (is_inter) { // This implies skip flag is 0. const TX_SIZE max_tx_size = max_txsize_lookup[bsize]; const int txb_size = txsize_to_bsize[max_tx_size]; const int bs = num_4x4_blocks_wide_lookup[txb_size]; const int width = num_4x4_blocks_wide_lookup[bsize]; const int height = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < height; idy += bs) for (idx = 0; idx < width; idx += bs) write_tx_size_inter(cm, xd, mbmi, max_tx_size, idy, idx, w); } else { set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h); set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w); write_selected_tx_size(cm, xd, w); } } else { set_txfm_ctx(xd->left_txfm_context, mbmi->tx_size, xd->n8_h); set_txfm_ctx(xd->above_txfm_context, mbmi->tx_size, xd->n8_w); #else write_selected_tx_size(cm, xd, w); #endif } if (!is_inter) { if (bsize >= BLOCK_8X8) { write_intra_mode(w, mode, cm->fc->y_mode_prob[size_group_lookup[bsize]]); #if CONFIG_EXT_INTRA if (mode != DC_PRED && mode != TM_PRED) { int p_angle; const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd); write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[0]); p_angle = mode_to_angle_map[mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (pick_intra_filter(p_angle)) { vp10_write_token(w, vp10_intra_filter_tree, cm->fc->intra_filter_probs[intra_filter_ctx], &intra_filter_encodings[mbmi->intra_filter]); } } #endif // CONFIG_EXT_INTRA } else { int idx, idy; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const PREDICTION_MODE b_mode = mi->bmi[idy * 2 + idx].as_mode; write_intra_mode(w, b_mode, cm->fc->y_mode_prob[0]); } } } write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mode]); #if CONFIG_EXT_INTRA if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED && bsize >= BLOCK_8X8) write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[1]); #endif // CONFIG_EXT_INTRA if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) write_palette_mode_info(cm, xd, mi, w); #if CONFIG_EXT_INTRA if (bsize >= BLOCK_8X8) write_ext_intra_mode_info(cm, mbmi, w); #endif // CONFIG_EXT_INTRA } else { int16_t mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]]; write_ref_frames(cm, xd, w); #if CONFIG_OBMC #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX if (is_obmc_allowed(mbmi)) vp10_write(w, mbmi->obmc, cm->fc->obmc_prob[bsize]); #endif // CONFIG_OBMC #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (is_compound) mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]; else #endif // CONFIG_EXT_INTER mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame, bsize, -1); #endif // If segment skip is not enabled code the mode. if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { if (bsize >= BLOCK_8X8) { #if CONFIG_EXT_INTER if (is_inter_compound_mode(mode)) write_inter_compound_mode(cm, w, mode, mode_ctx); else if (is_inter_singleref_mode(mode)) #endif // CONFIG_EXT_INTER write_inter_mode(cm, w, mode, #if CONFIG_REF_MV && CONFIG_EXT_INTER is_compound, #endif // CONFIG_REF_MV && CONFIG_EXT_INTER mode_ctx); #if CONFIG_REF_MV if (mode == NEARMV || mode == NEWMV) write_drl_idx(cm, mbmi, mbmi_ext, w); #endif } } #if !CONFIG_EXT_INTERP write_switchable_interp_filter(cpi, xd, w); #endif // !CONFIG_EXT_INTERP if (bsize < BLOCK_8X8) { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int j = idy * 2 + idx; const PREDICTION_MODE b_mode = mi->bmi[j].as_mode; #if CONFIG_REF_MV #if CONFIG_EXT_INTER if (!is_compound) #endif // CONFIG_EXT_INTER mode_ctx = vp10_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame, bsize, j); #endif #if CONFIG_EXT_INTER if (is_inter_compound_mode(b_mode)) write_inter_compound_mode(cm, w, b_mode, mode_ctx); else if (is_inter_singleref_mode(b_mode)) #endif // CONFIG_EXT_INTER write_inter_mode(cm, w, b_mode, #if CONFIG_REF_MV && CONFIG_EXT_INTER has_second_ref(mbmi), #endif // CONFIG_REF_MV && CONFIG_EXT_INTER mode_ctx); #if CONFIG_EXT_INTER if (b_mode == NEWMV || b_mode == NEWFROMNEARMV || b_mode == NEW_NEWMV) { #else if (b_mode == NEWMV) { #endif // CONFIG_EXT_INTER for (ref = 0; ref < 1 + is_compound; ++ref) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[ref]], mbmi_ext->ref_mv_stack[mbmi->ref_frame[ref]]); const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; #endif vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[ref].as_mv, #if CONFIG_EXT_INTER &mi->bmi[j].ref_mv[ref].as_mv, #else #if CONFIG_REF_MV &mi->bmi[j].pred_mv_s8[ref].as_mv, #else &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0].as_mv, #endif // CONFIG_REF_MV #endif // CONFIG_EXT_INTER nmvc, allow_hp); } } #if CONFIG_EXT_INTER else if (b_mode == NEAREST_NEWMV || b_mode == NEAR_NEWMV) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[1]], mbmi_ext->ref_mv_stack[mbmi->ref_frame[1]]); const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; #endif vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[1].as_mv, &mi->bmi[j].ref_mv[1].as_mv, nmvc, allow_hp); } else if (b_mode == NEW_NEARESTMV || b_mode == NEW_NEARMV) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[0]], mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]]); const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; #endif vp10_encode_mv(cpi, w, &mi->bmi[j].as_mv[0].as_mv, &mi->bmi[j].ref_mv[0].as_mv, nmvc, allow_hp); } #endif // CONFIG_EXT_INTER } } } else { #if CONFIG_EXT_INTER if (mode == NEWMV || mode == NEWFROMNEARMV || mode == NEW_NEWMV) { #else if (mode == NEWMV) { #endif // CONFIG_EXT_INTER int_mv ref_mv; for (ref = 0; ref < 1 + is_compound; ++ref) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[ref]], mbmi_ext->ref_mv_stack[mbmi->ref_frame[ref]]); const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; #endif ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0]; #if CONFIG_EXT_INTER if (mode == NEWFROMNEARMV) vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][1].as_mv, nmvc, allow_hp); else #endif // CONFIG_EXT_INTER vp10_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, allow_hp); } #if CONFIG_EXT_INTER } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[1]], mbmi_ext->ref_mv_stack[mbmi->ref_frame[1]]); const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; #endif vp10_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc, allow_hp); } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { #if CONFIG_REF_MV int nmv_ctx = vp10_nmv_ctx(mbmi_ext->ref_mv_count[mbmi->ref_frame[0]], mbmi_ext->ref_mv_stack[mbmi->ref_frame[0]]); const nmv_context *nmvc = &cm->fc->nmvc[nmv_ctx]; #endif vp10_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc, allow_hp); #endif // CONFIG_EXT_INTER } } #if CONFIG_EXT_INTER if (cpi->common.reference_mode != COMPOUND_REFERENCE && #if CONFIG_OBMC !(is_obmc_allowed(mbmi) && mbmi->obmc) && #endif // CONFIG_OBMC #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX is_interintra_allowed(mbmi)) { const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; vp10_write(w, interintra, cm->fc->interintra_prob[bsize]); if (interintra) { write_interintra_mode( w, mbmi->interintra_mode, cm->fc->interintra_mode_prob[size_group_lookup[bsize]]); assert(mbmi->interintra_mode == mbmi->interintra_uv_mode); if (get_wedge_bits(bsize)) { vp10_write(w, mbmi->use_wedge_interintra, cm->fc->wedge_interintra_prob[bsize]); if (mbmi->use_wedge_interintra) { vp10_write_literal(w, mbmi->interintra_wedge_index, get_wedge_bits(bsize)); } } } } if (cpi->common.reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) && #if CONFIG_OBMC !