/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vp9_rtcd.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/common/vp9_blockd.h" #include "vp9/common/vp9_idct.h" #if CONFIG_EMULATE_HARDWARE // When CONFIG_EMULATE_HARDWARE is 1 the transform performs a // non-normative method to handle overflows. A stream that causes // overflows in the inverse transform is considered invalid in VP9, // and a hardware implementer is free to choose any reasonable // method to handle overflows. However to aid in hardware // verification they can use a specific implementation of the // WRAPLOW() macro below that is identical to their intended // hardware implementation (and also use configure options to trigger // the C-implementation of the transform). // // The particular WRAPLOW implementation below performs strict // overflow wrapping to match common hardware implementations. // bd of 8 uses trans_low with 16bits, need to remove 16bits // bd of 10 uses trans_low with 18bits, need to remove 14bits // bd of 12 uses trans_low with 20bits, need to remove 12bits // bd of x uses trans_low with 8+x bits, need to remove 24-x bits #define WRAPLOW(x, bd) ((((int32_t)(x)) << (24 - bd)) >> (24 - bd)) #else #define WRAPLOW(x, bd) ((int32_t)(x)) #endif // CONFIG_EMULATE_HARDWARE #if CONFIG_VP9_HIGHBITDEPTH static INLINE uint16_t highbd_clip_pixel_add(uint16_t dest, tran_high_t trans, int bd) { trans = WRAPLOW(trans, bd); return clip_pixel_highbd(WRAPLOW(dest + trans, bd), bd); } #endif // CONFIG_VP9_HIGHBITDEPTH static INLINE uint8_t clip_pixel_add(uint8_t dest, tran_high_t trans) { trans = WRAPLOW(trans, 8); return clip_pixel(WRAPLOW(dest + trans, 8)); } void vp9_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) { /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ int i; tran_low_t output[16]; tran_high_t a1, b1, c1, d1, e1; const tran_low_t *ip = input; tran_low_t *op = output; for (i = 0; i < 4; i++) { a1 = ip[0] >> UNIT_QUANT_SHIFT; c1 = ip[1] >> UNIT_QUANT_SHIFT; d1 = ip[2] >> UNIT_QUANT_SHIFT; b1 = ip[3] >> UNIT_QUANT_SHIFT; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; op[0] = WRAPLOW(a1, 8); op[1] = WRAPLOW(b1, 8); op[2] = WRAPLOW(c1, 8); op[3] = WRAPLOW(d1, 8); ip += 4; op += 4; } ip = output; for (i = 0; i < 4; i++) { a1 = ip[4 * 0]; c1 = ip[4 * 1]; d1 = ip[4 * 2]; b1 = ip[4 * 3]; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; dest[stride * 0] = clip_pixel_add(dest[stride * 0], a1); dest[stride * 1] = clip_pixel_add(dest[stride * 1], b1); dest[stride * 2] = clip_pixel_add(dest[stride * 2], c1); dest[stride * 3] = clip_pixel_add(dest[stride * 3], d1); ip++; dest++; } } void vp9_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest, int dest_stride) { int i; tran_high_t a1, e1; tran_low_t tmp[4]; const tran_low_t *ip = in; tran_low_t *op = tmp; a1 = ip[0] >> UNIT_QUANT_SHIFT; e1 = a1 >> 1; a1 -= e1; op[0] = WRAPLOW(a1, 8); op[1] = op[2] = op[3] = WRAPLOW(e1, 8); ip = tmp; for (i = 0; i < 4; i++) { e1 = ip[0] >> 1; a1 = ip[0] - e1; dest[dest_stride * 0] = clip_pixel_add(dest[dest_stride * 0], a1); dest[dest_stride * 1] = clip_pixel_add(dest[dest_stride * 1], e1); dest[dest_stride * 2] = clip_pixel_add(dest[dest_stride * 2], e1); dest[dest_stride * 3] = clip_pixel_add(dest[dest_stride * 3], e1); ip++; dest++; } } static void idct4(const tran_low_t *input, tran_low_t *output) { tran_low_t step[4]; tran_high_t temp1, temp2; // stage 1 temp1 = (input[0] + input[2]) * cospi_16_64; temp2 = (input[0] - input[2]) * cospi_16_64; step[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; step[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step[3] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 output[0] = WRAPLOW(step[0] + step[3], 8); output[1] = WRAPLOW(step[1] + step[2], 8); output[2] = WRAPLOW(step[1] - step[2], 8); output[3] = WRAPLOW(step[0] - step[3], 8); } void vp9_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[4 * 4]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[4], temp_out[4]; // Rows for (i = 0; i < 4; ++i) { idct4(input, outptr); input += 4; outptr += 4; } // Columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; idct4(temp_in, temp_out); for (j = 0; j < 4; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4)); } } } void vp9_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest, int dest_stride) { int i; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 4); for (i = 0; i < 4; i++) { dest[0] = clip_pixel_add(dest[0], a1); dest[1] = clip_pixel_add(dest[1], a1); dest[2] = clip_pixel_add(dest[2], a1); dest[3] = clip_pixel_add(dest[3], a1); dest += dest_stride; } } static void idct8(const tran_low_t *input, tran_low_t *output) { tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0]; step1[2] = input[4]; step1[1] = input[2]; step1[3] = input[6]; temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 & stage 3 - even half idct4(step1, step1); // stage 2 - odd half step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); // stage 3 -odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; // stage 4 output[0] = WRAPLOW(step1[0] + step1[7], 8); output[1] = WRAPLOW(step1[1] + step1[6], 8); output[2] = WRAPLOW(step1[2] + step1[5], 8); output[3] = WRAPLOW(step1[3] + step1[4], 8); output[4] = WRAPLOW(step1[3] - step1[4], 8); output[5] = WRAPLOW(step1[2] - step1[5], 8); output[6] = WRAPLOW(step1[1] - step1[6], 8); output[7] = WRAPLOW(step1[0] - step1[7], 8); } void vp9_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[8 * 8]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; // First transform rows for (i = 0; i < 8; ++i) { idct8(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5)); } } } void vp9_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 5); for (j = 0; j < 8; ++j) { for (i = 0; i < 8; ++i) dest[i] = clip_pixel_add(dest[i], a1); dest += stride; } } static void iadst4(const tran_low_t *input, tran_low_t *output) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; tran_low_t x0 = input[0]; tran_low_t x1 = input[1]; tran_low_t x2 = input[2]; tran_low_t x3 = input[3]; if (!(x0 | x1 | x2 | x3)) { output[0] = output[1] = output[2] = output[3] = 0; return; } s0 = sinpi_1_9 * x0; s1 = sinpi_2_9 * x0; s2 = sinpi_3_9 * x1; s3 = sinpi_4_9 * x2; s4 = sinpi_1_9 * x2; s5 = sinpi_2_9 * x3; s6 = sinpi_4_9 * x3; s7 = x0 - x2 + x3; s0 = s0 + s3 + s5; s1 = s1 - s4 - s6; s3 = s2; s2 = sinpi_3_9 * s7; // 1-D transform scaling factor is sqrt(2). // The overall dynamic range is 14b (input) + 14b (multiplication scaling) // + 1b (addition) = 29b. // Hence the output bit depth is 15b. output[0] = WRAPLOW(dct_const_round_shift(s0 + s3), 8); output[1] = WRAPLOW(dct_const_round_shift(s1 + s3), 8); output[2] = WRAPLOW(dct_const_round_shift(s2), 8); output[3] = WRAPLOW(dct_const_round_shift(s0 + s1 - s3), 8); } void vp9_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { const transform_2d IHT_4[] = { { idct4, idct4 }, // DCT_DCT = 0 { iadst4, idct4 }, // ADST_DCT = 1 { idct4, iadst4 }, // DCT_ADST = 2 { iadst4, iadst4 } // ADST_ADST = 3 }; int i, j; tran_low_t out[4 * 4]; tran_low_t *outptr = out; tran_low_t temp_in[4], temp_out[4]; // inverse transform row vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, outptr); input += 4; outptr += 4; } // inverse transform column vectors for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; IHT_4[tx_type].cols(temp_in, temp_out); for (j = 0; j < 4; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4)); } } } static void iadst8(const tran_low_t *input, tran_low_t *output) { int s0, s1, s2, s3, s4, s5, s6, s7; tran_high_t x0 = input[7]; tran_high_t x1 = input[0]; tran_high_t x2 = input[5]; tran_high_t x3 = input[2]; tran_high_t x4 = input[3]; tran_high_t x5 = input[4]; tran_high_t x6 = input[1]; tran_high_t x7 = input[6]; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = output[6] = output[7] = 0; return; } // stage 1 s0 = (int)(cospi_2_64 * x0 + cospi_30_64 * x1); s1 = (int)(cospi_30_64 * x0 - cospi_2_64 * x1); s2 = (int)(cospi_10_64 * x2 + cospi_22_64 * x3); s3 = (int)(cospi_22_64 * x2 - cospi_10_64 * x3); s4 = (int)(cospi_18_64 * x4 + cospi_14_64 * x5); s5 = (int)(cospi_14_64 * x4 - cospi_18_64 * x5); s6 = (int)(cospi_26_64 * x6 + cospi_6_64 * x7); s7 = (int)(cospi_6_64 * x6 - cospi_26_64 * x7); x0 = WRAPLOW(dct_const_round_shift(s0 + s4), 8); x1 = WRAPLOW(dct_const_round_shift(s1 + s5), 8); x2 = WRAPLOW(dct_const_round_shift(s2 + s6), 8); x3 = WRAPLOW(dct_const_round_shift(s3 + s7), 8); x4 = WRAPLOW(dct_const_round_shift(s0 - s4), 