/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_COMMON_VP9_BLOCKD_H_ #define VP9_COMMON_VP9_BLOCKD_H_ #include "./vpx_config.h" #include "vpx_ports/mem.h" #include "vpx_scale/yv12config.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_common_data.h" #include "vp9/common/vp9_convolve.h" #include "vp9/common/vp9_enums.h" #include "vp9/common/vp9_mv.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_treecoder.h" #define BLOCK_SIZE_GROUPS 4 #define PREDICTION_PROBS 3 #define MBSKIP_CONTEXTS 3 #define MAX_REF_LF_DELTAS 4 #define MAX_MODE_LF_DELTAS 2 /* Segment Feature Masks */ #define MAX_MV_REF_CANDIDATES 2 #define INTRA_INTER_CONTEXTS 4 #define COMP_INTER_CONTEXTS 5 #define REF_CONTEXTS 5 typedef enum { PLANE_TYPE_Y_WITH_DC, PLANE_TYPE_UV, } PLANE_TYPE; typedef char ENTROPY_CONTEXT; typedef char PARTITION_CONTEXT; static INLINE int combine_entropy_contexts(ENTROPY_CONTEXT a, ENTROPY_CONTEXT b) { return (a != 0) + (b != 0); } typedef enum { KEY_FRAME = 0, INTER_FRAME = 1, NUM_FRAME_TYPES, } FRAME_TYPE; typedef enum { EIGHTTAP_SMOOTH, EIGHTTAP, EIGHTTAP_SHARP, BILINEAR, SWITCHABLE /* should be the last one */ } INTERPOLATIONFILTERTYPE; typedef enum { DC_PRED, // Average of above and left pixels V_PRED, // Vertical H_PRED, // Horizontal D45_PRED, // Directional 45 deg = round(arctan(1/1) * 180/pi) D135_PRED, // Directional 135 deg = 180 - 45 D117_PRED, // Directional 117 deg = 180 - 63 D153_PRED, // Directional 153 deg = 180 - 27 D27_PRED, // Directional 27 deg = round(arctan(1/2) * 180/pi) D63_PRED, // Directional 63 deg = round(arctan(2/1) * 180/pi) TM_PRED, // True-motion NEARESTMV, NEARMV, ZEROMV, NEWMV, MB_MODE_COUNT } MB_PREDICTION_MODE; static INLINE int is_intra_mode(MB_PREDICTION_MODE mode) { return mode <= TM_PRED; } static INLINE int is_inter_mode(MB_PREDICTION_MODE mode) { return mode >= NEARESTMV && mode <= NEWMV; } #define VP9_INTRA_MODES (TM_PRED + 1) #define VP9_INTER_MODES (1 + NEWMV - NEARESTMV) /* For keyframes, intra block modes are predicted by the (already decoded) modes for the Y blocks to the left and above us; for interframes, there is a single probability table. */ union b_mode_info { MB_PREDICTION_MODE as_mode; int_mv as_mv[2]; // first, second inter predictor motion vectors }; typedef enum { NONE = -1, INTRA_FRAME = 0, LAST_FRAME = 1, GOLDEN_FRAME = 2, ALTREF_FRAME = 3, MAX_REF_FRAMES = 4 } MV_REFERENCE_FRAME; static INLINE int b_width_log2(BLOCK_SIZE_TYPE sb_type) { return b_width_log2_lookup[sb_type]; } static INLINE int b_height_log2(BLOCK_SIZE_TYPE sb_type) { return b_height_log2_lookup[sb_type]; } static INLINE int mi_width_log2(BLOCK_SIZE_TYPE sb_type) { return mi_width_log2_lookup[sb_type]; } static INLINE int mi_height_log2(BLOCK_SIZE_TYPE sb_type) { return mi_height_log2_lookup[sb_type]; } typedef struct { MB_PREDICTION_MODE mode, uv_mode; MV_REFERENCE_FRAME ref_frame[2]; TX_SIZE txfm_size; int_mv mv[2]; // for each reference frame used int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; int_mv best_mv, best_second_mv; uint8_t mb_mode_context[MAX_REF_FRAMES]; unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */ unsigned char segment_id; // Segment id for current frame // Flags used for prediction status of various bistream signals unsigned char seg_id_predicted; // Indicates if the mb is part of the image (1) vs border (0) // This can be useful in determining whether the MB provides // a valid predictor unsigned char mb_in_image; INTERPOLATIONFILTERTYPE interp_filter; BLOCK_SIZE_TYPE sb_type; } MB_MODE_INFO; typedef struct { MB_MODE_INFO mbmi; union b_mode_info bmi[4]; } MODE_INFO; enum mv_precision { MV_PRECISION_Q3, MV_PRECISION_Q4 }; #define VP9_REF_SCALE_SHIFT 14 #define VP9_REF_NO_SCALE (1 << VP9_REF_SCALE_SHIFT) struct scale_factors { int x_scale_fp; // horizontal fixed point scale factor int y_scale_fp; // vertical fixed point scale factor int x_offset_q4; int x_step_q4; int y_offset_q4; int y_step_q4; int (*scale_value_x)(int val, const struct scale_factors *scale); int (*scale_value_y)(int val, const struct scale_factors *scale); void (*set_scaled_offsets)(struct