(is_obmc_allowed(mbmi) && mbmi->obmc) && #endif // CONFIG_OBMC get_wedge_bits(bsize)) { vp10_write(w, mbmi->use_wedge_interinter, cm->fc->wedge_interinter_prob[bsize]); if (mbmi->use_wedge_interinter) vp10_write_literal(w, mbmi->interinter_wedge_index, get_wedge_bits(bsize)); } #endif // CONFIG_EXT_INTER #if CONFIG_EXT_INTERP write_switchable_interp_filter(cpi, xd, w); #endif // CONFIG_EXT_INTERP } if (!FIXED_TX_TYPE) { #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, bsize, is_inter) > 1 && cm->base_qindex > 0 && !mbmi->skip && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { int eset = get_ext_tx_set(mbmi->tx_size, bsize, is_inter); if (is_inter) { if (eset > 0) vp10_write_token(w, vp10_ext_tx_inter_tree[eset], cm->fc->inter_ext_tx_prob[eset][mbmi->tx_size], &ext_tx_inter_encodings[eset][mbmi->tx_type]); } else if (ALLOW_INTRA_EXT_TX) { if (eset > 0) vp10_write_token( w, vp10_ext_tx_intra_tree[eset], cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode], &ext_tx_intra_encodings[eset][mbmi->tx_type]); } } #else if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip && #if CONFIG_SUPERTX !supertx_enabled && #endif // CONFIG_SUPERTX !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { if (is_inter) { vp10_write_token( w, vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[mbmi->tx_size], &ext_tx_encodings[mbmi->tx_type]); } else { vp10_write_token( w, vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[mbmi->tx_size] [intra_mode_to_tx_type_context[mbmi->mode]], &ext_tx_encodings[mbmi->tx_type]); } } else { if (!mbmi->skip) { #if CONFIG_SUPERTX if (!supertx_enabled) #endif // CONFIG_SUPERTX assert(mbmi->tx_type == DCT_DCT); } } #endif // CONFIG_EXT_TX } } static void write_mb_modes_kf(const VP10_COMMON *cm, const MACROBLOCKD *xd, MODE_INFO **mi_8x8, vp10_writer *w) { const struct segmentation *const seg = &cm->seg; const struct segmentation_probs *const segp = &cm->fc->seg; const MODE_INFO *const mi = mi_8x8[0]; const MODE_INFO *const above_mi = xd->above_mi; const MODE_INFO *const left_mi = xd->left_mi; const MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; if (seg->update_map) write_segment_id(w, seg, segp, mbmi->segment_id); write_skip(cm, xd, mbmi->segment_id, mi, w); if (bsize >= BLOCK_8X8 && cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) write_selected_tx_size(cm, xd, w); if (bsize >= BLOCK_8X8) { write_intra_mode(w, mbmi->mode, get_y_mode_probs(cm, mi, above_mi, left_mi, 0)); #if CONFIG_EXT_INTRA if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) { int p_angle; const int intra_filter_ctx = vp10_get_pred_context_intra_interp(xd); write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[0]); p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP; if (pick_intra_filter(p_angle)) { vp10_write_token(w, vp10_intra_filter_tree, cm->fc->intra_filter_probs[intra_filter_ctx], &intra_filter_encodings[mbmi->intra_filter]); } } #endif // CONFIG_EXT_INTRA } else { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int block = idy * 2 + idx; write_intra_mode(w, mi->bmi[block].as_mode, get_y_mode_probs(cm, mi, above_mi, left_mi, block)); } } } write_intra_mode(w, mbmi->uv_mode, cm->fc->uv_mode_prob[mbmi->mode]); #if CONFIG_EXT_INTRA if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED && bsize >= BLOCK_8X8) write_uniform(w, 2 * MAX_ANGLE_DELTAS + 1, MAX_ANGLE_DELTAS + mbmi->angle_delta[1]); #endif // CONFIG_EXT_INTRA if (bsize >= BLOCK_8X8 && cm->allow_screen_content_tools) write_palette_mode_info(cm, xd, mi, w); if (!FIXED_TX_TYPE) { #if CONFIG_EXT_TX if (get_ext_tx_types(mbmi->tx_size, bsize, 0) > 1 && cm->base_qindex > 0 && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) && ALLOW_INTRA_EXT_TX) { int eset = get_ext_tx_set(mbmi->tx_size, bsize, 0); if (eset > 0) vp10_write_token( w, vp10_ext_tx_intra_tree[eset], cm->fc->intra_ext_tx_prob[eset][mbmi->tx_size][mbmi->mode], &ext_tx_intra_encodings[eset][mbmi->tx_type]); } #else if (mbmi->tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { vp10_write_token( w, vp10_ext_tx_tree, cm->fc->intra_ext_tx_prob[mbmi->tx_size] [intra_mode_to_tx_type_context[mbmi->mode]], &ext_tx_encodings[mbmi->tx_type]); } #endif // CONFIG_EXT_TX } #if CONFIG_EXT_INTRA if (bsize >= BLOCK_8X8) write_ext_intra_mode_info(cm, mbmi, w); #endif // CONFIG_EXT_INTRA } #if CONFIG_SUPERTX #define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, \ supertx_enabled, mi_row, mi_col) \ write_modes_b(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col) #else #define write_modes_b_wrapper(cpi, tile, w, tok, tok_end, \ supertx_enabled, mi_row, mi_col) \ write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col) #endif // CONFIG_ANS && CONFIG_SUPERTX static void write_modes_b(VP10_COMP *cpi, const TileInfo *const tile, vp10_writer *w, const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col) { const VP10_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; MODE_INFO *m; int plane; #if CONFIG_ANS (void) tok; (void) tok_end; (void) plane; #endif // !CONFIG_ANS xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); m = xd->mi[0]; cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[m->mbmi.sb_type], mi_col, num_8x8_blocks_wide_lookup[m->mbmi.sb_type], cm->mi_rows, cm->mi_cols); if (frame_is_intra_only(cm)) { write_mb_modes_kf(cm, xd, xd->mi, w); } else { #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); #endif pack_inter_mode_mvs(cpi, m, #if CONFIG_SUPERTX supertx_enabled, #endif w); } for (plane = 0; plane <= 1; ++plane) { if (m->mbmi.palette_mode_info.palette_size[plane] > 0) { const int rows = (4 * num_4x4_blocks_high_lookup[m->mbmi.sb_type]) >> (xd->plane[plane].subsampling_y); const int cols = (4 * num_4x4_blocks_wide_lookup[m->mbmi.sb_type]) >> (xd->plane[plane].subsampling_x); assert(*tok < tok_end); pack_palette_tokens(w, tok, m->mbmi.palette_mode_info.palette_size[plane], rows * cols - 1); assert(*tok < tok_end + m->mbmi.skip); } } #if CONFIG_SUPERTX if (supertx_enabled) return; #endif // CONFIG_SUPERTX if (!m->mbmi.skip) { assert(*tok < tok_end); for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_VAR_TX const struct macroblockd_plane *const pd = &xd->plane[plane]; MB_MODE_INFO *mbmi = &m->mbmi; BLOCK_SIZE bsize = mbmi->sb_type; const BLOCK_SIZE plane_bsize = get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), pd); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; int row, col; if (is_inter_block(mbmi)) { const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; int bw = num_4x4_blocks_wide_lookup[txb_size]; int block = 0; const int step = 1 << (max_tx_size << 1); for (row = 0; row < num_4x4_h; row += bw) { for (col = 0; col < num_4x4_w; col += bw) { pack_txb_tokens(w, tok, tok_end, xd, mbmi, plane, plane_bsize, cm->bit_depth, block, row, col, max_tx_size); block += step; } } } else { TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size; BLOCK_SIZE txb_size = txsize_to_bsize[tx]; int bw = num_4x4_blocks_wide_lookup[txb_size]; for (row = 0; row < num_4x4_h; row += bw) for (col = 0; col < num_4x4_w; col += bw) #if CONFIG_ANS pack_mb_tokens_ans(w, cm->token_tab, tok, tok_end, cm->bit_depth, tx); #else pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx); #endif // CONFIG_ANS } #else TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size; #if CONFIG_ANS pack_mb_tokens_ans(w, cm->token_tab, tok, tok_end, cm->bit_depth, tx); #else pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx); #endif // CONFIG_ANS #endif // CONFIG_VAR_TX assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN); (*tok)++; } } } static void write_partition(const VP10_COMMON *const cm, const MACROBLOCKD *const xd, int hbs, int mi_row, int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, vp10_writer *w) { const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); const vpx_prob *const probs = cm->fc->partition_prob[ctx]; const int has_rows = (mi_row + hbs) < cm->mi_rows; const int has_cols = (mi_col + hbs) < cm->mi_cols; if (has_rows && has_cols) { #if CONFIG_EXT_PARTITION_TYPES if (bsize <= BLOCK_8X8) vp10_write_token(w, vp10_partition_tree, probs, &partition_encodings[p]); else vp10_write_token(w, vp10_ext_partition_tree, probs, &ext_partition_encodings[p]); #else vp10_write_token(w, vp10_partition_tree, probs, &partition_encodings[p]); #endif // CONFIG_EXT_PARTITION_TYPES } else if (!has_rows && has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); vp10_write(w, p == PARTITION_SPLIT, probs[1]); } else if (has_rows && !has_cols) { assert(p == PARTITION_SPLIT || p == PARTITION_VERT); vp10_write(w, p == PARTITION_SPLIT, probs[2]); } else { assert(p == PARTITION_SPLIT); } } #if CONFIG_SUPERTX #define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, \ supertx_enabled, mi_row, mi_col, bsize) \ write_modes_sb(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col, \ bsize) #else #define write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, \ supertx_enabled, mi_row, mi_col, bsize) \ write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, bsize) #endif // CONFIG_ANS && CONFIG_SUPERTX static void write_modes_sb(VP10_COMP *const cpi, const TileInfo *const tile, vp10_writer *const w, const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end, #if CONFIG_SUPERTX int supertx_enabled, #endif int mi_row, int mi_col, BLOCK_SIZE bsize) { const VP10_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; const int bsl = b_width_log2_lookup[bsize]; const int bs = (1 << bsl) / 4; PARTITION_TYPE partition; BLOCK_SIZE subsize; MODE_INFO *m = NULL; #if CONFIG_SUPERTX const int pack_token = !supertx_enabled; TX_SIZE supertx_size; int plane; #endif if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; m = cm->mi_grid_visible[mi_row * cm->mi_stride + mi_col]; partition = partition_lookup[bsl][m->mbmi.sb_type]; #if CONFIG_EXT_PARTITION_TYPES partition = get_partition(cm->mi, cm->mi_stride, cm->mi_rows, cm->mi_cols, mi_row, mi_col, bsize); #endif write_partition(cm, xd, bs, mi_row, mi_col, partition, bsize, w); subsize = get_subsize(bsize, partition); #if CONFIG_SUPERTX xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); set_mi_row_col(xd, tile, mi_row, num_8x8_blocks_high_lookup[bsize], mi_col, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows, cm->mi_cols); if (!supertx_enabled && !frame_is_intra_only(cm) && partition != PARTITION_NONE && bsize <= MAX_SUPERTX_BLOCK_SIZE && !xd->lossless[0]) { vpx_prob prob; supertx_size = max_txsize_lookup[bsize]; prob = cm->fc->supertx_prob[partition_supertx_context_lookup[partition]] [supertx_size]; supertx_enabled = (xd->mi[0]->mbmi.tx_size == supertx_size); vp10_write(w, supertx_enabled, prob); if (supertx_enabled) { vp10_write(w, xd->mi[0]->mbmi.skip, vp10_get_skip_prob(cm, xd)); #if CONFIG_EXT_TX if (get_ext_tx_types(supertx_size, bsize, 1) > 1 && !xd->mi[0]->mbmi.skip) { int eset = get_ext_tx_set(supertx_size, bsize, 1); if (eset > 0) { vp10_write_token( w, vp10_ext_tx_inter_tree[eset], cm->fc->inter_ext_tx_prob[eset][supertx_size], &ext_tx_inter_encodings[eset][xd->mi[0]->mbmi.tx_type]); } } #else if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) { vp10_write_token( w, vp10_ext_tx_tree, cm->fc->inter_ext_tx_prob[supertx_size], &ext_tx_encodings[xd->mi[0]->mbmi.tx_type]); } #endif // CONFIG_EXT_TX } } #endif // CONFIG_SUPERTX if (subsize < BLOCK_8X8) { write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); } else { switch (partition) { case PARTITION_NONE: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); break; case PARTITION_HORZ: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); if (mi_row + bs < cm->mi_rows) write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col); break; case PARTITION_VERT: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); if (mi_col + bs < cm->mi_cols) write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col + bs); break; case PARTITION_SPLIT: write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col, subsize); write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col + bs, subsize); write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col, subsize); write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col + bs, subsize); break; #if CONFIG_EXT_PARTITION_TYPES case PARTITION_HORZ_A: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col + bs); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col); break; case PARTITION_HORZ_B: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col + bs); break; case PARTITION_VERT_A: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col + bs); break; case PARTITION_VERT_B: write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row, mi_col + bs); write_modes_b_wrapper(cpi, tile, w, tok, tok_end, supertx_enabled, mi_row + bs, mi_col + bs); break; #endif // CONFIG_EXT_PARTITION_TYPES default: assert(0); } } #if CONFIG_SUPERTX if (partition != PARTITION_NONE && supertx_enabled && pack_token && !m->mbmi.skip) { assert(*tok < tok_end); for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const int mbmi_txb_size = txsize_to_bsize[m->mbmi.tx_size]; const int num_4x4_w = num_4x4_blocks_wide_lookup[mbmi_txb_size]; const int num_4x4_h = num_4x4_blocks_high_lookup[mbmi_txb_size]; int row, col; TX_SIZE tx = plane ? get_uv_tx_size(&m->mbmi, &xd->plane[plane]) : m->mbmi.tx_size; BLOCK_SIZE txb_size = txsize_to_bsize[tx]; int bw = num_4x4_blocks_wide_lookup[txb_size]; for (row = 0; row < num_4x4_h; row += bw) for (col = 0; col < num_4x4_w; col += bw) #if CONFIG_ANS pack_mb_tokens_ans(w, cm->token_tab, tok, tok_end, cm->bit_depth, tx); #else pack_mb_tokens(w, tok, tok_end, cm->bit_depth, tx); #endif assert(*tok < tok_end && (*tok)->token == EOSB_TOKEN); (*tok)++; } } #endif // CONFIG_SUPERTX // update partition context #if CONFIG_EXT_PARTITION_TYPES update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); #else if (bsize >= BLOCK_8X8 && (bsize == BLOCK_8X8 || partition != PARTITION_SPLIT)) update_partition_context(xd, mi_row, mi_col, subsize, bsize); #endif // CONFIG_EXT_PARTITION_TYPES } static void write_modes(VP10_COMP *const cpi, const TileInfo *const tile, vp10_writer *const w, const TOKENEXTRA **tok, const TOKENEXTRA *const tok_end) { VP10_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; const int mi_row_start = tile->mi_row_start; const int mi_row_end = tile->mi_row_end; const int mi_col_start = tile->mi_col_start; const int mi_col_end = tile->mi_col_end; int mi_row, mi_col; vp10_zero_above_context(cm, mi_col_start, mi_col_end); for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MAX_MIB_SIZE) { vp10_zero_left_context(xd); for (mi_col = mi_col_start; mi_col < mi_col_end; mi_col += MAX_MIB_SIZE) { write_modes_sb_wrapper(cpi, tile, w, tok, tok_end, 0, mi_row, mi_col, BLOCK_LARGEST); } } } static void build_tree_distribution(VP10_COMP *cpi, TX_SIZE tx_size, vp10_coeff_stats *coef_branch_ct, vp10_coeff_probs_model *coef_probs) { vp10_coeff_count *coef_counts = cpi->td.rd_counts.coef_counts[tx_size]; unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][COEFF_CONTEXTS] = cpi->common.counts.eob_branch[tx_size]; int i, j, k, l, m; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { vp10_tree_probs_from_distribution(vp10_coef_tree, coef_branch_ct[i][j][k][l], coef_counts[i][j][k][l]); coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; for (m = 0; m < UNCONSTRAINED_NODES; ++m) coef_probs[i][j][k][l][m] = get_binary_prob( coef_branch_ct[i][j][k][l][m][0], coef_branch_ct[i][j][k][l][m][1]); } } } } } static void update_coef_probs_common(vp10_writer* const bc, VP10_COMP *cpi, TX_SIZE tx_size, vp10_coeff_stats *frame_branch_ct, vp10_coeff_probs_model *new_coef_probs) { vp10_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; const vpx_prob upd = DIFF_UPDATE_PROB; const int entropy_nodes_update = UNCONSTRAINED_NODES; int i, j, k, l, t; int stepsize = cpi->sf.coeff_prob_appx_step; switch (cpi->sf.use_fast_coef_updates) { case TWO_LOOP: { /* dry run to see if there is any update at all needed */ int savings = 0; int update[2] = {0, 0}; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; int s; int u = 0; if (t == PIVOT_NODE) s = vp10_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_coef_probs[i][j][k][l], &newp, upd, stepsize); else