8); x5 = WRAPLOW(dct_const_round_shift(s1 - s5), 8); x6 = WRAPLOW(dct_const_round_shift(s2 - s6), 8); x7 = WRAPLOW(dct_const_round_shift(s3 - s7), 8); // stage 2 s0 = (int)x0; s1 = (int)x1; s2 = (int)x2; s3 = (int)x3; s4 = (int)(cospi_8_64 * x4 + cospi_24_64 * x5); s5 = (int)(cospi_24_64 * x4 - cospi_8_64 * x5); s6 = (int)(-cospi_24_64 * x6 + cospi_8_64 * x7); s7 = (int)(cospi_8_64 * x6 + cospi_24_64 * x7); x0 = WRAPLOW(s0 + s2, 8); x1 = WRAPLOW(s1 + s3, 8); x2 = WRAPLOW(s0 - s2, 8); x3 = WRAPLOW(s1 - s3, 8); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), 8); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), 8); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), 8); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), 8); // stage 3 s2 = (int)(cospi_16_64 * (x2 + x3)); s3 = (int)(cospi_16_64 * (x2 - x3)); s6 = (int)(cospi_16_64 * (x6 + x7)); s7 = (int)(cospi_16_64 * (x6 - x7)); x2 = WRAPLOW(dct_const_round_shift(s2), 8); x3 = WRAPLOW(dct_const_round_shift(s3), 8); x6 = WRAPLOW(dct_const_round_shift(s6), 8); x7 = WRAPLOW(dct_const_round_shift(s7), 8); output[0] = WRAPLOW(x0, 8); output[1] = WRAPLOW(-x4, 8); output[2] = WRAPLOW(x6, 8); output[3] = WRAPLOW(-x2, 8); output[4] = WRAPLOW(x3, 8); output[5] = WRAPLOW(-x7, 8); output[6] = WRAPLOW(x5, 8); output[7] = WRAPLOW(-x1, 8); } static const transform_2d IHT_8[] = { { idct8, idct8 }, // DCT_DCT = 0 { iadst8, idct8 }, // ADST_DCT = 1 { idct8, iadst8 }, // DCT_ADST = 2 { iadst8, iadst8 } // ADST_ADST = 3 }; void vp9_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { int i, j; tran_low_t out[8 * 8]; tran_low_t *outptr = out; tran_low_t temp_in[8], temp_out[8]; const transform_2d ht = IHT_8[tx_type]; // inverse transform row vectors for (i = 0; i < 8; ++i) { ht.rows(input, outptr); input += 8; outptr += 8; } // inverse transform column vectors for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; ht.cols(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5)); } } } void vp9_idct8x8_12_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[8 * 8] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; // First transform rows // only first 4 row has non-zero coefs for (i = 0; i < 4; ++i) { idct8(input, outptr); input += 8; outptr += 8; } // Then transform columns for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; idct8(temp_in, temp_out); for (j = 0; j < 8; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5)); } } } static void idct16(const tran_low_t *input, tran_low_t *output) { tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0/2]; step1[1] = input[16/2]; step1[2] = input[8/2]; step1[3] = input[24/2]; step1[4] = input[4/2]; step1[5] = input[20/2]; step1[6] = input[12/2]; step1[7] = input[28/2]; step1[8] = input[2/2]; step1[9] = input[18/2]; step1[10] = input[10/2]; step1[11] = input[26/2]; step1[12] = input[6/2]; step1[13] = input[22/2]; step1[14] = input[14/2]; step1[15] = input[30/2]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[8] = WRAPLOW(step2[8] + step2[9], 8); step1[9] = WRAPLOW(step2[8] - step2[9], 8); step1[10] = WRAPLOW(-step2[10] + step2[11], 8); step1[11] = WRAPLOW(step2[10] + step2[11], 8); step1[12] = WRAPLOW(step2[12] + step2[13], 8); step1[13] = WRAPLOW(step2[12] - step2[13], 8); step1[14] = WRAPLOW(-step2[14] + step2[15], 8); step1[15] = WRAPLOW(step2[14] + step2[15], 8); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], 8); step1[1] = WRAPLOW(step2[1] + step2[2], 8); step1[2] = WRAPLOW(step2[1] - step2[2], 8); step1[3] = WRAPLOW(step2[0] - step2[3], 8); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], 8); step1[9] = WRAPLOW(step2[9] + step2[10], 8); step1[10] = WRAPLOW(step2[9] - step2[10], 8); step1[11] = WRAPLOW(step2[8] - step2[11], 8); step1[12] = WRAPLOW(-step2[12] + step2[15], 8); step1[13] = WRAPLOW(-step2[13] + step2[14], 8); step1[14] = WRAPLOW(step2[13] + step2[14], 8); step1[15] = WRAPLOW(step2[12] + step2[15], 8); // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], 8); step2[1] = WRAPLOW(step1[1] + step1[6], 8); step2[2] = WRAPLOW(step1[2] + step1[5], 8); step2[3] = WRAPLOW(step1[3] + step1[4], 8); step2[4] = WRAPLOW(step1[3] - step1[4], 8); step2[5] = WRAPLOW(step1[2] - step1[5], 8); step2[6] = WRAPLOW(step1[1] - step1[6], 8); step2[7] = WRAPLOW(step1[0] - step1[7], 8); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = WRAPLOW(step2[0] + step2[15], 8); output[1] = WRAPLOW(step2[1] + step2[14], 8); output[2] = WRAPLOW(step2[2] + step2[13], 8); output[3] = WRAPLOW(step2[3] + step2[12], 8); output[4] = WRAPLOW(step2[4] + step2[11], 8); output[5] = WRAPLOW(step2[5] + step2[10], 8); output[6] = WRAPLOW(step2[6] + step2[9], 8); output[7] = WRAPLOW(step2[7] + step2[8], 8); output[8] = WRAPLOW(step2[7] - step2[8], 8); output[9] = WRAPLOW(step2[6] - step2[9], 8); output[10] = WRAPLOW(step2[5] - step2[10], 8); output[11] = WRAPLOW(step2[4] - step2[11], 8); output[12] = WRAPLOW(step2[3] - step2[12], 8); output[13] = WRAPLOW(step2[2] - step2[13], 8); output[14] = WRAPLOW(step2[1] - step2[14], 8); output[15] = WRAPLOW(step2[0] - step2[15], 8); } void vp9_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[16 * 16]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows for (i = 0; i < 16; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } static void iadst16(const tran_low_t *input, tran_low_t *output) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; tran_high_t s9, s10, s11, s12, s13, s14, s15; tran_high_t x0 = input[15]; tran_high_t x1 = input[0]; tran_high_t x2 = input[13]; tran_high_t x3 = input[2]; tran_high_t x4 = input[11]; tran_high_t x5 = input[4]; tran_high_t x6 = input[9]; tran_high_t x7 = input[6]; tran_high_t x8 = input[7]; tran_high_t x9 = input[8]; tran_high_t x10 = input[5]; tran_high_t x11 = input[10]; tran_high_t x12 = input[3]; tran_high_t x13 = input[12]; tran_high_t x14 = input[1]; tran_high_t x15 = input[14]; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15)) { output[0] = output[1] = output[2] = output[3] = output[4] = output[5] = output[6] = output[7] = output[8] = output[9] = output[10] = output[11] = output[12] = output[13] = output[14] = output[15] = 0; return; } // stage 1 s0 = x0 * cospi_1_64 + x1 * cospi_31_64; s1 = x0 * cospi_31_64 - x1 * cospi_1_64; s2 = x2 * cospi_5_64 + x3 * cospi_27_64; s3 = x2 * cospi_27_64 - x3 * cospi_5_64; s4 = x4 * cospi_9_64 + x5 * cospi_23_64; s5 = x4 * cospi_23_64 - x5 * cospi_9_64; s6 = x6 * cospi_13_64 + x7 * cospi_19_64; s7 = x6 * cospi_19_64 - x7 * cospi_13_64; s8 = x8 * cospi_17_64 + x9 * cospi_15_64; s9 = x8 * cospi_15_64 - x9 * cospi_17_64; s10 = x10 * cospi_21_64 + x11 * cospi_11_64; s11 = x10 * cospi_11_64 - x11 * cospi_21_64; s12 = x12 * cospi_25_64 + x13 * cospi_7_64; s13 = x12 * cospi_7_64 - x13 * cospi_25_64; s14 = x14 * cospi_29_64 + x15 * cospi_3_64; s15 = x14 * cospi_3_64 - x15 * cospi_29_64; x0 = WRAPLOW(dct_const_round_shift(s0 + s8), 8); x1 = WRAPLOW(dct_const_round_shift(s1 + s9), 8); x2 = WRAPLOW(dct_const_round_shift(s2 + s10), 8); x3 = WRAPLOW(dct_const_round_shift(s3 + s11), 8); x4 = WRAPLOW(dct_const_round_shift(s4 + s12), 8); x5 = WRAPLOW(dct_const_round_shift(s5 + s13), 8); x6 = WRAPLOW(dct_const_round_shift(s6 + s14), 8); x7 = WRAPLOW(dct_const_round_shift(s7 + s15), 8); x8 = WRAPLOW(dct_const_round_shift(s0 - s8), 8); x9 = WRAPLOW(dct_const_round_shift(s1 - s9), 8); x10 = WRAPLOW(dct_const_round_shift(s2 - s10), 8); x11 = WRAPLOW(dct_const_round_shift(s3 - s11), 8); x12 = WRAPLOW(dct_const_round_shift(s4 - s12), 8); x13 = WRAPLOW(dct_const_round_shift(s5 - s13), 8); x14 = WRAPLOW(dct_const_round_shift(s6 - s14), 8); x15 = WRAPLOW(dct_const_round_shift(s7 - s15), 8); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4; s5 = x5; s6 = x6; s7 = x7; s8 = x8 * cospi_4_64 + x9 * cospi_28_64; s9 = x8 * cospi_28_64 - x9 * cospi_4_64; s10 = x10 * cospi_20_64 + x11 * cospi_12_64; s11 = x10 * cospi_12_64 - x11 * cospi_20_64; s12 = - x12 * cospi_28_64 + x13 * cospi_4_64; s13 = x12 * cospi_4_64 + x13 * cospi_28_64; s14 = - x14 * cospi_12_64 + x15 * cospi_20_64; s15 = x14 * cospi_20_64 + x15 * cospi_12_64; x0 = WRAPLOW(s0 + s4, 8); x1 = WRAPLOW(s1 + s5, 8); x2 = WRAPLOW(s2 + s6, 8); x3 = WRAPLOW(s3 + s7, 8); x4 = WRAPLOW(s0 - s4, 8); x5 = WRAPLOW(s1 - s5, 8); x6 = WRAPLOW(s2 - s6, 8); x7 = WRAPLOW(s3 - s7, 8); x8 = WRAPLOW(dct_const_round_shift(s8 + s12), 8); x9 = WRAPLOW(dct_const_round_shift(s9 + s13), 8); x10 = WRAPLOW(dct_const_round_shift(s10 + s14), 8); x11 = WRAPLOW(dct_const_round_shift(s11 + s15), 8); x12 = WRAPLOW(dct_const_round_shift(s8 - s12), 8); x13 = WRAPLOW(dct_const_round_shift(s9 - s13), 8); x14 = WRAPLOW(dct_const_round_shift(s10 - s14), 8); x15 = WRAPLOW(dct_const_round_shift(s11 - s15), 8); // stage 3 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4 * cospi_8_64 + x5 * cospi_24_64; s5 = x4 * cospi_24_64 - x5 * cospi_8_64; s6 = - x6 * cospi_24_64 + x7 * cospi_8_64; s7 = x6 * cospi_8_64 + x7 * cospi_24_64; s8 = x8; s9 = x9; s10 = x10; s11 = x11; s12 = x12 * cospi_8_64 + x13 * cospi_24_64; s13 = x12 * cospi_24_64 - x13 * cospi_8_64; s14 = - x14 * cospi_24_64 + x15 * cospi_8_64; s15 = x14 * cospi_8_64 + x15 * cospi_24_64; x0 = WRAPLOW(check_range(s0 + s2), 8); x1 = WRAPLOW(check_range(s1 + s3), 8); x2 = WRAPLOW(check_range(s0 - s2), 8); x3 = WRAPLOW(check_range(s1 - s3), 8); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), 8); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), 8); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), 8); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), 8); x8 = WRAPLOW(check_range(s8 + s10), 8); x9 = WRAPLOW(check_range(s9 + s11), 8); x10 = WRAPLOW(check_range(s8 - s10), 8); x11 = WRAPLOW(check_range(s9 - s11), 8); x12 = WRAPLOW(dct_const_round_shift(s12 + s14), 8); x13 = WRAPLOW(dct_const_round_shift(s13 + s15), 8); x14 = WRAPLOW(dct_const_round_shift(s12 - s14), 8); x15 = WRAPLOW(dct_const_round_shift(s13 - s15), 8); // stage 4 s2 = (- cospi_16_64) * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (- x6 + x7); s10 = cospi_16_64 * (x10 + x11); s11 = cospi_16_64 * (- x10 + x11); s14 = (- cospi_16_64) * (x14 + x15); s15 = cospi_16_64 * (x14 - x15); x2 = WRAPLOW(dct_const_round_shift(s2), 8); x3 = WRAPLOW(dct_const_round_shift(s3), 8); x6 = WRAPLOW(dct_const_round_shift(s6), 8); x7 = WRAPLOW(dct_const_round_shift(s7), 8); x10 = WRAPLOW(dct_const_round_shift(s10), 8); x11 = WRAPLOW(dct_const_round_shift(s11), 8); x14 = WRAPLOW(dct_const_round_shift(s14), 8); x15 = WRAPLOW(dct_const_round_shift(s15), 8); output[0] = WRAPLOW(x0, 8); output[1] = WRAPLOW(-x8, 8); output[2] = WRAPLOW(x12, 8); output[3] = WRAPLOW(-x4, 8); output[4] = WRAPLOW(x6, 8); output[5] = WRAPLOW(x14, 8); output[6] = WRAPLOW(x10, 8); output[7] = WRAPLOW(x2, 8); output[8] = WRAPLOW(x3, 8); output[9] = WRAPLOW(x11, 8); output[10] = WRAPLOW(x15, 8); output[11] = WRAPLOW(x7, 8); output[12] = WRAPLOW(x5, 8); output[13] = WRAPLOW(-x13, 8); output[14] = WRAPLOW(x9, 8); output[15] = WRAPLOW(-x1, 8); } static const transform_2d IHT_16[] = { { idct16, idct16 }, // DCT_DCT = 0 { iadst16, idct16 }, // ADST_DCT = 1 { idct16, iadst16 }, // DCT_ADST = 2 { iadst16, iadst16 } // ADST_ADST = 3 }; void vp9_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { int i, j; tran_low_t out[16 * 16]; tran_low_t *outptr = out; tran_low_t temp_in[16], temp_out[16]; const transform_2d ht = IHT_16[tx_type]; // Rows for (i = 0; i < 16; ++i) { ht.rows(input, outptr); input += 16; outptr += 16; } // Columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; ht.cols(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } void vp9_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[16 * 16] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; // First transform rows. Since all non-zero dct coefficients are in // upper-left 4x4 area, we only need to calculate first 4 rows here. for (i = 0; i < 4; ++i) { idct16(input, outptr); input += 16; outptr += 16; } // Then transform columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; idct16(temp_in, temp_out); for (j = 0; j < 16; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } void vp9_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 16; ++j) { for (i = 0; i < 16; ++i) dest[i] = clip_pixel_add(dest[i], a1); dest += stride; } } static void idct32(const tran_low_t *input, tran_low_t *output) { tran_low_t step1[32], step2[32]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0]; step1[1] = input[16]; step1[2] = input[8]; step1[3] = input[24]; step1[4] = input[4]; step1[5] = input[20]; step1[6] = input[12]; step1[7] = input[28]; step1[8] = input[2]; step1[9] = input[18]; step1[10] = input[10]; step1[11] = input[26]; step1[12] = input[6]; step1[13] = input[22]; step1[14] = input[14]; step1[15] = input[30]; temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64; temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64; step1[16] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[31] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64; temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[30] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64; temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64; temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[28] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64; temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64; temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64; temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64; temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[24] = WRAPLOW(dct_const_round_shift(temp2), 8); // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[16] = WRAPLOW(step1[16] + step1[17], 8); step2[17] = WRAPLOW(step1[16] - step1[17], 8); step2[18] = WRAPLOW(-step1[18] + step1[19], 8); step2[19] = WRAPLOW(step1[18] + step1[19], 8); step2[20] = WRAPLOW(step1[20] + step1[21], 8); step2[21] = WRAPLOW(step1[20] - step1[21], 8); step2[22] = WRAPLOW(-step1[22] + step1[23], 8); step2[23] = WRAPLOW(step1[22] + step1[23], 8); step2[24] = WRAPLOW(step1[24] + step1[25], 8); step2[25] = WRAPLOW(step1[24] - step1[25], 8); step2[26] = WRAPLOW(-step1[26] + step1[27], 8); step2[27] = WRAPLOW(step1[26] + step1[27], 8); step2[28] = WRAPLOW(step1[28] + step1[29], 8); step2[29] = WRAPLOW(step1[28] - step1[29], 8); step2[30] = WRAPLOW(-step1[30] + step1[31], 8); step2[31] = WRAPLOW(step1[30] + step1[31], 8); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[8] = WRAPLOW(step2[8] + step2[9], 8); step1[9] = WRAPLOW(step2[8] - step2[9], 8); step1[10] = WRAPLOW(-step2[10] + step2[11], 8); step1[11] = WRAPLOW(step2[10] + step2[11], 8); step1[12] = WRAPLOW(step2[12] + step2[13], 8); step1[13] = WRAPLOW(step2[12] - step2[13], 8); step1[14] = WRAPLOW(-step2[14] + step2[15], 8); step1[15] = WRAPLOW(step2[14] + step2[15], 8); step1[16] = step2[16]; step1[31] = step2[31]; temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64; temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[30] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64; temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[19] = step2[19]; step1[20] = step2[20]; temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64; temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64; temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[23] = step2[23]; step1[24] = step2[24]; step1[27] = step2[27]; step1[28] = step2[28]; // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[4] = WRAPLOW(step1[4] + step1[5], 8); step2[5] = WRAPLOW(step1[4] - step1[5], 8); step2[6] = WRAPLOW(-step1[6] + step1[7], 8); step2[7] = WRAPLOW(step1[6] + step1[7], 8); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[11] = step1[11]; step2[12] = step1[12]; step2[16] = WRAPLOW(step1[16] + step1[19], 8); step2[17] = WRAPLOW(step1[17] + step1[18], 8); step2[18] = WRAPLOW(step1[17] - step1[18], 8); step2[19] = WRAPLOW(step1[16] - step1[19], 8); step2[20] = WRAPLOW(-step1[20] + step1[23], 8); step2[21] = WRAPLOW(-step1[21] + step1[22], 8); step2[22] = WRAPLOW(step1[21] + step1[22], 8); step2[23] = WRAPLOW(step1[20] + step1[23], 8); step2[24] = WRAPLOW(step1[24] + step1[27], 8); step2[25] = WRAPLOW(step1[25] + step1[26], 8); step2[26] = WRAPLOW(step1[25] - step1[26], 8); step2[27] = WRAPLOW(step1[24] - step1[27], 8); step2[28] = WRAPLOW(-step1[28] + step1[31], 8); step2[29] = WRAPLOW(-step1[29] + step1[30], 8); step2[30] = WRAPLOW(step1[29] + step1[30], 8); step2[31] = WRAPLOW(step1[28] + step1[31], 8); // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], 8); step1[1] = WRAPLOW(step2[1] + step2[2], 8); step1[2] = WRAPLOW(step2[1] - step2[2], 8); step1[3] = WRAPLOW(step2[0] - step2[3], 8); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], 8); step1[9] = WRAPLOW(step2[9] + step2[10], 8); step1[10] = WRAPLOW(step2[9] - step2[10], 8); step1[11] = WRAPLOW(step2[8] - step2[11], 8); step1[12] = WRAPLOW(-step2[12] + step2[15], 8); step1[13] = WRAPLOW(-step2[13] + step2[14], 8); step1[14] = WRAPLOW(step2[13] + step2[14], 