/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "third_party/googletest/src/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_loopfilter.h" #include "vpx/vpx_integer.h" using libvpx_test::ACMRandom; namespace { // Horizontally and Vertically need 32x32: 8 Coeffs preceeding filtered section // 16 Coefs within filtered section // 8 Coeffs following filtered section const int kNumCoeffs = 1024; const int number_of_iterations = 10000; #if CONFIG_VP9_HIGHBITDEPTH typedef void (*loop_op_t)(uint16_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd); typedef void (*dual_loop_op_t)(uint16_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1, int bd); #else typedef void (*loop_op_t)(uint8_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count); typedef void (*dual_loop_op_t)(uint8_t *s, int p, const uint8_t *blimit0, const uint8_t *limit0, const uint8_t *thresh0, const uint8_t *blimit1, const uint8_t *limit1, const uint8_t *thresh1); #endif // CONFIG_VP9_HIGHBITDEPTH typedef std::tr1::tuple loop8_param_t; typedef std::tr1::tuple dualloop8_param_t; #if HAVE_SSE2 #if CONFIG_VP9_HIGHBITDEPTH void wrapper_vertical_16_sse2(uint16_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd) { vp9_highbd_lpf_vertical_16_sse2(s, p, blimit, limit, thresh, bd); } void wrapper_vertical_16_c(uint16_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd) { vp9_highbd_lpf_vertical_16_c(s, p, blimit, limit, thresh, bd); } void wrapper_vertical_16_dual_sse2(uint16_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd) { vp9_highbd_lpf_vertical_16_dual_sse2(s, p, blimit, limit, thresh, bd); } void wrapper_vertical_16_dual_c(uint16_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count, int bd) { vp9_highbd_lpf_vertical_16_dual_c(s, p, blimit, limit, thresh, bd); } #else void wrapper_vertical_16_sse2(uint8_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count) { vp9_lpf_vertical_16_sse2(s, p, blimit, limit, thresh); } void wrapper_vertical_16_c(uint8_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count) { vp9_lpf_vertical_16_c(s, p, blimit, limit, thresh); } void wrapper_vertical_16_dual_sse2(uint8_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count) { vp9_lpf_vertical_16_dual_sse2(s, p, blimit, limit, thresh); } void wrapper_vertical_16_dual_c(uint8_t *s, int p, const uint8_t *blimit, const uint8_t *limit, const uint8_t *thresh, int count) { vp9_lpf_vertical_16_dual_c(s, p, blimit, limit, thresh); } #endif // CONFIG_VP9_HIGHBITDEPTH #endif // HAVE_SSE2 class Loop8Test6Param : public ::testing::TestWithParam { public: virtual ~Loop8Test6Param() {} virtual void SetUp() { loopfilter_op_ = GET_PARAM(0); ref_loopfilter_op_ = GET_PARAM(1); bit_depth_ = GET_PARAM(2); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: int bit_depth_; int mask_; loop_op_t loopfilter_op_; loop_op_t ref_loopfilter_op_; }; class Loop8Test9Param : public ::testing::TestWithParam { public: virtual ~Loop8Test9Param() {} virtual void SetUp() { loopfilter_op_ = GET_PARAM(0); ref_loopfilter_op_ = GET_PARAM(1); bit_depth_ = GET_PARAM(2); mask_ = (1 << bit_depth_) - 1; } virtual void TearDown() { libvpx_test::ClearSystemState(); } protected: int bit_depth_; int mask_; dual_loop_op_t loopfilter_op_; dual_loop_op_t ref_loopfilter_op_; }; TEST_P(Loop8Test6Param, OperationCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = number_of_iterations; #if CONFIG_VP9_HIGHBITDEPTH int32_t bd = bit_depth_; DECLARE_ALIGNED_ARRAY(16, uint16_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, ref_s, kNumCoeffs); #else