s = vp10_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp10_cost_zero(upd)); else savings -= (int)(vp10_cost_zero(upd)); update[u]++; } } } } } /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp10_write_bit(bc, 0); return; } vp10_write_bit(bc, 1); for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; const vpx_prob upd = DIFF_UPDATE_PROB; int s; int u = 0; if (t == PIVOT_NODE) s = vp10_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_coef_probs[i][j][k][l], &newp, upd, stepsize); else s = vp10_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vp10_write(bc, u, upd); if (u) { /* send/use new probability */ vp10_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } return; } case ONE_LOOP_REDUCED: { int updates = 0; int noupdates_before_first = 0; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { // calc probs and branch cts for this frame only for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; int s; int u = 0; if (t == PIVOT_NODE) { s = vp10_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_coef_probs[i][j][k][l], &newp, upd, stepsize); } else { s = vp10_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); } if (s > 0 && newp != *oldp) u = 1; updates += u; if (u == 0 && updates == 0) { noupdates_before_first++; continue; } if (u == 1 && updates == 1) { int v; // first update vp10_write_bit(bc, 1); for (v = 0; v < noupdates_before_first; ++v) vp10_write(bc, 0, upd); } vp10_write(bc, u, upd); if (u) { /* send/use new probability */ vp10_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } if (updates == 0) { vp10_write_bit(bc, 0); // no updates } return; } default: assert(0); } } #if CONFIG_ENTROPY // Calculate the token counts between subsequent subframe updates. static void get_coef_counts_diff(VP10_COMP *cpi, int index, vp10_coeff_count coef_counts[TX_SIZES][PLANE_TYPES], unsigned int eob_counts[TX_SIZES] [PLANE_TYPES][REF_TYPES][COEF_BANDS] [COEFF_CONTEXTS]) { int i, j, k, l, m, tx_size, val; const int max_idx = cpi->common.coef_probs_update_idx; const TX_MODE tx_mode = cpi->common.tx_mode; const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; const SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats; assert(max_idx < COEF_PROBS_BUFS); for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) for (i = 0; i < PLANE_TYPES; ++i) for (j = 0; j < REF_TYPES; ++j) for (k = 0; k < COEF_BANDS; ++k) for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { if (index == max_idx) { val = cpi->common.counts.eob_branch[tx_size][i][j][k][l] - subframe_stats->eob_counts_buf[max_idx][tx_size][i][j][k][l]; } else { val = subframe_stats->eob_counts_buf[index + 1][tx_size] [i][j][k][l] - subframe_stats->eob_counts_buf[index][tx_size][i][j][k][l]; } assert(val >= 0); eob_counts[tx_size][i][j][k][l] = val; for (m = 0; m < ENTROPY_TOKENS; ++m) { if (index == max_idx) { val = cpi->td.rd_counts.coef_counts[tx_size][i][j][k][l][m] - subframe_stats->coef_counts_buf[max_idx][tx_size] [i][j][k][l][m]; } else { val = subframe_stats->coef_counts_buf[index + 1] [tx_size][i][j][k][l][m] - subframe_stats->coef_counts_buf[index][tx_size] [i][j][k][l][m]; } assert(val >= 0); coef_counts[tx_size][i][j][k][l][m] = val; } } } static void update_coef_probs_subframe(vp10_writer* const bc, VP10_COMP *cpi, TX_SIZE tx_size, vp10_coeff_stats branch_ct[COEF_PROBS_BUFS][TX_SIZES] [PLANE_TYPES], vp10_coeff_probs_model *new_coef_probs) { vp10_coeff_probs_model *old_coef_probs = cpi->common.fc->coef_probs[tx_size]; const vpx_prob upd = DIFF_UPDATE_PROB; const int entropy_nodes_update = UNCONSTRAINED_NODES; int i, j, k, l, t; int stepsize = cpi->sf.coeff_prob_appx_step; const int max_idx = cpi->common.coef_probs_update_idx; int idx; unsigned int this_branch_ct[ENTROPY_NODES][COEF_PROBS_BUFS][2]; switch (cpi->sf.use_fast_coef_updates) { case TWO_LOOP: { /* dry run to see if there is any update at all needed */ int savings = 0; int update[2] = {0, 0}; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { for (t = 0; t < ENTROPY_NODES; ++t) { for (idx = 0; idx <= max_idx; ++idx) { memcpy(this_branch_ct[t][idx], branch_ct[idx][tx_size][i][j][k][l][t], 2 * sizeof(this_branch_ct[t][idx][0])); } } for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; const vpx_prob oldp = old_coef_probs[i][j][k][l][t]; int s, u = 0; if (t == PIVOT_NODE) s = vp10_prob_update_search_model_subframe(this_branch_ct, old_coef_probs[i][j][k][l], &newp, upd, stepsize, max_idx); else s = vp10_prob_update_search_subframe(this_branch_ct[t], oldp, &newp, upd, max_idx); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp10_cost_zero(upd)); else savings -= (int)(vp10_cost_zero(upd)); update[u]++; } } } } } /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp10_write_bit(bc, 0); return; } vp10_write_bit(bc, 1); for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { for (t = 0; t < ENTROPY_NODES; ++t) { for (idx = 0; idx <= max_idx; ++idx) { memcpy(this_branch_ct[t][idx], branch_ct[idx][tx_size][i][j][k][l][t], 2 * sizeof(this_branch_ct[t][idx][0])); } } for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; const vpx_prob upd = DIFF_UPDATE_PROB; int s; int u = 0; if (t == PIVOT_NODE) s = vp10_prob_update_search_model_subframe(this_branch_ct, old_coef_probs[i][j][k][l], &newp, upd, stepsize, max_idx); else s = vp10_prob_update_search_subframe(this_branch_ct[t], *oldp, &newp, upd, max_idx); if (s > 0 && newp != *oldp) u = 1; vp10_write(bc, u, upd); if (u) { /* send/use new probability */ vp10_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } return; } case ONE_LOOP_REDUCED: { int updates = 0; int noupdates_before_first = 0; for (i = 0; i < PLANE_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < BAND_COEFF_CONTEXTS(k); ++l) { for (t = 0; t < ENTROPY_NODES; ++t) { for (idx = 0; idx <= max_idx; ++idx) { memcpy(this_branch_ct[t][idx], branch_ct[idx][tx_size][i][j][k][l][t], 2 * sizeof(this_branch_ct[t][idx][0])); } } for (t = 0; t < entropy_nodes_update; ++t) { vpx_prob newp = new_coef_probs[i][j][k][l][t]; vpx_prob *oldp = old_coef_probs[i][j][k][l] + t; int s; int u = 0; if (t == PIVOT_NODE) s = vp10_prob_update_search_model_subframe(this_branch_ct, old_coef_probs[i][j][k][l], &newp, upd, stepsize, max_idx); else s = vp10_prob_update_search_subframe(this_branch_ct[t], *oldp, &newp, upd, max_idx); if (s > 0 && newp != *oldp) u = 1; updates += u; if (u == 0 && updates == 0) { noupdates_before_first++; continue; } if (u == 1 && updates == 1) { int v; // first update vp10_write_bit(bc, 1); for (v = 0; v < noupdates_before_first; ++v) vp10_write(bc, 0, upd); } vp10_write(bc, u, upd); if (u) { /* send/use new probability */ vp10_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } if (updates == 0) { vp10_write_bit(bc, 0); // no updates } return; } default: assert(0); } } #endif // CONFIG_ENTROPY static void update_coef_probs(VP10_COMP *cpi, vp10_writer* w) { const TX_MODE tx_mode = cpi->common.tx_mode; const TX_SIZE max_tx_size = tx_mode_to_biggest_tx_size[tx_mode]; TX_SIZE tx_size; #if CONFIG_ENTROPY VP10_COMMON *cm = &cpi->common; SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats; unsigned int eob_counts_copy[TX_SIZES][PLANE_TYPES][REF_TYPES] [COEF_BANDS][COEFF_CONTEXTS]; int i; vp10_coeff_count coef_counts[COEF_PROBS_BUFS][TX_SIZES][PLANE_TYPES]; unsigned int eob_counts[COEF_PROBS_BUFS][TX_SIZES][PLANE_TYPES] [REF_TYPES][COEF_BANDS][COEFF_CONTEXTS]; vp10_coeff_stats branch_ct[COEF_PROBS_BUFS][TX_SIZES][PLANE_TYPES]; vp10_coeff_probs_model dummy_frame_coef_probs[PLANE_TYPES]; if (cm->do_subframe_update && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { vp10_copy(cpi->common.fc->coef_probs, subframe_stats->enc_starting_coef_probs); for (i = 0; i <= cpi->common.coef_probs_update_idx; ++i) { get_coef_counts_diff(cpi, i, coef_counts[i], eob_counts[i]); } } #endif // CONFIG_ENTROPY for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) { vp10_coeff_stats