8); step1[15] = WRAPLOW(step2[12] + step2[15], 8); step1[16] = step2[16]; step1[17] = step2[17]; temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64; temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64; temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[28] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64; temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64; temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[22] = step2[22]; step1[23] = step2[23]; step1[24] = step2[24]; step1[25] = step2[25]; step1[30] = step2[30]; step1[31] = step2[31]; // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], 8); step2[1] = WRAPLOW(step1[1] + step1[6], 8); step2[2] = WRAPLOW(step1[2] + step1[5], 8); step2[3] = WRAPLOW(step1[3] + step1[4], 8); step2[4] = WRAPLOW(step1[3] - step1[4], 8); step2[5] = WRAPLOW(step1[2] - step1[5], 8); step2[6] = WRAPLOW(step1[1] - step1[6], 8); step2[7] = WRAPLOW(step1[0] - step1[7], 8); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8); step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8); step2[14] = step1[14]; step2[15] = step1[15]; step2[16] = WRAPLOW(step1[16] + step1[23], 8); step2[17] = WRAPLOW(step1[17] + step1[22], 8); step2[18] = WRAPLOW(step1[18] + step1[21], 8); step2[19] = WRAPLOW(step1[19] + step1[20], 8); step2[20] = WRAPLOW(step1[19] - step1[20], 8); step2[21] = WRAPLOW(step1[18] - step1[21], 8); step2[22] = WRAPLOW(step1[17] - step1[22], 8); step2[23] = WRAPLOW(step1[16] - step1[23], 8); step2[24] = WRAPLOW(-step1[24] + step1[31], 8); step2[25] = WRAPLOW(-step1[25] + step1[30], 8); step2[26] = WRAPLOW(-step1[26] + step1[29], 8); step2[27] = WRAPLOW(-step1[27] + step1[28], 8); step2[28] = WRAPLOW(step1[27] + step1[28], 8); step2[29] = WRAPLOW(step1[26] + step1[29], 8); step2[30] = WRAPLOW(step1[25] + step1[30], 8); step2[31] = WRAPLOW(step1[24] + step1[31], 8); // stage 7 step1[0] = WRAPLOW(step2[0] + step2[15], 8); step1[1] = WRAPLOW(step2[1] + step2[14], 8); step1[2] = WRAPLOW(step2[2] + step2[13], 8); step1[3] = WRAPLOW(step2[3] + step2[12], 8); step1[4] = WRAPLOW(step2[4] + step2[11], 8); step1[5] = WRAPLOW(step2[5] + step2[10], 8); step1[6] = WRAPLOW(step2[6] + step2[9], 8); step1[7] = WRAPLOW(step2[7] + step2[8], 8); step1[8] = WRAPLOW(step2[7] - step2[8], 8); step1[9] = WRAPLOW(step2[6] - step2[9], 8); step1[10] = WRAPLOW(step2[5] - step2[10], 8); step1[11] = WRAPLOW(step2[4] - step2[11], 8); step1[12] = WRAPLOW(step2[3] - step2[12], 8); step1[13] = WRAPLOW(step2[2] - step2[13], 8); step1[14] = WRAPLOW(step2[1] - step2[14], 8); step1[15] = WRAPLOW(step2[0] - step2[15], 8); step1[16] = step2[16]; step1[17] = step2[17]; step1[18] = step2[18]; step1[19] = step2[19]; temp1 = (-step2[20] + step2[27]) * cospi_16_64; temp2 = (step2[20] + step2[27]) * cospi_16_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step2[21] + step2[26]) * cospi_16_64; temp2 = (step2[21] + step2[26]) * cospi_16_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step2[22] + step2[25]) * cospi_16_64; temp2 = (step2[22] + step2[25]) * cospi_16_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8); temp1 = (-step2[23] + step2[24]) * cospi_16_64; temp2 = (step2[23] + step2[24]) * cospi_16_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), 8); step1[24] = WRAPLOW(dct_const_round_shift(temp2), 8); step1[28] = step2[28]; step1[29] = step2[29]; step1[30] = step2[30]; step1[31] = step2[31]; // final stage output[0] = WRAPLOW(step1[0] + step1[31], 8); output[1] = WRAPLOW(step1[1] + step1[30], 8); output[2] = WRAPLOW(step1[2] + step1[29], 8); output[3] = WRAPLOW(step1[3] + step1[28], 8); output[4] = WRAPLOW(step1[4] + step1[27], 8); output[5] = WRAPLOW(step1[5] + step1[26], 8); output[6] = WRAPLOW(step1[6] + step1[25], 8); output[7] = WRAPLOW(step1[7] + step1[24], 8); output[8] = WRAPLOW(step1[8] + step1[23], 8); output[9] = WRAPLOW(step1[9] + step1[22], 8); output[10] = WRAPLOW(step1[10] + step1[21], 8); output[11] = WRAPLOW(step1[11] + step1[20], 8); output[12] = WRAPLOW(step1[12] + step1[19], 8); output[13] = WRAPLOW(step1[13] + step1[18], 8); output[14] = WRAPLOW(step1[14] + step1[17], 8); output[15] = WRAPLOW(step1[15] + step1[16], 8); output[16] = WRAPLOW(step1[15] - step1[16], 8); output[17] = WRAPLOW(step1[14] - step1[17], 8); output[18] = WRAPLOW(step1[13] - step1[18], 8); output[19] = WRAPLOW(step1[12] - step1[19], 8); output[20] = WRAPLOW(step1[11] - step1[20], 8); output[21] = WRAPLOW(step1[10] - step1[21], 8); output[22] = WRAPLOW(step1[9] - step1[22], 8); output[23] = WRAPLOW(step1[8] - step1[23], 8); output[24] = WRAPLOW(step1[7] - step1[24], 8); output[25] = WRAPLOW(step1[6] - step1[25], 8); output[26] = WRAPLOW(step1[5] - step1[26], 8); output[27] = WRAPLOW(step1[4] - step1[27], 8); output[28] = WRAPLOW(step1[3] - step1[28], 8); output[29] = WRAPLOW(step1[2] - step1[29], 8); output[30] = WRAPLOW(step1[1] - step1[30], 8); output[31] = WRAPLOW(step1[0] - step1[31], 8); } void vp9_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[32 * 32]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows for (i = 0; i < 32; ++i) { int16_t zero_coeff[16]; for (j = 0; j < 16; ++j) zero_coeff[j] = input[2 * j] | input[2 * j + 1]; for (j = 0; j < 8; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 4; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 2; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; if (zero_coeff[0] | zero_coeff[1]) idct32(input, outptr); else vpx_memset(outptr, 0, sizeof(tran_low_t) * 32); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } void vp9_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest, int stride) { tran_low_t out[32 * 32] = {0}; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; // Rows // only upper-left 8x8 has non-zero coeff for (i = 0; i < 8; ++i) { idct32(input, outptr); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; idct32(temp_in, temp_out); for (j = 0; j < 32; ++j) { dest[j * stride + i] = clip_pixel_add(dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6)); } } } void vp9_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 32; ++j) { for (i = 0; i < 32; ++i) dest[i] = clip_pixel_add(dest[i], a1); dest += stride; } } // idct void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vp9_idct4x4_16_add(input, dest, stride); else vp9_idct4x4_1_add(input, dest, stride); } void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vp9_iwht4x4_16_add(input, dest, stride); else vp9_iwht4x4_1_add(input, dest, stride); } void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c. // Combine that with code here. if (eob == 1) // DC only DCT coefficient vp9_idct8x8_1_add(input, dest, stride); else if (eob <= 12) vp9_idct8x8_12_add(input, dest, stride); else vp9_idct8x8_64_add(input, dest, stride); } void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob == 1) /* DC only DCT coefficient. */ vp9_idct16x16_1_add(input, dest, stride); else if (eob <= 10) vp9_idct16x16_10_add(input, dest, stride); else vp9_idct16x16_256_add(input, dest, stride); } void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob == 1) vp9_idct32x32_1_add(input, dest, stride); else if (eob <= 34) // non-zero coeff only in upper-left 8x8 vp9_idct32x32_34_add(input, dest, stride); else vp9_idct32x32_1024_add(input, dest, stride); } // iht void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) vp9_idct4x4_add(input, dest, stride, eob); else vp9_iht4x4_16_add(input, dest, stride, tx_type); } void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct8x8_add(input, dest, stride, eob); } else { vp9_iht8x8_64_add(input, dest, stride, tx_type); } } void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (tx_type == DCT_DCT) { vp9_idct16x16_add(input, dest, stride, eob); } else { vp9_iht16x16_256_add(input, dest, stride, tx_type); } } #if CONFIG_VP9_HIGHBITDEPTH void vp9_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds, 0.5 shifts per pixel. */ int i; tran_low_t output[16]; tran_high_t a1, b1, c1, d1, e1; const tran_low_t *ip = input; tran_low_t *op = output; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); for (i = 0; i < 4; i++) { a1 = ip[0] >> UNIT_QUANT_SHIFT; c1 = ip[1] >> UNIT_QUANT_SHIFT; d1 = ip[2] >> UNIT_QUANT_SHIFT; b1 = ip[3] >> UNIT_QUANT_SHIFT; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; op[0] = WRAPLOW(a1, bd); op[1] = WRAPLOW(b1, bd); op[2] = WRAPLOW(c1, bd); op[3] = WRAPLOW(d1, bd); ip += 4; op += 4; } ip = output; for (i = 0; i < 4; i++) { a1 = ip[4 * 0]; c1 = ip[4 * 1]; d1 = ip[4 * 2]; b1 = ip[4 * 3]; a1 += c1; d1 -= b1; e1 = (a1 - d1) >> 1; b1 = e1 - b1; c1 = e1 - c1; a1 -= b1; d1 += c1; dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd); dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd); dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd); dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd); ip++; dest++; } } void vp9_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8, int dest_stride, int bd) { int i; tran_high_t a1, e1; tran_low_t tmp[4]; const tran_low_t *ip = in; tran_low_t *op = tmp; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); (void) bd; a1 = ip[0] >> UNIT_QUANT_SHIFT; e1 = a1 >> 1; a1 -= e1; op[0] = WRAPLOW(a1, bd); op[1] = op[2] = op[3] = WRAPLOW(e1, bd); ip = tmp; for (i = 0; i < 4; i++) { e1 = ip[0] >> 1; a1 = ip[0] - e1; dest[dest_stride * 0] = highbd_clip_pixel_add( dest[dest_stride * 0], a1, bd); dest[dest_stride * 1] = highbd_clip_pixel_add( dest[dest_stride * 1], e1, bd); dest[dest_stride * 2] = highbd_clip_pixel_add( dest[dest_stride * 2], e1, bd); dest[dest_stride * 3] = highbd_clip_pixel_add( dest[dest_stride * 3], e1, bd); ip++; dest++; } } static void highbd_idct4(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step[4]; tran_high_t temp1, temp2; (void) bd; // stage 1 temp1 = (input[0] + input[2]) * cospi_16_64; temp2 = (input[0] - input[2]) * cospi_16_64; step[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64; temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64; step[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step[3] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 output[0] = WRAPLOW(step[0] + step[3], bd); output[1] = WRAPLOW(step[1] + step[2], bd); output[2] = WRAPLOW(step[1] - step[2], bd); output[3] = WRAPLOW(step[0] - step[3], bd); } void vp9_highbd_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[4 * 4]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[4], temp_out[4]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows for (i = 0; i < 4; ++i) { highbd_idct4(input, outptr, bd); input += 4; outptr += 4; } // Columns for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; highbd_idct4(temp_in, temp_out, bd); for (j = 0; j < 4; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd); } } } void vp9_highbd_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest8, int dest_stride, int bd) { int i; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 4); for (i = 0; i < 4; i++) { dest[0] = highbd_clip_pixel_add(dest[0], a1, bd); dest[1] = highbd_clip_pixel_add(dest[1], a1, bd); dest[2] = highbd_clip_pixel_add(dest[2], a1, bd); dest[3] = highbd_clip_pixel_add(dest[3], a1, bd); dest += dest_stride; } } static void highbd_idct8(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; // stage 1 step1[0] = input[0]; step1[2] = input[4]; step1[1] = input[2]; step1[3] = input[6]; temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64; temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64; temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 & stage 3 - even half highbd_idct4(step1, step1, bd); // stage 2 - odd half step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); // stage 3 - odd half step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; // stage 4 output[0] = WRAPLOW(step1[0] + step1[7], bd); output[1] = WRAPLOW(step1[1] + step1[6], bd); output[2] = WRAPLOW(step1[2] + step1[5], bd); output[3] = WRAPLOW(step1[3] + step1[4], bd); output[4] = WRAPLOW(step1[3] - step1[4], bd); output[5] = WRAPLOW(step1[2] - step1[5], bd); output[6] = WRAPLOW(step1[1] - step1[6], bd); output[7] = WRAPLOW(step1[0] - step1[7], bd); } void vp9_highbd_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[8 * 8]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. for (i = 0; i < 8; ++i) { highbd_idct8(input, outptr, bd); input += 8; outptr += 8; } // Then transform columns. for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; highbd_idct8(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } void vp9_highbd_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 5); for (j = 0; j < 8; ++j) { for (i = 0; i < 8; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); dest += stride; } } static void highbd_iadst4(const tran_low_t *input, tran_low_t *output, int bd) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; tran_low_t x0 = input[0]; tran_low_t x1 = input[1]; tran_low_t x2 = input[2]; tran_low_t x3 = input[3]; (void) bd; if (!(x0 | x1 | x2 | x3)) { vpx_memset(output, 0, 4 * sizeof(*output)); return; } s0 = sinpi_1_9 * x0; s1 = sinpi_2_9 * x0; s2 = sinpi_3_9 * x1; s3 = sinpi_4_9 * x2; s4 = sinpi_1_9 * x2; s5 = sinpi_2_9 * x3; s6 = sinpi_4_9 * x3; s7 = (tran_high_t)(x0 - x2 + x3); s0 = s0 + s3 + s5; s1 = s1 - s4 - s6; s3 = s2; s2 = sinpi_3_9 * s7; // 1-D transform scaling factor is sqrt(2). // The overall dynamic range is 14b (input) + 14b (multiplication scaling) // + 1b (addition) = 29b. // Hence the output bit depth is 15b. output[0] = WRAPLOW(dct_const_round_shift(s0 + s3), bd); output[1] = WRAPLOW(dct_const_round_shift(s1 + s3), bd); output[2] = WRAPLOW(dct_const_round_shift(s2), bd); output[3] = WRAPLOW(dct_const_round_shift(s0 + s1 - s3), bd); } void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { const highbd_transform_2d IHT_4[] = { { highbd_idct4, highbd_idct4 }, // DCT_DCT = 0 { highbd_iadst4, highbd_idct4 }, // ADST_DCT = 1 { highbd_idct4, highbd_iadst4 }, // DCT_ADST = 2 { highbd_iadst4, highbd_iadst4 } // ADST_ADST = 3 }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[4 * 4]; tran_low_t *outptr = out; tran_low_t temp_in[4], temp_out[4]; // Inverse transform row vectors. for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, outptr, bd); input += 4; outptr += 4; } // Inverse transform column vectors. for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) temp_in[j] = out[j * 4 + i]; IHT_4[tx_type].cols(temp_in, temp_out, bd); for (j = 0; j < 4; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd); } } } static void highbd_iadst8(const tran_low_t *input, tran_low_t *output, int bd) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; tran_low_t x0 = input[7]; tran_low_t x1 = input[0]; tran_low_t x2 = input[5]; tran_low_t x3 = input[2]; tran_low_t x4 = input[3]; tran_low_t x5 = input[4]; tran_low_t x6 = input[1]; tran_low_t x7 = input[6]; (void) bd; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) { vpx_memset(output, 0, 8 * sizeof(*output)); return; } // stage 1 s0 = cospi_2_64 * x0 + cospi_30_64 * x1; s1 = cospi_30_64 * x0 - cospi_2_64 * x1; s2 = cospi_10_64 * x2 + cospi_22_64 * x3; s3 = cospi_22_64 * x2 - cospi_10_64 * x3; s4 = cospi_18_64 * x4 + cospi_14_64 * x5; s5 = cospi_14_64 * x4 - cospi_18_64 * x5; s6 = cospi_26_64 * x6 + cospi_6_64 * x7; s7 = cospi_6_64 * x6 - cospi_26_64 * x7; x0 = WRAPLOW(dct_const_round_shift(s0 + s4), bd); x1 = WRAPLOW(dct_const_round_shift(s1 + s5), bd); x2 = WRAPLOW(dct_const_round_shift(s2 + s6), bd); x3 = WRAPLOW(dct_const_round_shift(s3 + s7), bd); x4 = WRAPLOW(dct_const_round_shift(s0 - s4), bd); x5 = WRAPLOW(dct_const_round_shift(s1 - s5), bd); x6 = WRAPLOW(dct_const_round_shift(s2 - s6), bd); x7 = WRAPLOW(dct_const_round_shift(s3 - s7), bd); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = cospi_8_64 * x4 + cospi_24_64 * x5; s5 = cospi_24_64 * x4 - cospi_8_64 * x5; s6 = -cospi_24_64 * x6 + cospi_8_64 * x7; s7 = cospi_8_64 * x6 + cospi_24_64 * x7; x0 = WRAPLOW(s0 + s2, bd); x1 = WRAPLOW(s1 + s3, bd); x2 = WRAPLOW(s0 - s2, bd); x3 = WRAPLOW(s1 - s3, bd); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), bd); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), bd); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), bd); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), bd); // stage 3 s2 = cospi_16_64 * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (x6 - x7); x2 = WRAPLOW(dct_const_round_shift(s2), bd); x3 = WRAPLOW(dct_const_round_shift(s3), bd); x6 = WRAPLOW(dct_const_round_shift(s6), bd); x7 = WRAPLOW(dct_const_round_shift(s7), bd); output[0] = WRAPLOW(x0, bd); output[1] = WRAPLOW(-x4, bd); output[2] = WRAPLOW(x6, bd); output[3] = WRAPLOW(-x2, bd); output[4] = WRAPLOW(x3, bd); output[5] = WRAPLOW(-x7, bd); output[6] = WRAPLOW(x5, bd); output[7] = WRAPLOW(-x1, bd); } static const highbd_transform_2d HIGH_IHT_8[] = { { highbd_idct8, highbd_idct8 }, // DCT_DCT = 0 { highbd_iadst8, highbd_idct8 }, // ADST_DCT = 1 { highbd_idct8, highbd_iadst8 }, // DCT_ADST = 2 { highbd_iadst8, highbd_iadst8 } // ADST_ADST = 3 }; void