DECLARE_ALIGNED_ARRAY(8, uint8_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(8, uint8_t, ref_s, kNumCoeffs); #endif // CONFIG_VP9_HIGHBITDEPTH int err_count_total = 0; int first_failure = -1; for (int i = 0; i < count_test_block; ++i) { int err_count = 0; uint8_t tmp = static_cast(rnd(3 * MAX_LOOP_FILTER + 4)); DECLARE_ALIGNED(16, const uint8_t, blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(MAX_LOOP_FILTER)); DECLARE_ALIGNED(16, const uint8_t, limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = rnd.Rand8(); DECLARE_ALIGNED(16, const uint8_t, thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; int32_t p = kNumCoeffs/32; int count = 1; uint16_t tmp_s[kNumCoeffs]; int j = 0; while (j < kNumCoeffs) { uint8_t val = rnd.Rand8(); if (val & 0x80) { // 50% chance to choose a new value. tmp_s[j] = rnd.Rand16(); j++; } else { // 50% chance to repeat previous value in row X times int k = 0; while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) { if (j < 1) { tmp_s[j] = rnd.Rand16(); } else if (val & 0x20) { // Increment by an value within the limit tmp_s[j] = (tmp_s[j - 1] + (*limit - 1)); } else { // Decrement by an value within the limit tmp_s[j] = (tmp_s[j - 1] - (*limit - 1)); } j++; } } } for (j = 0; j < kNumCoeffs; j++) { if (i % 2) { s[j] = tmp_s[j] & mask_; } else { s[j] = tmp_s[p * (j % p) + j / p] & mask_; } ref_s[j] = s[j]; } #if CONFIG_VP9_HIGHBITDEPTH ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, count, bd); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count, bd)); #else ref_loopfilter_op_(ref_s+8+p*8, p, blimit, limit, thresh, count); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count)); #endif // CONFIG_VP9_HIGHBITDEPTH for (int j = 0; j < kNumCoeffs; ++j) { err_count += ref_s[j] != s[j]; } if (err_count && !err_count_total) { first_failure = i; } err_count_total += err_count; } EXPECT_EQ(0, err_count_total) << "Error: Loop8Test6Param, C output doesn't match SSE2 " "loopfilter output. " << "First failed at test case " << first_failure; } TEST_P(Loop8Test6Param, ValueCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = number_of_iterations; #if CONFIG_VP9_HIGHBITDEPTH const int32_t bd = bit_depth_; DECLARE_ALIGNED_ARRAY(16, uint16_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, ref_s, kNumCoeffs); #else DECLARE_ALIGNED_ARRAY(8, uint8_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(8, uint8_t, ref_s, kNumCoeffs); #endif // CONFIG_VP9_HIGHBITDEPTH int err_count_total = 0; int first_failure = -1; // NOTE: The code in vp9_loopfilter.c:update_sharpness computes mblim as a // function of sharpness_lvl and the loopfilter lvl as: // block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); // ... // vpx_memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), // SIMD_WIDTH); // This means that the largest value for mblim will occur when sharpness_lvl // is equal to 0, and lvl is equal to its greatest value (MAX_LOOP_FILTER). // In this case block_inside_limit will be equal to MAX_LOOP_FILTER and // therefore mblim will be equal to (2 * (lvl + 2) + block_inside_limit) = // 2 * (MAX_LOOP_FILTER + 2) + MAX_LOOP_FILTER = 3 * MAX_LOOP_FILTER + 4 for (int i = 0; i < count_test_block; ++i) { int err_count = 0; uint8_t tmp = static_cast(rnd(3 * MAX_LOOP_FILTER + 4)); DECLARE_ALIGNED(16, const uint8_t, blimit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(MAX_LOOP_FILTER)); DECLARE_ALIGNED(16, const uint8_t, limit[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = rnd.Rand8(); DECLARE_ALIGNED(16, const