frame_branch_ct[PLANE_TYPES]; vp10_coeff_probs_model frame_coef_probs[PLANE_TYPES]; if (cpi->td.counts->tx_size_totals[tx_size] <= 20 || (tx_size >= TX_16X16 && cpi->sf.tx_size_search_method == USE_TX_8X8)) { vp10_write_bit(w, 0); } else { #if CONFIG_ENTROPY if (cm->do_subframe_update && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { unsigned int eob_counts_copy[PLANE_TYPES][REF_TYPES] [COEF_BANDS][COEFF_CONTEXTS]; vp10_coeff_count coef_counts_copy[PLANE_TYPES]; vp10_copy(eob_counts_copy, cpi->common.counts.eob_branch[tx_size]); vp10_copy(coef_counts_copy, cpi->td.rd_counts.coef_counts[tx_size]); build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs); for (i = 0; i <= cpi->common.coef_probs_update_idx; ++i) { vp10_copy(cpi->common.counts.eob_branch[tx_size], eob_counts[i][tx_size]); vp10_copy(cpi->td.rd_counts.coef_counts[tx_size], coef_counts[i][tx_size]); build_tree_distribution(cpi, tx_size, branch_ct[i][tx_size], dummy_frame_coef_probs); } vp10_copy(cpi->common.counts.eob_branch[tx_size], eob_counts_copy); vp10_copy(cpi->td.rd_counts.coef_counts[tx_size], coef_counts_copy); update_coef_probs_subframe(w, cpi, tx_size, branch_ct, frame_coef_probs); } else { #endif // CONFIG_ENTROPY build_tree_distribution(cpi, tx_size, frame_branch_ct, frame_coef_probs); update_coef_probs_common(w, cpi, tx_size, frame_branch_ct, frame_coef_probs); #if CONFIG_ENTROPY } #endif // CONFIG_ENTROPY } } #if CONFIG_ENTROPY vp10_copy(cm->starting_coef_probs, cm->fc->coef_probs); vp10_copy(subframe_stats->coef_probs_buf[0], cm->fc->coef_probs); if (cm->do_subframe_update && cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) { vp10_copy(eob_counts_copy, cm->counts.eob_branch); for (i = 1; i <= cpi->common.coef_probs_update_idx; ++i) { for (tx_size = TX_4X4; tx_size <= max_tx_size; ++tx_size) full_to_model_counts(cm->counts.coef[tx_size], subframe_stats->coef_counts_buf[i][tx_size]); vp10_copy(cm->counts.eob_branch, subframe_stats->eob_counts_buf[i]); vp10_partial_adapt_probs(cm, 0, 0); vp10_copy(subframe_stats->coef_probs_buf[i], cm->fc->coef_probs); } vp10_copy(cm->fc->coef_probs, subframe_stats->coef_probs_buf[0]); vp10_copy(cm->counts.eob_branch, eob_counts_copy); } #endif // CONFIG_ENTROPY } #if CONFIG_LOOP_RESTORATION static void encode_restoration(VP10_COMMON *cm, struct vpx_write_bit_buffer *wb) { RestorationInfo *rst = &cm->rst_info; vpx_wb_write_bit(wb, rst->restoration_type != RESTORE_NONE); if (rst->restoration_type != RESTORE_NONE) { if (rst->restoration_type == RESTORE_BILATERAL) { vpx_wb_write_bit(wb, 1); vpx_wb_write_literal(wb, rst->restoration_level, vp10_restoration_level_bits(cm)); } else { vpx_wb_write_bit(wb, 0); vpx_wb_write_literal( wb, rst->vfilter[0] - WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_BITS); vpx_wb_write_literal( wb, rst->vfilter[1] - WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_BITS); vpx_wb_write_literal( wb, rst->vfilter[2] - WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_BITS); vpx_wb_write_literal( wb, rst->hfilter[0] - WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_BITS); vpx_wb_write_literal( wb, rst->hfilter[1] - WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_BITS); vpx_wb_write_literal( wb, rst->hfilter[2] - WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_BITS); } } } #endif // CONFIG_LOOP_RESTORATION static void encode_loopfilter(VP10_COMMON *cm, struct vpx_write_bit_buffer *wb) { int i; struct loopfilter *lf = &cm->lf; // Encode the loop filter level and type vpx_wb_write_literal(wb, lf->filter_level, 6); vpx_wb_write_literal(wb, lf->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled). vpx_wb_write_bit(wb, lf->mode_ref_delta_enabled); if (lf->mode_ref_delta_enabled) { vpx_wb_write_bit(wb, lf->mode_ref_delta_update); if (lf->mode_ref_delta_update) { for (i = 0; i < MAX_REF_FRAMES; i++) { const int delta = lf->ref_deltas[i]; const int changed = delta != lf->last_ref_deltas[i]; vpx_wb_write_bit(wb, changed); if (changed) { lf->last_ref_deltas[i] = delta; vpx_wb_write_inv_signed_literal(wb, delta, 6); } } for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = lf->mode_deltas[i]; const int changed = delta != lf->last_mode_deltas[i]; vpx_wb_write_bit(wb, changed); if (changed) { lf->last_mode_deltas[i] = delta; vpx_wb_write_inv_signed_literal(wb, delta, 6); } } } } } static void write_delta_q(struct vpx_write_bit_buffer *wb, int delta_q) { if (delta_q != 0) { vpx_wb_write_bit(wb, 1); vpx_wb_write_inv_signed_literal(wb, delta_q, 6); } else { vpx_wb_write_bit(wb, 0); } } static void encode_quantization(const VP10_COMMON *const cm, struct vpx_write_bit_buffer *wb) { vpx_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); write_delta_q(wb, cm->y_dc_delta_q); write_delta_q(wb, cm->uv_dc_delta_q); write_delta_q(wb, cm->uv_ac_delta_q); } static void encode_segmentation(VP10_COMMON *cm, MACROBLOCKD *xd, struct vpx_write_bit_buffer *wb) { int i, j; const struct segmentation *seg = &cm->seg; vpx_wb_write_bit(wb, seg->enabled); if (!seg->enabled) return; // Segmentation map if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { vpx_wb_write_bit(wb, seg->update_map); } else { assert(seg->update_map == 1); } if (seg->update_map) { // Select the coding strategy (temporal or spatial) vp10_choose_segmap_coding_method(cm, xd); // Write out the chosen coding method. if (!frame_is_intra_only(cm) && !cm->error_resilient_mode) { vpx_wb_write_bit(wb, seg->temporal_update); } else { assert(seg->temporal_update == 0); } } // Segmentation data vpx_wb_write_bit(wb, seg->update_data); if (seg->update_data) { vpx_wb_write_bit(wb, seg->abs_delta); for (i = 0; i < MAX_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { const int active = segfeature_active(seg, i, j); vpx_wb_write_bit(wb, active); if (active) { const int data = get_segdata(seg, i, j); const int data_max = vp10_seg_feature_data_max(j); if (vp10_is_segfeature_signed(j)) { encode_unsigned_max(wb, abs(data), data_max); vpx_wb_write_bit(wb, data < 0); } else { encode_unsigned_max(wb, data, data_max); } } } } } } static void update_seg_probs(VP10_COMP *cpi, vp10_writer *w) { VP10_COMMON *cm = &cpi->common; if (!cpi->common.seg.enabled) return; if (cpi->common.seg.temporal_update) { int i; for (i = 0; i < PREDICTION_PROBS; i++) vp10_cond_prob_diff_update(w, &cm->fc->seg.pred_probs[i], cm->counts.seg.pred[i]); prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs, cm->counts.seg.tree_mispred, MAX_SEGMENTS, w); } else { prob_diff_update(vp10_segment_tree, cm->fc->seg.tree_probs, cm->counts.seg.tree_total, MAX_SEGMENTS, w); } } static void write_txfm_mode(TX_MODE mode, struct vpx_write_bit_buffer *wb) { vpx_wb_write_bit(wb, mode == TX_MODE_SELECT); if (mode != TX_MODE_SELECT) vpx_wb_write_literal(wb, mode, 2); } static void update_txfm_probs(VP10_COMMON *cm, vp10_writer *w, FRAME_COUNTS *counts) { if (cm->tx_mode == TX_MODE_SELECT) { int i, j; for (i = 0; i < TX_SIZES - 1; ++i) for (j = 0; j < TX_SIZE_CONTEXTS; ++j) prob_diff_update(vp10_tx_size_tree[i], cm->fc->tx_size_probs[i][j], counts->tx_size[i][j], i + 2, w); } } static void write_interp_filter(INTERP_FILTER filter, struct vpx_write_bit_buffer *wb) { vpx_wb_write_bit(wb, filter == SWITCHABLE); if (filter != SWITCHABLE) vpx_wb_write_literal(wb, filter, 2 + CONFIG_EXT_INTERP); } static void fix_interp_filter(VP10_COMMON *cm, FRAME_COUNTS *counts) { if (cm->interp_filter == SWITCHABLE) { // Check to see if only one of the filters is actually used int count[SWITCHABLE_FILTERS]; int i, j, c = 0; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) count[i] += counts->switchable_interp[j][i]; c += (count[i] > 0); } if (c == 1) { // Only one filter is used. So set the filter at frame level for (i = 0; i < SWITCHABLE_FILTERS; ++i) { if (count[i]) { cm->interp_filter = i; break; } } } } } static void write_tile_info(VP10_COMMON *const