vp9_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { int i, j; tran_low_t out[8 * 8]; tran_low_t *outptr = out; tran_low_t temp_in[8], temp_out[8]; const highbd_transform_2d ht = HIGH_IHT_8[tx_type]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Inverse transform row vectors. for (i = 0; i < 8; ++i) { ht.rows(input, outptr, bd); input += 8; outptr += 8; } // Inverse transform column vectors. for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; ht.cols(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } void vp9_highbd_idct8x8_10_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[8 * 8] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[8], temp_out[8]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. // Only first 4 row has non-zero coefs. for (i = 0; i < 4; ++i) { highbd_idct8(input, outptr, bd); input += 8; outptr += 8; } // Then transform columns. for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) temp_in[j] = out[j * 8 + i]; highbd_idct8(temp_in, temp_out, bd); for (j = 0; j < 8; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd); } } } static void highbd_idct16(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[0/2]; step1[1] = input[16/2]; step1[2] = input[8/2]; step1[3] = input[24/2]; step1[4] = input[4/2]; step1[5] = input[20/2]; step1[6] = input[12/2]; step1[7] = input[28/2]; step1[8] = input[2/2]; step1[9] = input[18/2]; step1[10] = input[10/2]; step1[11] = input[26/2]; step1[12] = input[6/2]; step1[13] = input[22/2]; step1[14] = input[14/2]; step1[15] = input[30/2]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[15] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[8] = WRAPLOW(step2[8] + step2[9], bd); step1[9] = WRAPLOW(step2[8] - step2[9], bd); step1[10] = WRAPLOW(-step2[10] + step2[11], bd); step1[11] = WRAPLOW(step2[10] + step2[11], bd); step1[12] = WRAPLOW(step2[12] + step2[13], bd); step1[13] = WRAPLOW(step2[12] - step2[13], bd); step1[14] = WRAPLOW(-step2[14] + step2[15], bd); step1[15] = WRAPLOW(step2[14] + step2[15], bd); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], bd); step1[1] = WRAPLOW(step2[1] + step2[2], bd); step1[2] = WRAPLOW(step2[1] - step2[2], bd); step1[3] = WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], bd); step1[9] = WRAPLOW(step2[9] + step2[10], bd); step1[10] = WRAPLOW(step2[9] - step2[10], bd); step1[11] = WRAPLOW(step2[8] - step2[11], bd); step1[12] = WRAPLOW(-step2[12] + step2[15], bd); step1[13] = WRAPLOW(-step2[13] + step2[14], bd); step1[14] = WRAPLOW(step2[13] + step2[14], bd); step1[15] = WRAPLOW(step2[12] + step2[15], bd); // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], bd); step2[1] = WRAPLOW(step1[1] + step1[6], bd); step2[2] = WRAPLOW(step1[2] + step1[5], bd); step2[3] = WRAPLOW(step1[3] + step1[4], bd); step2[4] = WRAPLOW(step1[3] - step1[4], bd); step2[5] = WRAPLOW(step1[2] - step1[5], bd); step2[6] = WRAPLOW(step1[1] - step1[6], bd); step2[7] = WRAPLOW(step1[0] - step1[7], bd); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = WRAPLOW(step2[0] + step2[15], bd); output[1] = WRAPLOW(step2[1] + step2[14], bd); output[2] = WRAPLOW(step2[2] + step2[13], bd); output[3] = WRAPLOW(step2[3] + step2[12], bd); output[4] = WRAPLOW(step2[4] + step2[11], bd); output[5] = WRAPLOW(step2[5] + step2[10], bd); output[6] = WRAPLOW(step2[6] + step2[9], bd); output[7] = WRAPLOW(step2[7] + step2[8], bd); output[8] = WRAPLOW(step2[7] - step2[8], bd); output[9] = WRAPLOW(step2[6] - step2[9], bd); output[10] = WRAPLOW(step2[5] - step2[10], bd); output[11] = WRAPLOW(step2[4] - step2[11], bd); output[12] = WRAPLOW(step2[3] - step2[12], bd); output[13] = WRAPLOW(step2[2] - step2[13], bd); output[14] = WRAPLOW(step2[1] - step2[14], bd); output[15] = WRAPLOW(step2[0] - step2[15], bd); } void vp9_highbd_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[16 * 16]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. for (i = 0; i < 16; ++i) { highbd_idct16(input, outptr, bd); input += 16; outptr += 16; } // Then transform columns. for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; highbd_idct16(temp_in, temp_out, bd); for (j = 0; j < 16; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } static void highbd_iadst16(const tran_low_t *input, tran_low_t *output, int bd) { tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8; tran_high_t s9, s10, s11, s12, s13, s14, s15; tran_low_t x0 = input[15]; tran_low_t x1 = input[0]; tran_low_t x2 = input[13]; tran_low_t x3 = input[2]; tran_low_t x4 = input[11]; tran_low_t x5 = input[4]; tran_low_t x6 = input[9]; tran_low_t x7 = input[6]; tran_low_t x8 = input[7]; tran_low_t x9 = input[8]; tran_low_t x10 = input[5]; tran_low_t x11 = input[10]; tran_low_t x12 = input[3]; tran_low_t x13 = input[12]; tran_low_t x14 = input[1]; tran_low_t x15 = input[14]; (void) bd; if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 | x11 | x12 | x13 | x14 | x15)) { vpx_memset(output, 0, 16 * sizeof(*output)); return; } // stage 1 s0 = x0 * cospi_1_64 + x1 * cospi_31_64; s1 = x0 * cospi_31_64 - x1 * cospi_1_64; s2 = x2 * cospi_5_64 + x3 * cospi_27_64; s3 = x2 * cospi_27_64 - x3 * cospi_5_64; s4 = x4 * cospi_9_64 + x5 * cospi_23_64; s5 = x4 * cospi_23_64 - x5 * cospi_9_64; s6 = x6 * cospi_13_64 + x7 * cospi_19_64; s7 = x6 * cospi_19_64 - x7 * cospi_13_64; s8 = x8 * cospi_17_64 + x9 * cospi_15_64; s9 = x8 * cospi_15_64 - x9 * cospi_17_64; s10 = x10 * cospi_21_64 + x11 * cospi_11_64; s11 = x10 * cospi_11_64 - x11 * cospi_21_64; s12 = x12 * cospi_25_64 + x13 * cospi_7_64; s13 = x12 * cospi_7_64 - x13 * cospi_25_64; s14 = x14 * cospi_29_64 + x15 * cospi_3_64; s15 = x14 * cospi_3_64 - x15 * cospi_29_64; x0 = WRAPLOW(dct_const_round_shift(s0 + s8), bd); x1 = WRAPLOW(dct_const_round_shift(s1 + s9), bd); x2 = WRAPLOW(dct_const_round_shift(s2 + s10), bd); x3 = WRAPLOW(dct_const_round_shift(s3 + s11), bd); x4 = WRAPLOW(dct_const_round_shift(s4 + s12), bd); x5 = WRAPLOW(dct_const_round_shift(s5 + s13), bd); x6 = WRAPLOW(dct_const_round_shift(s6 + s14), bd); x7 = WRAPLOW(dct_const_round_shift(s7 + s15), bd); x8 = WRAPLOW(dct_const_round_shift(s0 - s8), bd); x9 = WRAPLOW(dct_const_round_shift(s1 - s9), bd); x10 = WRAPLOW(dct_const_round_shift(s2 - s10), bd); x11 = WRAPLOW(dct_const_round_shift(s3 - s11), bd); x12 = WRAPLOW(dct_const_round_shift(s4 - s12), bd); x13 = WRAPLOW(dct_const_round_shift(s5 - s13), bd); x14 = WRAPLOW(dct_const_round_shift(s6 - s14), bd); x15 = WRAPLOW(dct_const_round_shift(s7 - s15), bd); // stage 2 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4; s5 = x5; s6 = x6; s7 = x7; s8 = x8 * cospi_4_64 + x9 * cospi_28_64; s9 = x8 * cospi_28_64 - x9 * cospi_4_64; s10 = x10 * cospi_20_64 + x11 * cospi_12_64; s11 = x10 * cospi_12_64 - x11 * cospi_20_64; s12 = -x12 * cospi_28_64 + x13 * cospi_4_64; s13 = x12 * cospi_4_64 + x13 * cospi_28_64; s14 = -x14 * cospi_12_64 + x15 * cospi_20_64; s15 = x14 * cospi_20_64 + x15 * cospi_12_64; x0 = WRAPLOW(s0 + s4, bd); x1 = WRAPLOW(s1 + s5, bd); x2 = WRAPLOW(s2 + s6, bd); x3 = WRAPLOW(s3 + s7, bd); x4 = WRAPLOW(s0 - s4, bd); x5 = WRAPLOW(s1 - s5, bd); x6 = WRAPLOW(s2 - s6, bd); x7 = WRAPLOW(s3 - s7, bd); x8 = WRAPLOW(dct_const_round_shift(s8 + s12), bd); x9 = WRAPLOW(dct_const_round_shift(s9 + s13), bd); x10 = WRAPLOW(dct_const_round_shift(s10 + s14), bd); x11 = WRAPLOW(dct_const_round_shift(s11 + s15), bd); x12 = WRAPLOW(dct_const_round_shift(s8 - s12), bd); x13 = WRAPLOW(dct_const_round_shift(s9 - s13), bd); x14 = WRAPLOW(dct_const_round_shift(s10 - s14), bd); x15 = WRAPLOW(dct_const_round_shift(s11 - s15), bd); // stage 3 s0 = x0; s1 = x1; s2 = x2; s3 = x3; s4 = x4 * cospi_8_64 + x5 * cospi_24_64; s5 = x4 * cospi_24_64 - x5 * cospi_8_64; s6 = -x6 * cospi_24_64 + x7 * cospi_8_64; s7 = x6 * cospi_8_64 + x7 * cospi_24_64; s8 = x8; s9 = x9; s10 = x10; s11 = x11; s12 = x12 * cospi_8_64 + x13 * cospi_24_64; s13 = x12 * cospi_24_64 - x13 * cospi_8_64; s14 = -x14 * cospi_24_64 + x15 * cospi_8_64; s15 = x14 * cospi_8_64 + x15 * cospi_24_64; x0 = WRAPLOW(s0 + s2, bd); x1 = WRAPLOW(s1 + s3, bd); x2 = WRAPLOW(s0 - s2, bd); x3 = WRAPLOW(s1 - s3, bd); x4 = WRAPLOW(dct_const_round_shift(s4 + s6), bd); x5 = WRAPLOW(dct_const_round_shift(s5 + s7), bd); x6 = WRAPLOW(dct_const_round_shift(s4 - s6), bd); x7 = WRAPLOW(dct_const_round_shift(s5 - s7), bd); x8 = WRAPLOW(s8 + s10, bd); x9 = WRAPLOW(s9 + s11, bd); x10 = WRAPLOW(s8 - s10, bd); x11 = WRAPLOW(s9 - s11, bd); x12 = WRAPLOW(dct_const_round_shift(s12 + s14), bd); x13 = WRAPLOW(dct_const_round_shift(s13 + s15), bd); x14 = WRAPLOW(dct_const_round_shift(s12 - s14), bd); x15 = WRAPLOW(dct_const_round_shift(s13 - s15), bd); // stage 4 s2 = (- cospi_16_64) * (x2 + x3); s3 = cospi_16_64 * (x2 - x3); s6 = cospi_16_64 * (x6 + x7); s7 = cospi_16_64 * (-x6 + x7); s10 = cospi_16_64 * (x10 + x11); s11 = cospi_16_64 * (-x10 + x11); s14 = (- cospi_16_64) * (x14 + x15); s15 = cospi_16_64 * (x14 - x15); x2 = WRAPLOW(dct_const_round_shift(s2), bd); x3 = WRAPLOW(dct_const_round_shift(s3), bd); x6 = WRAPLOW(dct_const_round_shift(s6), bd); x7 = WRAPLOW(dct_const_round_shift(s7), bd); x10 = WRAPLOW(dct_const_round_shift(s10), bd); x11 = WRAPLOW(dct_const_round_shift(s11), bd); x14 = WRAPLOW(dct_const_round_shift(s14), bd); x15 = WRAPLOW(dct_const_round_shift(s15), bd); output[0] = WRAPLOW(x0, bd); output[1] = WRAPLOW(-x8, bd); output[2] = WRAPLOW(x12, bd); output[3] = WRAPLOW(-x4, bd); output[4] = WRAPLOW(x6, bd); output[5] = WRAPLOW(x14, bd); output[6] = WRAPLOW(x10, bd); output[7] = WRAPLOW(x2, bd); output[8] = WRAPLOW(x3, bd); output[9] = WRAPLOW(x11, bd); output[10] = WRAPLOW(x15, bd); output[11] = WRAPLOW(x7, bd); output[12] = WRAPLOW(x5, bd); output[13] = WRAPLOW(-x13, bd); output[14] = WRAPLOW(x9, bd); output[15] = WRAPLOW(-x1, bd); } static const highbd_transform_2d HIGH_IHT_16[] = { { highbd_idct16, highbd_idct16 }, // DCT_DCT = 0 { highbd_iadst16, highbd_idct16 }, // ADST_DCT = 1 { highbd_idct16, highbd_iadst16 }, // DCT_ADST = 2 { highbd_iadst16, highbd_iadst16 } // ADST_ADST = 3 }; void vp9_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { int i, j; tran_low_t out[16 * 16]; tran_low_t *outptr = out; tran_low_t temp_in[16], temp_out[16]; const highbd_transform_2d ht = HIGH_IHT_16[tx_type]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows for (i = 0; i < 16; ++i) { ht.rows(input, outptr, bd); input += 16; outptr += 16; } // Columns for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j * 16 + i]; ht.cols(temp_in, temp_out, bd); for (j = 0; j < 16; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[16 * 16] = { 0 }; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[16], temp_out[16]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // First transform rows. Since all non-zero dct coefficients are in // upper-left 4x4 area, we only need to calculate first 4 rows here. for (i = 0; i < 4; ++i) { highbd_idct16(input, outptr, bd); input += 16; outptr += 16; } // Then transform columns. for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) temp_in[j] = out[j*16 + i]; highbd_idct16(temp_in, temp_out, bd); for (j = 0; j < 16; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { int i, j; tran_high_t a1; tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 16; ++j) { for (i = 0; i < 16; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); dest += stride; } } static void highbd_idct32(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[32], step2[32]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[0]; step1[1] = input[16]; step1[2] = input[8]; step1[3] = input[24]; step1[4] = input[4]; step1[5] = input[20]; step1[6] = input[12]; step1[7] = input[28]; step1[8] = input[2]; step1[9] = input[18]; step1[10] = input[10]; step1[11] = input[26]; step1[12] = input[6]; step1[13] = input[22]; step1[14] = input[14]; step1[15] = input[30]; temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64; temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64; step1[16] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[31] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64; temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[30] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64; temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[29] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64; temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[28] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64; temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[27] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64; temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64; temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[25] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64; temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[24] = WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[15] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[16] = WRAPLOW(step1[16] + step1[17], bd); step2[17] = WRAPLOW(step1[16] - step1[17], bd); step2[18] = WRAPLOW(-step1[18] + step1[19], bd); step2[19] = WRAPLOW(step1[18] + step1[19], bd); step2[20] = WRAPLOW(step1[20] + step1[21], bd); step2[21] = WRAPLOW(step1[20] - step1[21], bd); step2[22] = WRAPLOW(-step1[22] + step1[23], bd); step2[23] = WRAPLOW(step1[22] + step1[23], bd); step2[24] = WRAPLOW(step1[24] + step1[25], bd); step2[25] = WRAPLOW(step1[24] - step1[25], bd); step2[26] = WRAPLOW(-step1[26] + step1[27], bd); step2[27] = WRAPLOW(step1[26] + step1[27], bd); step2[28] = WRAPLOW(step1[28] + step1[29], bd); step2[29] = WRAPLOW(step1[28] - step1[29], bd); step2[30] = WRAPLOW(-step1[30] + step1[31], bd); step2[31] = WRAPLOW(step1[30] + step1[31], bd); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[8] = WRAPLOW(step2[8] + step2[9], bd); step1[9] = WRAPLOW(step2[8] - step2[9], bd); step1[10] = WRAPLOW(-step2[10] + step2[11], bd); step1[11] = WRAPLOW(step2[10] + step2[11], bd); step1[12] = WRAPLOW(step2[12] + step2[13], bd); step1[13] = WRAPLOW(step2[12] - step2[13], bd); step1[14] = WRAPLOW(-step2[14] + step2[15], bd); step1[15] = WRAPLOW(step2[14] + step2[15], bd); step1[16] = step2[16]; step1[31] = step2[31]; temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64; temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64; step1[17] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[30] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64; temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[29] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[19] = step2[19]; step1[20] = step2[20]; temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64; temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64; temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[25] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[23] = step2[23]; step1[24] = step2[24]; step1[27] = step2[27]; step1[28] = step2[28]; // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = WRAPLOW(step1[4] + step1[5], bd); step2[5] = WRAPLOW(step1[4] - step1[5], bd); step2[6] = WRAPLOW(-step1[6] + step1[7], bd); step2[7] = WRAPLOW(step1[6] + step1[7], bd); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[11] = step1[11]; step2[12] = step1[12]; step2[16] = WRAPLOW(step1[16] + step1[19], bd); step2[17] = WRAPLOW(step1[17] + step1[18], bd); step2[18] = WRAPLOW(step1[17] - step1[18], bd); step2[19] = WRAPLOW(step1[16] - step1[19], bd); step2[20] = WRAPLOW(-step1[20] + step1[23], bd); step2[21] = WRAPLOW(-step1[21] + step1[22], bd); step2[22] = WRAPLOW(step1[21] + step1[22], bd); step2[23] = WRAPLOW(step1[20] + step1[23], bd); step2[24] = WRAPLOW(step1[24] + step1[27], bd); step2[25] = WRAPLOW(step1[25] + step1[26], bd); step2[26] = WRAPLOW(step1[25] - step1[26], bd); step2[27] = WRAPLOW(step1[24] - step1[27], bd); step2[28] = WRAPLOW(-step1[28] + step1[31], bd); step2[29] = WRAPLOW(-step1[29] + step1[30], bd); step2[30] = WRAPLOW(step1[29] + step1[30], bd); step2[31] = WRAPLOW(step1[28] + step1[31], bd); // stage 5 step1[0] = WRAPLOW(step2[0] + step2[3], bd); step1[1] = WRAPLOW(step2[1] + step2[2], bd); step1[2] = WRAPLOW(step2[1] - step2[2], bd); step1[3] = WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; step1[8] = WRAPLOW(step2[8] + step2[11], bd); step1[9] = WRAPLOW(step2[9] + step2[10], bd); step1[10] = WRAPLOW(step2[9] - step2[10], bd); step1[11] = WRAPLOW(step2[8] - step2[11], bd); step1[12] = WRAPLOW(-step2[12] + step2[15], bd); step1[13] = WRAPLOW(-step2[13] + step2[14], bd); step1[14] = WRAPLOW(step2[13] + step2[14], bd); step1[15] = WRAPLOW(step2[12] + step2[15], bd); step1[16] = step2[16]; step1[17] = step2[17]; temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64; temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64; step1[18] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[29] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64; temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64; step1[19] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[28] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64; temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[27] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64; temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[22] = step2[22]; step1[23] = step2[23]; step1[24] = step2[24]; step1[25] = step2[25]; step1[30] = step2[30]; step1[31] = step2[31]; // stage 