uint8_t, thresh[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; int32_t p = kNumCoeffs / 32; int count = 1; for (int j = 0; j < kNumCoeffs; ++j) { s[j] = rnd.Rand16() & mask_; ref_s[j] = s[j]; } #if CONFIG_VP9_HIGHBITDEPTH ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit, limit, thresh, count, bd); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count, bd)); #else ref_loopfilter_op_(ref_s+8+p*8, p, blimit, limit, thresh, count); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit, limit, thresh, count)); #endif // CONFIG_VP9_HIGHBITDEPTH for (int j = 0; j < kNumCoeffs; ++j) { err_count += ref_s[j] != s[j]; } if (err_count && !err_count_total) { first_failure = i; } err_count_total += err_count; } EXPECT_EQ(0, err_count_total) << "Error: Loop8Test6Param, C output doesn't match SSE2 " "loopfilter output. " << "First failed at test case " << first_failure; } TEST_P(Loop8Test9Param, OperationCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = number_of_iterations; #if CONFIG_VP9_HIGHBITDEPTH const int32_t bd = bit_depth_; DECLARE_ALIGNED_ARRAY(16, uint16_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, ref_s, kNumCoeffs); #else DECLARE_ALIGNED_ARRAY(8, uint8_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(8, uint8_t, ref_s, kNumCoeffs); #endif // CONFIG_VP9_HIGHBITDEPTH int err_count_total = 0; int first_failure = -1; for (int i = 0; i < count_test_block; ++i) { int err_count = 0; uint8_t tmp = static_cast(rnd(3 * MAX_LOOP_FILTER + 4)); DECLARE_ALIGNED(16, const uint8_t, blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(MAX_LOOP_FILTER)); DECLARE_ALIGNED(16, const uint8_t, limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = rnd.Rand8(); DECLARE_ALIGNED(16, const uint8_t, thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(3 * MAX_LOOP_FILTER + 4)); DECLARE_ALIGNED(16, const uint8_t, blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(MAX_LOOP_FILTER)); DECLARE_ALIGNED(16, const uint8_t, limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = rnd.Rand8(); DECLARE_ALIGNED(16, const uint8_t, thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; int32_t p = kNumCoeffs / 32; uint16_t tmp_s[kNumCoeffs]; int j = 0; const uint8_t limit = *limit0 < *limit1 ? *limit0 : *limit1; while (j < kNumCoeffs) { uint8_t val = rnd.Rand8(); if (val & 0x80) { // 50% chance to choose a new value. tmp_s[j] = rnd.Rand16(); j++; } else { // 50% chance to repeat previous value in row X times. int k = 0; while (k++ < ((val & 0x1f) + 1) && j < kNumCoeffs) { if (j < 1) { tmp_s[j] = rnd.Rand16(); } else if (val & 0x20) { // Increment by a value within the limit. tmp_s[j] = (tmp_s[j - 1] + (limit - 1)); } else { // Decrement by an value within the limit. tmp_s[j] = (tmp_s[j - 1] - (limit - 1)); } j++; } } } for (j = 0; j < kNumCoeffs; j++) { if (i % 2) { s[j] = tmp_s[j] & mask_; } else { s[j] = tmp_s[p * (j % p) + j / p] & mask_; } ref_s[j] = s[j]; } #if CONFIG_VP9_HIGHBITDEPTH ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1, bd); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1, bd)); #else ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1)); #endif // CONFIG_VP9_HIGHBITDEPTH for (int j = 0; j < kNumCoeffs; ++j) { err_count += ref_s[j] != s[j]; } if (err_count && !err_count_total) { first_failure = i; } err_count_total += err_count; } EXPECT_EQ(0, err_count_total) << "Error: Loop8Test9Param, C output doesn't match SSE2 " "loopfilter output. " << "First failed at test case " << first_failure; } TEST_P(Loop8Test9Param, ValueCheck) { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count_test_block = number_of_iterations; #if CONFIG_VP9_HIGHBITDEPTH DECLARE_ALIGNED_ARRAY(16, uint16_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(16, uint16_t, ref_s, kNumCoeffs); #else DECLARE_ALIGNED_ARRAY(8, uint8_t, s, kNumCoeffs); DECLARE_ALIGNED_ARRAY(8, uint8_t, ref_s, kNumCoeffs); #endif // CONFIG_VP9_HIGHBITDEPTH int err_count_total = 0; int first_failure = -1; for (int i = 0; i < count_test_block; ++i) { int err_count = 0; uint8_t tmp = static_cast(rnd(3 * MAX_LOOP_FILTER + 4)); DECLARE_ALIGNED(16, const uint8_t, blimit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(MAX_LOOP_FILTER)); DECLARE_ALIGNED(16, const uint8_t, limit0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = rnd.Rand8(); DECLARE_ALIGNED(16, const uint8_t, thresh0[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(3 * MAX_LOOP_FILTER + 4)); DECLARE_ALIGNED(16, const uint8_t, blimit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = static_cast(rnd(MAX_LOOP_FILTER)); DECLARE_ALIGNED(16, const uint8_t, limit1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; tmp = rnd.Rand8(); DECLARE_ALIGNED(16, const uint8_t, thresh1[16]) = { tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp, tmp }; int32_t p = kNumCoeffs / 32; // TODO(pdlf) can we have non-square here? for (int j = 0; j < kNumCoeffs; ++j) { s[j] = rnd.Rand16() & mask_; ref_s[j] = s[j]; } #if CONFIG_VP9_HIGHBITDEPTH const int32_t bd = bit_depth_; ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1, bd); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1, bd)); #else ref_loopfilter_op_(ref_s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1); ASM_REGISTER_STATE_CHECK( loopfilter_op_(s + 8 + p * 8, p, blimit0, limit0, thresh0, blimit1, limit1, thresh1)); #endif // CONFIG_VP9_HIGHBITDEPTH for (int j = 0; j < kNumCoeffs; ++j) { err_count += ref_s[j] != s[j]; } if (err_count && !err_count_total) { first_failure = i; } err_count_total += err_count; } EXPECT_EQ(0, err_count_total) << "Error: Loop8Test9Param, C output doesn't match SSE2" "loopfilter output. " << "First failed at test case " << first_failure; } using std::tr1::make_tuple; #if HAVE_SSE2 #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( SSE2, Loop8Test6Param, ::testing::Values( make_tuple(&vp9_highbd_lpf_horizontal_4_sse2, &vp9_highbd_lpf_horizontal_4_c, 8), make_tuple(&vp9_highbd_lpf_vertical_4_sse2, &vp9_highbd_lpf_vertical_4_c, 8), make_tuple(&vp9_highbd_lpf_horizontal_8_sse2, &vp9_highbd_lpf_horizontal_8_c, 8), make_tuple(&vp9_highbd_lpf_horizontal_16_sse2, &vp9_highbd_lpf_horizontal_16_c, 8), make_tuple(&vp9_highbd_lpf_vertical_8_sse2, &vp9_highbd_lpf_vertical_8_c, 8), make_tuple(&wrapper_vertical_16_sse2, &wrapper_vertical_16_c, 8), make_tuple(&vp9_highbd_lpf_horizontal_4_sse2, &vp9_highbd_lpf_horizontal_4_c, 10), make_tuple(&vp9_highbd_lpf_vertical_4_sse2, &vp9_highbd_lpf_vertical_4_c, 10), make_tuple(&vp9_highbd_lpf_horizontal_8_sse2, &vp9_highbd_lpf_horizontal_8_c, 10), make_tuple(&vp9_highbd_lpf_horizontal_16_sse2, &vp9_highbd_lpf_horizontal_16_c, 10), make_tuple(&vp9_highbd_lpf_vertical_8_sse2, &vp9_highbd_lpf_vertical_8_c, 10), make_tuple(&wrapper_vertical_16_sse2, &wrapper_vertical_16_c, 10), make_tuple(&vp9_highbd_lpf_horizontal_4_sse2, &vp9_highbd_lpf_horizontal_4_c, 12), make_tuple(&vp9_highbd_lpf_vertical_4_sse2, &vp9_highbd_lpf_vertical_4_c, 12), make_tuple(&vp9_highbd_lpf_horizontal_8_sse2, &vp9_highbd_lpf_horizontal_8_c, 12), make_tuple(&vp9_highbd_lpf_horizontal_16_sse2, &vp9_highbd_lpf_horizontal_16_c, 