cm, struct vpx_write_bit_buffer *wb) { #if CONFIG_EXT_TILE // TODO(geza.lore): Dependent on CU_SIZE const int tile_width = mi_cols_aligned_to_sb(cm->tile_width) >> MAX_MIB_SIZE_LOG2; const int tile_height = mi_cols_aligned_to_sb(cm->tile_height) >> MAX_MIB_SIZE_LOG2; assert(tile_width > 0 && tile_width <= 64); assert(tile_height > 0 && tile_height <= 64); // Write the tile sizes vpx_wb_write_literal(wb, tile_width - 1, 6); vpx_wb_write_literal(wb, tile_height - 1, 6); #else int min_log2_tile_cols, max_log2_tile_cols, ones; vp10_get_tile_n_bits(cm->mi_cols, &min_log2_tile_cols, &max_log2_tile_cols); // columns ones = cm->log2_tile_cols - min_log2_tile_cols; while (ones--) vpx_wb_write_bit(wb, 1); if (cm->log2_tile_cols < max_log2_tile_cols) vpx_wb_write_bit(wb, 0); // rows vpx_wb_write_bit(wb, cm->log2_tile_rows != 0); if (cm->log2_tile_rows != 0) vpx_wb_write_bit(wb, cm->log2_tile_rows != 1); #endif // CONFIG_EXT_TILE } static int get_refresh_mask(VP10_COMP *cpi) { int refresh_mask = 0; #if CONFIG_EXT_REFS int ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= LAST4_FRAME; ++ref_frame) { refresh_mask |= (cpi->refresh_last_frames[ref_frame - LAST_FRAME] << cpi->lst_fb_idxes[ref_frame - LAST_FRAME]); } #else refresh_mask = cpi->refresh_last_frame << cpi->lst_fb_idx; #endif // CONFIG_EXT_REFS if (vp10_preserve_existing_gf(cpi)) { // We have decided to preserve the previously existing golden frame as our // new ARF frame. However, in the short term we leave it in the GF slot and, // if we're updating the GF with the current decoded frame, we save it // instead to the ARF slot. // Later, in the function vp10_encoder.c:vp10_update_reference_frames() we // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it // there so that it can be done outside of the recode loop. // Note: This is highly specific to the use of ARF as a forward reference, // and this needs to be generalized as other uses are implemented // (like RTC/temporal scalability). return refresh_mask | (cpi->refresh_golden_frame << cpi->alt_fb_idx); } else { int arf_idx = cpi->alt_fb_idx; if ((cpi->oxcf.pass == 2) && cpi->multi_arf_allowed) { const GF_GROUP *const gf_group = &cpi->twopass.gf_group; arf_idx = gf_group->arf_update_idx[gf_group->index]; } return refresh_mask | (cpi->refresh_golden_frame << cpi->gld_fb_idx) | (cpi->refresh_alt_ref_frame << arf_idx); } } #if CONFIG_EXT_TILE static INLINE int find_identical_tile( const int tile_row, const int tile_col, TileBufferEnc (*const tile_buffers)[1024]) { const MV32 candidate_offset[1] = {{1, 0}}; const uint8_t *const cur_tile_data = tile_buffers[tile_row][tile_col].data + 4; const unsigned int cur_tile_size = tile_buffers[tile_row][tile_col].size; int i; if (tile_row == 0) return 0; // (TODO: yunqingwang) For now, only above tile is checked and used. // More candidates such as left tile can be added later. for (i = 0; i < 1; i++) { int row_offset = candidate_offset[0].row; int col_offset = candidate_offset[0].col; int row = tile_row - row_offset; int col = tile_col - col_offset; uint8_t tile_hdr; const uint8_t *tile_data; TileBufferEnc *candidate; if (row < 0 || col < 0) continue; tile_hdr = *(tile_buffers[row][col].data); // Read out tcm bit if ((tile_hdr >> 7) == 1) { // The candidate is a copy tile itself row_offset += tile_hdr & 0x7f; row = tile_row - row_offset; } candidate = &tile_buffers[row][col]; if (row_offset >= 128 || candidate->size != cur_tile_size) continue; tile_data = candidate->data + 4; if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; // Identical tile found assert(row_offset > 0); return row_offset; } // No identical tile found return 0; } #endif // CONFIG_EXT_TILE static uint32_t write_tiles(VP10_COMP *const cpi, uint8_t *const dst, unsigned int *max_tile_size, unsigned int *max_tile_col_size) { VP10_COMMON *const cm = &cpi->common; vp10_writer mode_bc; #if CONFIG_ANS struct AnsCoder token_ans; #endif // CONFIG_ANS int tile_row, tile_col; TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok; TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; size_t total_size = 0; const int tile_cols = cm->tile_cols; const int tile_rows = cm->tile_rows; #if CONFIG_EXT_TILE const int have_tiles = tile_cols * tile_rows > 1; #endif // CONFIG_EXT_TILE #if CONFIG_ANS const int ans_window_size = get_token_alloc(cm->mb_rows, cm->mb_cols) * 3; struct buffered_ans_symbol *uco_ans_buf; CHECK_MEM_ERROR(cm, uco_ans_buf, vpx_malloc(ans_window_size * sizeof(*uco_ans_buf))); #endif // CONFIG_ANS *max_tile_size = 0; *max_tile_col_size = 0; // All tile size fields are output on 4 bytes. A call to remux_tiles will // later compact the data if smaller headers are adequate. #if CONFIG_EXT_TILE for (tile_col = 0; tile_col < tile_cols; tile_col++) { TileInfo tile_info; const int is_last_col = (tile_col == tile_cols - 1); const size_t col_offset = total_size; vp10_tile_set_col(&tile_info, cm, tile_col); // The last column does not have a column header if (!is_last_col) total_size += 4; for (tile_row = 0; tile_row < tile_rows; tile_row++) { TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; unsigned int tile_size; const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; const int data_offset = have_tiles ? 4 : 0; vp10_tile_set_row(&tile_info, cm, tile_row); buf->data = dst + total_size; // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, // even for the last one, unless no tiling is used at all. total_size += data_offset; #if !CONFIG_ANS vpx_start_encode(&mode_bc, buf->data + data_offset); write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); assert(tok == tok_end); vpx_stop_encode(&mode_bc); tile_size = mode_bc.pos; #else buf_ans_write_init(&mode_bc, uco_ans_buf, ans_window_size); write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); assert(tok == tok_end); ans_write_init(&token_ans, buf->data + data_offset); buf_ans_flush(&mode_bc, &token_ans); tile_size = ans_write_end(&token_ans); #endif // !CONFIG_ANS buf->size = tile_size; // Record the maximum tile size we see, so we can compact headers later. *max_tile_size = VPXMAX(*max_tile_size, tile_size); if (have_tiles) { // tile header: size of this tile, or copy offset uint32_t tile_header = tile_size; // Check if this tile is a copy tile. // Very low chances to have copy tiles on the key frames, so don't // search on key frames to reduce unnecessary search. if (cm->frame_type != KEY_FRAME) { const int idendical_tile_offset = find_identical_tile(tile_row, tile_col, tile_buffers); if (idendical_tile_offset > 0) { tile_size = 0; tile_header = idendical_tile_offset | 0x80; tile_header <<= 24; } } mem_put_le32(buf->data, tile_header); } total_size += tile_size; } if (!is_last_col) { size_t col_size = total_size - col_offset - 4; mem_put_le32(dst + col_offset, col_size); // If it is not final packing, record the maximum tile column size we see, // otherwise, check if the tile size is out of the range. *max_tile_col_size = VPXMAX(*max_tile_col_size, col_size); } } #else for (tile_row = 0; tile_row < tile_rows; tile_row++) { TileInfo tile_info; const int is_last_row = (tile_row == tile_rows - 1); vp10_tile_set_row(&tile_info, cm, tile_row); for (tile_col = 0; tile_col < tile_cols; tile_col++) { TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; const int is_last_col = (tile_col == tile_cols - 1); const int is_last_tile = is_last_col && is_last_row; unsigned int tile_size; const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; vp10_tile_set_col(&tile_info, cm, tile_col); buf->data = dst + total_size; // The last tile does not have a header. if (!is_last_tile) total_size += 4; #if !CONFIG_ANS vpx_start_encode(&mode_bc, dst + total_size); write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); assert(tok == tok_end); vpx_stop_encode(&mode_bc); tile_size = mode_bc.pos; #else buf_ans_write_init(&mode_bc, uco_ans_buf, ans_window_size); write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); assert(tok == tok_end); ans_write_init(&token_ans, dst + total_size); buf_ans_flush(&mode_bc, &token_ans); tile_size = ans_write_end(&token_ans); #endif // !CONFIG_ANS assert(tile_size > 0); buf->size = tile_size; if (!is_last_tile) { *max_tile_size = VPXMAX(*max_tile_size, tile_size); // size of this tile mem_put_le32(buf->data, tile_size); } total_size += tile_size; } } #endif // CONFIG_EXT_TILE #if CONFIG_ANS vpx_free(uco_ans_buf); #endif // CONFIG_ANS return total_size; } static void write_render_size(const VP10_COMMON *cm, struct vpx_write_bit_buffer *wb) { const int scaling_active = cm->width != cm->render_width || cm->height != cm->render_height; vpx_wb_write_bit(wb, scaling_active); if (scaling_active) { vpx_wb_write_literal(wb, cm->render_width - 1, 16); vpx_wb_write_literal(wb, cm->render_height - 1, 16); } } static void write_frame_size(const VP10_COMMON *cm, struct vpx_write_bit_buffer *wb) { vpx_wb_write_literal(wb, cm->width - 1, 16); vpx_wb_write_literal(wb, cm->height - 1, 16); write_render_size(cm, wb); } static void write_frame_size_with_refs(VP10_COMP *cpi, struct vpx_write_bit_buffer *wb) { VP10_COMMON *const cm = &cpi->common; int found = 0; MV_REFERENCE_FRAME ref_frame; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); if (cfg != NULL) { found = cm->width == cfg->y_crop_width && cm->height == cfg->y_crop_height; found &= cm->render_width == cfg->render_width && cm->render_height == cfg->render_height; } vpx_wb_write_bit(wb, found); if (found) { break; } } if (!found) { vpx_wb_write_literal(wb, cm->width - 1, 16); vpx_wb_write_literal(wb, cm->height - 1, 16); write_render_size(cm, wb); } } static void write_sync_code(struct vpx_write_bit_buffer *wb) { vpx_wb_write_literal(wb, VP10_SYNC_CODE_0, 8); vpx_wb_write_literal(wb, VP10_SYNC_CODE_1, 8); vpx_wb_write_literal(wb, VP10_SYNC_CODE_2, 8); } static void write_profile(BITSTREAM_PROFILE profile, struct vpx_write_bit_buffer *wb) { switch (profile) { case PROFILE_0: vpx_wb_write_literal(wb, 0, 2); break; case PROFILE_1: vpx_wb_write_literal(wb, 2, 2); break; case PROFILE_2: vpx_wb_write_literal(wb, 1, 2); break; case PROFILE_3: vpx_wb_write_literal(wb, 6, 3); break; default: assert(0); } } static void write_bitdepth_colorspace_sampling( VP10_COMMON *const cm, struct vpx_write_bit_buffer *wb) { if (cm->profile >= PROFILE_2) { assert(cm->bit_depth > VPX_BITS_8); vpx_wb_write_bit(wb, cm->bit_depth == VPX_BITS_10 ? 0 : 1); } vpx_wb_write_literal(wb, cm->color_space, 3); if (cm->color_space != VPX_CS_SRGB) { // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] vpx_wb_write_bit(wb, cm->color_range); if (cm->profile == PROFILE_1 || cm->profile == PROFILE_3) { assert(cm->subsampling_x != 1 || cm->subsampling_y != 1); vpx_wb_write_bit(wb, cm->subsampling_x); vpx_wb_write_bit(wb, cm->subsampling_y); vpx_wb_write_bit(wb, 0); // unused } else { assert(cm->subsampling_x == 1 && cm->subsampling_y == 1); } } else { assert(cm->profile == PROFILE_1 || cm->profile == PROFILE_3); vpx_wb_write_bit(wb, 0); // unused } } static void write_uncompressed_header(VP10_COMP *cpi, struct vpx_write_bit_buffer *wb) { VP10_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; vpx_wb_write_literal(wb, VP9_FRAME_MARKER, 2); write_profile(cm->profile, wb); vpx_wb_write_bit(wb, 0); // show_existing_frame vpx_wb_write_bit(wb, cm->frame_type); vpx_wb_write_bit(wb, cm->show_frame); vpx_wb_write_bit(wb, cm->error_resilient_mode); if (cm->frame_type == KEY_FRAME) { write_sync_code(wb); write_bitdepth_colorspace_sampling(cm, wb); write_frame_size(cm, wb); if (frame_is_intra_only(cm)) vpx_wb_write_bit(wb, cm->allow_screen_content_tools); } else { if (!cm->show_frame) vpx_wb_write_bit(wb, cm->intra_only); if (!cm->error_resilient_mode) { if (cm->intra_only) { vpx_wb_write_bit(wb, cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); } else { vpx_wb_write_bit(wb, cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE); if (cm->reset_frame_context != RESET_FRAME_CONTEXT_NONE) vpx_wb_write_bit(wb, cm->reset_frame_context == RESET_FRAME_CONTEXT_ALL); } } if (cm->intra_only) { write_sync_code(wb); write_bitdepth_colorspace_sampling(cm, wb); vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES); write_frame_size(cm, wb); } else { MV_REFERENCE_FRAME ref_frame; vpx_wb_write_literal(wb, get_refresh_mask(cpi), REF_FRAMES); for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); vpx_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), REF_FRAMES_LOG2); vpx_wb_write_bit(wb, cm->ref_frame_sign_bias[ref_frame]); } write_frame_size_with_refs(cpi, wb); vpx_wb_write_bit(wb, cm->allow_high_precision_mv); fix_interp_filter(cm, cpi->td.counts); write_interp_filter(cm->interp_filter, wb); } } if (!cm->error_resilient_mode) { vpx_wb_write_bit(wb, cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF); if (cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_OFF) vpx_wb_write_bit(wb, cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD); } vpx_wb_write_literal(wb, cm->frame_context_idx, FRAME_CONTEXTS_LOG2); encode_loopfilter(cm, wb); #if CONFIG_LOOP_RESTORATION encode_restoration(cm, wb); #endif // CONFIG_LOOP_RESTORATION encode_quantization(cm, wb); encode_segmentation(cm, xd, wb); if (!cm->seg.enabled && xd->lossless[0]) cm->tx_mode = TX_4X4; else write_txfm_mode(cm->tx_mode, wb); if (cpi->allow_comp_inter_inter) { const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; const int use_compound_pred = cm->reference_mode != SINGLE_REFERENCE; vpx_wb_write_bit(wb, use_hybrid_pred); if (!use_hybrid_pred) vpx_wb_write_bit(wb, use_compound_pred); } write_tile_info(cm, wb); } static uint32_t write_compressed_header(VP10_COMP *cpi, uint8_t *data) { VP10_COMMON *const cm = &cpi->common; #if CONFIG_SUPERTX MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; #endif // CONFIG_SUPERTX FRAME_CONTEXT *const fc = cm->fc; FRAME_COUNTS *counts = cpi->td.counts; vp10_writer header_bc; int i, j; #if CONFIG_ANS struct AnsCoder header_ans; struct buffered_ans_symbol *uco_ans_buf; const int ans_window_size = 50000; // TODO(aconverse): revisit window size int header_size; CHECK_MEM_ERROR(cm, uco_ans_buf, vpx_malloc(ans_window_size * sizeof(*uco_ans_buf))); buf_ans_write_init(&header_bc, uco_ans_buf, ans_window_size); #else vpx_start_encode(&header_bc, data); #endif update_txfm_probs(cm, &header_bc, counts); update_coef_probs(cpi, &header_bc); #if CONFIG_VAR_TX update_txfm_partition_probs(cm, &header_bc, counts); #endif update_skip_probs(cm, &header_bc, counts); update_seg_probs(cpi, &header_bc); for (i = 0; i < INTRA_MODES; ++i) prob_diff_update(vp10_intra_mode_tree, fc->uv_mode_prob[i], counts->uv_mode[i], INTRA_MODES, &header_bc); #if CONFIG_EXT_PARTITION_TYPES prob_diff_update(vp10_partition_tree, fc->partition_prob[0], counts->partition[0], PARTITION_TYPES, &header_bc); for (i = 1; i < PARTITION_CONTEXTS; ++i) prob_diff_update(vp10_ext_partition_tree, fc->partition_prob[i], counts->partition[i], EXT_PARTITION_TYPES, &header_bc); #else for (i = 0; i < PARTITION_CONTEXTS; ++i) prob_diff_update(vp10_partition_tree, fc->partition_prob[i], counts->partition[i], PARTITION_TYPES, &header_bc); #endif // CONFIG_EXT_PARTITION_TYPES #if CONFIG_EXT_INTRA for (i = 0; i < INTRA_FILTERS + 1; ++i) prob_diff_update(vp10_intra_filter_tree, fc->intra_filter_probs[i], counts->intra_filter[i], INTRA_FILTERS, &header_bc); #endif // CONFIG_EXT_INTRA if (frame_is_intra_only(cm)) { vp10_copy(cm->kf_y_prob, vp10_kf_y_mode_prob); for (i = 0; i < INTRA_MODES; ++i) for (j = 0; j < INTRA_MODES; ++j) prob_diff_update(vp10_intra_mode_tree, cm->kf_y_prob[i][j], counts->kf_y_mode[i][j], INTRA_MODES, &header_bc); } else { #if CONFIG_REF_MV update_inter_mode_probs(cm, &header_bc, counts); #else for (i = 0; i < INTER_MODE_CONTEXTS; ++i) prob_diff_update(vp10_inter_mode_tree, cm->fc->inter_mode_probs[i], counts->inter_mode[i], INTER_MODES, &header_bc); #endif #if CONFIG_EXT_INTER update_inter_compound_mode_probs(cm, &header_bc); if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed_bsize(i)) { vp10_cond_prob_diff_update(&header_bc, &fc->interintra_prob[i], cm->counts.interintra[i]); } } for (i = 0; i < BLOCK_SIZE_GROUPS; i++) { prob_diff_update(vp10_interintra_mode_tree, cm->fc->interintra_mode_prob[i], counts->interintra_mode[i], INTERINTRA_MODES, &header_bc); } for (i = 0; i < BLOCK_SIZES; i++) { if (is_interintra_allowed_bsize(i) && get_wedge_bits(i)) vp10_cond_prob_diff_update(&header_bc, &fc->wedge_interintra_prob[i], cm->counts.wedge_interintra[i]); } } if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < BLOCK_SIZES; i++) if (get_wedge_bits(i)) vp10_cond_prob_diff_update(&header_bc, &fc->wedge_interinter_prob[i], cm->counts.wedge_interinter[i]); } #endif // CONFIG_EXT_INTER #if CONFIG_OBMC for (i = BLOCK_8X8; i < BLOCK_SIZES; ++i) vp10_cond_prob_diff_update(&header_bc, &fc->obmc_prob[i], counts->obmc[i]); #endif // CONFIG_OBMC if (cm->interp_filter == SWITCHABLE) update_switchable_interp_probs(cm, &header_bc, counts); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp10_cond_prob_diff_update(&header_bc, &fc->intra_inter_prob[i], counts->intra_inter[i]); if (cpi->allow_comp_inter_inter) { const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; if (use_hybrid_pred) for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp10_cond_prob_diff_update(&header_bc, &fc->comp_inter_prob[i], counts->comp_inter[i]); } if (cm->reference_mode != COMPOUND_REFERENCE) { for (i = 0; i < REF_CONTEXTS; i++) { for (j = 0; j < (SINGLE_REFS - 1); j ++) { vp10_cond_prob_diff_update(&header_bc, &fc->single_ref_prob[i][j], counts->single_ref[i][j]); } } } if (cm->reference_mode != SINGLE_REFERENCE) { for (i = 0; i < REF_CONTEXTS; i++) { for (j = 0; j < (COMP_REFS - 1); j ++) { vp10_cond_prob_diff_update(&header_bc, &fc->comp_ref_prob[i][j], counts->comp_ref[i][j]); } } } for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) prob_diff_update(vp10_intra_mode_tree, cm->fc->y_mode_prob[i], counts->y_mode[i], INTRA_MODES, &header_bc); vp10_write_nmv_probs(cm, cm->allow_high_precision_mv, &header_bc, #if CONFIG_REF_MV counts->mv); #else &counts->mv); #endif update_ext_tx_probs(cm, &header_bc); #if CONFIG_SUPERTX if (!xd->lossless[0]) update_supertx_probs(cm, &header_bc); #endif // CONFIG_SUPERTX } #if CONFIG_ANS ans_write_init(&header_ans, data); buf_ans_flush(&header_bc, &header_ans); vpx_free(uco_ans_buf); header_size = ans_write_end(&header_ans); assert(header_size <= 0xffff); return header_size; #else vpx_stop_encode(&header_bc); assert(header_bc.pos <= 0xffff); return header_bc.pos; #endif // CONFIG_ANS } static int choose_size_bytes(uint32_t size, int spare_msbs) { // Choose the number of bytes required to represent size, without // using the 'spare_msbs' number of most significant bits. // Make sure we will fit in 4 bytes to start with.. if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; // Normalise to 32 bits size <<= spare_msbs; if (size >> 24 != 0) return 4; else if (size >> 16 != 0) return 3; else if (size >> 8 != 0) return 2; else return 1; } static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { switch (sz) { case 1: dst[0] = (uint8_t)(val & 0xff); break; case 2: mem_put_le16(dst, val); break; case 3: mem_put_le24(dst, val); break; case 4: mem_put_le32(dst, val); break; default: assert("Invalid size" && 0); break; } } static int remux_tiles(const VP10_COMMON *const cm, uint8_t *dst, const uint32_t data_size, const uint32_t max_tile_size, const uint32_t max_tile_col_size, int *const tile_size_bytes, int *const tile_col_size_bytes) { // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) #if CONFIG_EXT_TILE // The top bit in the tile size field indicates tile copy mode, so we // have 1 less bit to code the tile size const int tsb = choose_size_bytes(max_tile_size, 1); const int tcsb = choose_size_bytes(max_tile_col_size, 0); #else const int tsb = choose_size_bytes(max_tile_size, 0); const int tcsb = 4; // This is ignored (void) max_tile_col_size; #endif // CONFIG_EXT_TILE assert(tsb > 0); assert(tcsb > 0); *tile_size_bytes = tsb; *tile_col_size_bytes = tcsb; if (tsb == 4 && tcsb == 4) { return data_size; } else { uint32_t wpos = 0; uint32_t rpos = 0; #if CONFIG_EXT_TILE int tile_row; int tile_col; for (tile_col = 0 ; tile_col < cm->tile_cols ; tile_col++) { // All but the last column has a column header if (tile_col < cm->tile_cols - 1) { uint32_t tile_col_size = mem_get_le32(dst + rpos); rpos += 4; // Adjust the tile column size by the number of bytes removed // from the tile size fields. tile_col_size -= (4-tsb) * cm->tile_rows; mem_put_varsize(dst + wpos, tcsb, tile_col_size); wpos += tcsb; } for (tile_row = 0 ; tile_row < cm->tile_rows ; tile_row++) { // All, including the last row has a header uint32_t tile_header = mem_get_le32(dst + rpos); rpos += 4; // If this is a copy tile, we need to shift the MSB to the // top bit of the new width, and there is no data to copy. if (tile_header >> 31 != 0) { if (tsb < 4) tile_header >>= 32 - 8 * tsb; mem_put_varsize(dst + wpos, tsb, tile_header); wpos += tsb; } else { mem_put_varsize(dst + wpos, tsb, tile_header); wpos += tsb; memmove(dst + wpos, dst + rpos, tile_header); rpos += tile_header; wpos += tile_header; } } } #else const int n_tiles = cm->tile_cols * cm->tile_rows; int n; for (n = 0; n < n_tiles; n++) { int tile_size; if (n == n_tiles - 1) { tile_size = data_size - rpos; } else { tile_size = mem_get_le32(dst + rpos); rpos += 4; mem_put_varsize(dst + wpos, tsb, tile_size); wpos += tsb; } memmove(dst + wpos, dst + rpos, tile_size); rpos += tile_size; wpos += tile_size; } #endif // CONFIG_EXT_TILE assert(rpos > wpos); assert(rpos == data_size); return wpos; } } void vp10_pack_bitstream(VP10_COMP *const cpi, uint8_t *dst, size_t *size) { uint8_t *data = dst; uint32_t compressed_header_size; uint32_t uncompressed_header_size; uint32_t data_size; struct vpx_write_bit_buffer wb = {data, 0}; struct vpx_write_bit_buffer saved_wb; unsigned int max_tile_size; unsigned int max_tile_col_size; int tile_size_bytes; int tile_col_size_bytes; VP10_COMMON *const cm = &cpi->common; const int have_tiles = cm->tile_cols * cm->tile_rows > 1; // Write the uncompressed header write_uncompressed_header(cpi, &wb); // We do not know these in advance. Output placeholder bit. saved_wb = wb; // Write tile size magnitudes if (have_tiles) { // Note that the last item in the uncompressed header is the data // describing tile configuration. #if CONFIG_EXT_TILE // Number of bytes in tile column size - 1 vpx_wb_write_literal(&wb, 0, 2); #endif // CONFIG_EXT_TILE // Number of bytes in tile size - 1 vpx_wb_write_literal(&wb, 0, 2); } // Size of compressed header vpx_wb_write_literal(&wb, 0, 16); uncompressed_header_size = vpx_wb_bytes_written(&wb); data += uncompressed_header_size; vpx_clear_system_state(); // Write the compressed header compressed_header_size = write_compressed_header(cpi, data); data += compressed_header_size; // Write the encoded tile data data_size = write_tiles(cpi, data, &max_tile_size, &max_tile_col_size); if (have_tiles) { data_size = remux_tiles(cm, data, data_size, max_tile_size, max_tile_col_size, &tile_size_bytes, &tile_col_size_bytes); } data += data_size; // Now fill in the gaps in the uncompressed header. if (have_tiles) { #if CONFIG_EXT_TILE assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); vpx_wb_write_literal(&saved_wb, tile_col_size_bytes - 1, 2); #endif // CONFIG_EXT_TILE assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); vpx_wb_write_literal(&saved_wb, tile_size_bytes - 1, 2); } // TODO(jbb): Figure out what to do if compressed_header_size > 16 bits. assert(compressed_header_size <= 0xffff); vpx_wb_write_literal(&saved_wb, compressed_header_size, 16); *size = data - dst; }