6 step2[0] = WRAPLOW(step1[0] + step1[7], bd); step2[1] = WRAPLOW(step1[1] + step1[6], bd); step2[2] = WRAPLOW(step1[2] + step1[5], bd); step2[3] = WRAPLOW(step1[3] + step1[4], bd); step2[4] = WRAPLOW(step1[3] - step1[4], bd); step2[5] = WRAPLOW(step1[2] - step1[5], bd); step2[6] = WRAPLOW(step1[1] - step1[6], bd); step2[7] = WRAPLOW(step1[0] - step1[7], bd); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = WRAPLOW(dct_const_round_shift(temp2), bd); step2[14] = step1[14]; step2[15] = step1[15]; step2[16] = WRAPLOW(step1[16] + step1[23], bd); step2[17] = WRAPLOW(step1[17] + step1[22], bd); step2[18] = WRAPLOW(step1[18] + step1[21], bd); step2[19] = WRAPLOW(step1[19] + step1[20], bd); step2[20] = WRAPLOW(step1[19] - step1[20], bd); step2[21] = WRAPLOW(step1[18] - step1[21], bd); step2[22] = WRAPLOW(step1[17] - step1[22], bd); step2[23] = WRAPLOW(step1[16] - step1[23], bd); step2[24] = WRAPLOW(-step1[24] + step1[31], bd); step2[25] = WRAPLOW(-step1[25] + step1[30], bd); step2[26] = WRAPLOW(-step1[26] + step1[29], bd); step2[27] = WRAPLOW(-step1[27] + step1[28], bd); step2[28] = WRAPLOW(step1[27] + step1[28], bd); step2[29] = WRAPLOW(step1[26] + step1[29], bd); step2[30] = WRAPLOW(step1[25] + step1[30], bd); step2[31] = WRAPLOW(step1[24] + step1[31], bd); // stage 7 step1[0] = WRAPLOW(step2[0] + step2[15], bd); step1[1] = WRAPLOW(step2[1] + step2[14], bd); step1[2] = WRAPLOW(step2[2] + step2[13], bd); step1[3] = WRAPLOW(step2[3] + step2[12], bd); step1[4] = WRAPLOW(step2[4] + step2[11], bd); step1[5] = WRAPLOW(step2[5] + step2[10], bd); step1[6] = WRAPLOW(step2[6] + step2[9], bd); step1[7] = WRAPLOW(step2[7] + step2[8], bd); step1[8] = WRAPLOW(step2[7] - step2[8], bd); step1[9] = WRAPLOW(step2[6] - step2[9], bd); step1[10] = WRAPLOW(step2[5] - step2[10], bd); step1[11] = WRAPLOW(step2[4] - step2[11], bd); step1[12] = WRAPLOW(step2[3] - step2[12], bd); step1[13] = WRAPLOW(step2[2] - step2[13], bd); step1[14] = WRAPLOW(step2[1] - step2[14], bd); step1[15] = WRAPLOW(step2[0] - step2[15], bd); step1[16] = step2[16]; step1[17] = step2[17]; step1[18] = step2[18]; step1[19] = step2[19]; temp1 = (-step2[20] + step2[27]) * cospi_16_64; temp2 = (step2[20] + step2[27]) * cospi_16_64; step1[20] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[27] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step2[21] + step2[26]) * cospi_16_64; temp2 = (step2[21] + step2[26]) * cospi_16_64; step1[21] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[26] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step2[22] + step2[25]) * cospi_16_64; temp2 = (step2[22] + step2[25]) * cospi_16_64; step1[22] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[25] = WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step2[23] + step2[24]) * cospi_16_64; temp2 = (step2[23] + step2[24]) * cospi_16_64; step1[23] = WRAPLOW(dct_const_round_shift(temp1), bd); step1[24] = WRAPLOW(dct_const_round_shift(temp2), bd); step1[28] = step2[28]; step1[29] = step2[29]; step1[30] = step2[30]; step1[31] = step2[31]; // final stage output[0] = WRAPLOW(step1[0] + step1[31], bd); output[1] = WRAPLOW(step1[1] + step1[30], bd); output[2] = WRAPLOW(step1[2] + step1[29], bd); output[3] = WRAPLOW(step1[3] + step1[28], bd); output[4] = WRAPLOW(step1[4] + step1[27], bd); output[5] = WRAPLOW(step1[5] + step1[26], bd); output[6] = WRAPLOW(step1[6] + step1[25], bd); output[7] = WRAPLOW(step1[7] + step1[24], bd); output[8] = WRAPLOW(step1[8] + step1[23], bd); output[9] = WRAPLOW(step1[9] + step1[22], bd); output[10] = WRAPLOW(step1[10] + step1[21], bd); output[11] = WRAPLOW(step1[11] + step1[20], bd); output[12] = WRAPLOW(step1[12] + step1[19], bd); output[13] = WRAPLOW(step1[13] + step1[18], bd); output[14] = WRAPLOW(step1[14] + step1[17], bd); output[15] = WRAPLOW(step1[15] + step1[16], bd); output[16] = WRAPLOW(step1[15] - step1[16], bd); output[17] = WRAPLOW(step1[14] - step1[17], bd); output[18] = WRAPLOW(step1[13] - step1[18], bd); output[19] = WRAPLOW(step1[12] - step1[19], bd); output[20] = WRAPLOW(step1[11] - step1[20], bd); output[21] = WRAPLOW(step1[10] - step1[21], bd); output[22] = WRAPLOW(step1[9] - step1[22], bd); output[23] = WRAPLOW(step1[8] - step1[23], bd); output[24] = WRAPLOW(step1[7] - step1[24], bd); output[25] = WRAPLOW(step1[6] - step1[25], bd); output[26] = WRAPLOW(step1[5] - step1[26], bd); output[27] = WRAPLOW(step1[4] - step1[27], bd); output[28] = WRAPLOW(step1[3] - step1[28], bd); output[29] = WRAPLOW(step1[2] - step1[29], bd); output[30] = WRAPLOW(step1[1] - step1[30], bd); output[31] = WRAPLOW(step1[0] - step1[31], bd); } void vp9_highbd_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[32 * 32]; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows for (i = 0; i < 32; ++i) { tran_low_t zero_coeff[16]; for (j = 0; j < 16; ++j) zero_coeff[j] = input[2 * j] | input[2 * j + 1]; for (j = 0; j < 8; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 4; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; for (j = 0; j < 2; ++j) zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1]; if (zero_coeff[0] | zero_coeff[1]) highbd_idct32(input, outptr, bd); else vpx_memset(outptr, 0, sizeof(tran_low_t) * 32); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; highbd_idct32(temp_in, temp_out, bd); for (j = 0; j < 32; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { tran_low_t out[32 * 32] = {0}; tran_low_t *outptr = out; int i, j; tran_low_t temp_in[32], temp_out[32]; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); // Rows // Only upper-left 8x8 has non-zero coeff. for (i = 0; i < 8; ++i) { highbd_idct32(input, outptr, bd); input += 32; outptr += 32; } // Columns for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) temp_in[j] = out[j * 32 + i]; highbd_idct32(temp_in, temp_out, bd); for (j = 0; j < 32; ++j) { dest[j * stride + i] = highbd_clip_pixel_add( dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd); } } } void vp9_highbd_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bd) { int i, j; int a1; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), bd); out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), bd); a1 = ROUND_POWER_OF_TWO(out, 6); for (j = 0; j < 32; ++j) { for (i = 0; i < 32; ++i) dest[i] = highbd_clip_pixel_add(dest[i], a1, bd); dest += stride; } } // idct void vp9_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) vp9_highbd_idct4x4_16_add(input, dest, stride, bd); else vp9_highbd_idct4x4_1_add(input, dest, stride, bd); } void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) vp9_highbd_iwht4x4_16_add(input, dest, stride, bd); else vp9_highbd_iwht4x4_1_add(input, dest, stride, bd); } void vp9_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c. // Combine that with code here. // DC only DCT coefficient if (eob == 1) { vp9_highbd_idct8x8_1_add(input, dest, stride, bd); } else if (eob <= 10) { vp9_highbd_idct8x8_10_add(input, dest, stride, bd); } else { vp9_highbd_idct8x8_64_add(input, dest, stride, bd); } } void vp9_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to separate different cases. // DC only DCT coefficient. if (eob == 1) { vp9_highbd_idct16x16_1_add(input, dest, stride, bd); } else if (eob <= 10) { vp9_highbd_idct16x16_10_add(input, dest, stride, bd); } else { vp9_highbd_idct16x16_256_add(input, dest, stride, bd); } } void vp9_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // Non-zero coeff only in upper-left 8x8 if (eob == 1) { vp9_highbd_idct32x32_1_add(input, dest, stride, bd); } else if (eob <= 34) { vp9_highbd_idct32x32_34_add(input, dest, stride, bd); } else { vp9_highbd_idct32x32_1024_add(input, dest, stride, bd); } } // iht void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) vp9_highbd_idct4x4_add(input, dest, stride, eob, bd); else vp9_highbd_iht4x4_16_add(input, dest, stride, tx_type, bd); } void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct8x8_add(input, dest, stride, eob, bd); } else { vp9_highbd_iht8x8_64_add(input, dest, stride, tx_type, bd); } } void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (tx_type == DCT_DCT) { vp9_highbd_idct16x16_add(input, dest, stride, eob, bd); } else { vp9_highbd_iht16x16_256_add(input, dest, stride, tx_type, bd); } } #endif // CONFIG_VP9_HIGHBITDEPTH