12), make_tuple(&vp9_highbd_lpf_vertical_8_sse2, &vp9_highbd_lpf_vertical_8_c, 12), make_tuple(&wrapper_vertical_16_sse2, &wrapper_vertical_16_c, 12), make_tuple(&wrapper_vertical_16_dual_sse2, &wrapper_vertical_16_dual_c, 8), make_tuple(&wrapper_vertical_16_dual_sse2, &wrapper_vertical_16_dual_c, 10), make_tuple(&wrapper_vertical_16_dual_sse2, &wrapper_vertical_16_dual_c, 12))); #else INSTANTIATE_TEST_CASE_P( SSE2, Loop8Test6Param, ::testing::Values( make_tuple(&vp9_lpf_horizontal_8_sse2, &vp9_lpf_horizontal_8_c, 8), make_tuple(&vp9_lpf_horizontal_16_sse2, &vp9_lpf_horizontal_16_c, 8), make_tuple(&vp9_lpf_vertical_8_sse2, &vp9_lpf_vertical_8_c, 8), make_tuple(&wrapper_vertical_16_sse2, &wrapper_vertical_16_c, 8))); #endif // CONFIG_VP9_HIGHBITDEPTH #endif #if HAVE_AVX2 && (!CONFIG_VP9_HIGHBITDEPTH) INSTANTIATE_TEST_CASE_P( AVX2, Loop8Test6Param, ::testing::Values( make_tuple(&vp9_lpf_horizontal_16_avx2, &vp9_lpf_horizontal_16_c, 8))); #endif #if HAVE_SSE2 #if CONFIG_VP9_HIGHBITDEPTH INSTANTIATE_TEST_CASE_P( SSE2, Loop8Test9Param, ::testing::Values( make_tuple(&vp9_highbd_lpf_horizontal_4_dual_sse2, &vp9_highbd_lpf_horizontal_4_dual_c, 8), make_tuple(&vp9_highbd_lpf_horizontal_8_dual_sse2, &vp9_highbd_lpf_horizontal_8_dual_c, 8), make_tuple(&vp9_highbd_lpf_vertical_4_dual_sse2, &vp9_highbd_lpf_vertical_4_dual_c, 8), make_tuple(&vp9_highbd_lpf_vertical_8_dual_sse2, &vp9_highbd_lpf_vertical_8_dual_c, 8), make_tuple(&vp9_highbd_lpf_horizontal_4_dual_sse2, &vp9_highbd_lpf_horizontal_4_dual_c, 10), make_tuple(&vp9_highbd_lpf_horizontal_8_dual_sse2, &vp9_highbd_lpf_horizontal_8_dual_c, 10), make_tuple(&vp9_highbd_lpf_vertical_4_dual_sse2, &vp9_highbd_lpf_vertical_4_dual_c, 10), make_tuple(&vp9_highbd_lpf_vertical_8_dual_sse2, &vp9_highbd_lpf_vertical_8_dual_c, 10), make_tuple(&vp9_highbd_lpf_horizontal_4_dual_sse2, &vp9_highbd_lpf_horizontal_4_dual_c, 12), make_tuple(&vp9_highbd_lpf_horizontal_8_dual_sse2, &vp9_highbd_lpf_horizontal_8_dual_c, 12), make_tuple(&vp9_highbd_lpf_vertical_4_dual_sse2, &vp9_highbd_lpf_vertical_4_dual_c, 12), make_tuple(&vp9_highbd_lpf_vertical_8_dual_sse2, &vp9_highbd_lpf_vertical_8_dual_c, 12))); #else INSTANTIATE_TEST_CASE_P( SSE2, Loop8Test9Param, ::testing::Values( make_tuple(&vp9_lpf_horizontal_4_dual_sse2, &vp9_lpf_horizontal_4_dual_c, 8), make_tuple(&vp9_lpf_horizontal_8_dual_sse2, &vp9_lpf_horizontal_8_dual_c, 8), make_tuple(&vp9_lpf_vertical_4_dual_sse2, &vp9_lpf_vertical_4_dual_c, 8), make_tuple(&vp9_lpf_vertical_8_dual_sse2, &vp9_lpf_vertical_8_dual_c, 8))); #endif // CONFIG_VP9_HIGHBITDEPTH #endif #if HAVE_NEON && (!CONFIG_VP9_HIGHBITDEPTH) INSTANTIATE_TEST_CASE_P( NEON, Loop8Test6Param, ::testing::Values( #if HAVE_NEON_ASM make_tuple(&vp9_lpf_horizontal_16_neon, &vp9_lpf_horizontal_16_c, 8), #endif // HAVE_NEON_ASM make_tuple(&vp9_lpf_horizontal_4_neon, &vp9_lpf_horizontal_4_c, 8), make_tuple(&vp9_lpf_horizontal_8_neon, &vp9_lpf_horizontal_8_c, 8), make_tuple(&vp9_lpf_vertical_4_neon, &vp9_lpf_vertical_4_c, 8), make_tuple(&vp9_lpf_vertical_8_neon, &vp9_lpf_vertical_8_c, 8))); INSTANTIATE_TEST_CASE_P( NEON, Loop8Test9Param, ::testing::Values( make_tuple(&vp9_lpf_horizontal_4_dual_neon, &vp9_lpf_horizontal_4_dual_c, 8), make_tuple(&vp9_lpf_horizontal_8_dual_neon, &vp9_lpf_horizontal_8_dual_c, 8), make_tuple(&vp9_lpf_vertical_4_dual_neon, &vp9_lpf_vertical_4_dual_c, 8), make_tuple(&vp9_lpf_vertical_8_dual_neon, &vp9_lpf_vertical_8_dual_c, 8))); #endif // HAVE_NEON && (!CONFIG_VP9_HIGHBITDEPTH) } // namespace