scale_factors *scale, int row, int col); MV32 (*scale_mv_q3_to_q4)(const MV *mv, const struct scale_factors *scale); MV32 (*scale_mv_q4)(const MV *mv, const struct scale_factors *scale); convolve_fn_t predict[2][2][2]; // horiz, vert, avg }; #if CONFIG_ALPHA enum { MAX_MB_PLANE = 4 }; #else enum { MAX_MB_PLANE = 3 }; #endif struct buf_2d { uint8_t *buf; int stride; }; struct macroblockd_plane { DECLARE_ALIGNED(16, int16_t, qcoeff[64 * 64]); DECLARE_ALIGNED(16, int16_t, dqcoeff[64 * 64]); DECLARE_ALIGNED(16, uint16_t, eobs[256]); PLANE_TYPE plane_type; int subsampling_x; int subsampling_y; struct buf_2d dst; struct buf_2d pre[2]; int16_t *dequant; ENTROPY_CONTEXT *above_context; ENTROPY_CONTEXT *left_context; }; #define BLOCK_OFFSET(x, i, n) ((x) + (i) * (n)) typedef struct macroblockd { struct macroblockd_plane plane[MAX_MB_PLANE]; struct scale_factors scale_factor[2]; struct scale_factors scale_factor_uv[2]; MODE_INFO *prev_mode_info_context; MODE_INFO *mode_info_context; int mode_info_stride; FRAME_TYPE frame_type; int up_available; int left_available; int right_available; struct segmentation seg; // partition contexts PARTITION_CONTEXT *above_seg_context; PARTITION_CONTEXT *left_seg_context; /* mode_based Loop filter adjustment */ unsigned char mode_ref_lf_delta_enabled; unsigned char mode_ref_lf_delta_update; /* Delta values have the range +/- MAX_LOOP_FILTER */ /* 0 = Intra, Last, GF, ARF */ signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */ signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = ZERO_MV, MV */ signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = ZERO_MV, MV */ signed char mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* Distance of MB away from frame edges */ int mb_to_left_edge; int mb_to_right_edge; int mb_to_top_edge; int mb_to_bottom_edge; int lossless; /* Inverse transform function pointers. */ void (*inv_txm4x4_1_add)(int16_t *input, uint8_t *dest, int stride); void (*inv_txm4x4_add)(int16_t *input, uint8_t *dest, int stride); void (*itxm_add)(int16_t *input, uint8_t *dest, int stride, int eob); struct subpix_fn_table subpix; int allow_high_precision_mv; int corrupted; int sb_index; // index of 32x32 block inside the 64x64 block int mb_index; // index of 16x16 block inside the 32x32 block int b_index; // index of 8x8 block inside the 16x16 block int ab_index; // index of 4x4 block inside the 8x8 block int q_index; } MACROBLOCKD; static INLINE int *get_sb_index(MACROBLOCKD *xd, BLOCK_SIZE_TYPE subsize) { switch (subsize) { case BLOCK_SIZE_SB64X64: case BLOCK_SIZE_SB64X32: case BLOCK_SIZE_SB32X64: case BLOCK_SIZE_SB32X32: return &xd->sb_index; case BLOCK_SIZE_SB32X16: case BLOCK_SIZE_SB16X32: case BLOCK_SIZE_MB16X16: return &xd->mb_index; case BLOCK_SIZE_SB16X8: case BLOCK_SIZE_SB8X16: case BLOCK_SIZE_SB8X8: return &xd->b_index; case BLOCK_SIZE_SB8X4: case BLOCK_SIZE_SB4X8: case BLOCK_SIZE_AB4X4: return &xd->ab_index; default: assert(0); return NULL; } } static INLINE void update_partition_context(MACROBLOCKD *xd, BLOCK_SIZE_TYPE sb_type, BLOCK_SIZE_TYPE sb_size) { const int bsl = b_width_log2(sb_size), bs = (1 << bsl) / 2; const int bwl = b_width_log2(sb_type); const int bhl = b_height_log2(sb_type); const int boffset = b_width_log2(BLOCK_SIZE_SB64X64) - bsl; const char pcval0 = ~(0xe << boffset); const char pcval1 = ~(0xf << boffset); const char pcvalue[2] = {pcval0, pcval1}; assert(MAX(bwl, bhl) <= bsl); // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. vpx_memset(xd->above_seg_context, pcvalue[bwl == bsl], bs); vpx_memset(xd->left_seg_context, pcvalue[bhl == bsl], bs); } static INLINE int partition_plane_context(MACROBLOCKD *xd, BLOCK_SIZE_TYPE sb_type) { int bsl = mi_width_log2(sb_type), bs = 1 << bsl; int above = 0, left = 0, i; int boffset = mi_width_log2(BLOCK_SIZE_SB64X64) - bsl; assert(mi_width_log2(sb_type) == mi_height_log2(sb_type)); assert(bsl >= 0); assert(boffset >= 0); for (i = 0; i < bs; i++) above |= (xd->above_seg_context[i] & (1 << boffset)); for (i = 0; i < bs; i++) left |= (xd->left_seg_context[i] & (1 << boffset)); above = (above > 0); left = (left > 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } static BLOCK_SIZE_TYPE get_subsize(BLOCK_SIZE_TYPE bsize, PARTITION_TYPE partition) { BLOCK_SIZE_TYPE subsize = subsize_lookup[partition][bsize]; assert(subsize != BLOCK_SIZE_TYPES); return subsize; } extern const TX_TYPE mode2txfm_map[MB_MODE_COUNT]; static INLINE TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, int ib) { MODE_INFO *const mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (xd->lossless || mbmi->ref_frame[0] != INTRA_FRAME) return DCT_DCT; return mode2txfm_map[mbmi->sb_type < BLOCK_SIZE_SB8X8 ? mi->bmi[ib].as_mode : mbmi->mode]; } static INLINE TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd) { return mode2txfm_map[xd->mode_info_context->mbmi.mode]; } static INLINE TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd) { return mode2txfm_map[xd->mode_info_context->mbmi.mode]; } static void setup_block_dptrs(MACROBLOCKD *xd, int ss_x, int ss_y) { int i; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].plane_type = i ? PLANE_TYPE_UV : PLANE_TYPE_Y_WITH_DC; xd->plane[i].subsampling_x = i ? ss_x : 0; xd->plane[i].subsampling_y = i ? ss_y : 0; } #if CONFIG_ALPHA // TODO(jkoleszar): Using the Y w/h for now xd->plane[3].subsampling_x = 0; xd->plane[3].subsampling_y = 0; #endif } static INLINE TX_SIZE get_uv_tx_size(const MB_MODE_INFO *mbmi) { return MIN(mbmi->txfm_size, max_uv_txsize_lookup[mbmi->sb_type]); } struct plane_block_idx { int plane; int block; }; // TODO(jkoleszar): returning a struct so it can be used in a const context, // expect to refactor this further later. static INLINE struct plane_block_idx plane_block_idx(int y_blocks, int b_idx) { const int v_offset = y_blocks * 5 / 4; struct plane_block_idx res; if (b_idx < y_blocks) { res.plane = 0; res.block = b_idx; } else if (b_idx < v_offset) { res.plane = 1; res.block = b_idx - y_blocks; } else { assert(b_idx < y_blocks * 3 / 2); res.plane = 2; res.block = b_idx - v_offset; } return res; } static INLINE int plane_block_width(BLOCK_SIZE_TYPE bsize, const struct macroblockd_plane* plane) { return 4 << (b_width_log2(bsize) - plane->subsampling_x); } static INLINE int plane_block_height(BLOCK_SIZE_TYPE bsize, const struct macroblockd_plane* plane) { return 4 << (b_height_log2(bsize) - plane->subsampling_y); } static INLINE int plane_block_width_log2by4( BLOCK_SIZE_TYPE bsize, const struct macroblockd_plane* plane) { return (b_width_log2(bsize) - plane->subsampling_x); } static INLINE int plane_block_height_log2by4( BLOCK_SIZE_TYPE bsize, const struct macroblockd_plane* plane) { return (b_height_log2(bsize) - plane->subsampling_y); } typedef void (*foreach_transformed_block_visitor)(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg); static INLINE void foreach_transformed_block_in_plane( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane, foreach_transformed_block_visitor visit, void *arg) { const int bw = b_width_log2(bsize), bh = b_height_log2(bsize); // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const MB_MODE_INFO* mbmi = &xd->mode_info_context->mbmi; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi) : mbmi->txfm_size; const int block_size_b = bw + bh; const int txfrm_size_b = tx_size * 2; // subsampled size of the block const int ss_sum = xd->plane[plane].subsampling_x + xd->plane[plane].subsampling_y; const int ss_block_size = block_size_b - ss_sum; const int step = 1 << txfrm_size_b; int i; assert(txfrm_size_b <= block_size_b); assert(txfrm_size_b <= ss_block_size); // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) { int r, c; const int sw = bw - xd->plane[plane].subsampling_x; const int sh = bh - xd->plane[plane].subsampling_y; int max_blocks_wide = 1 << sw; int max_blocks_high = 1 << sh; // xd->mb_to_right_edge is in units of pixels * 8. This converts // it to 4x4 block sizes. if (xd->mb_to_right_edge < 0) max_blocks_wide += + (xd->mb_to_right_edge >> (5 + xd->plane[plane].subsampling_x)); if (xd->mb_to_bottom_edge < 0) max_blocks_high += + (xd->mb_to_bottom_edge >> (5 + xd->plane[plane].subsampling_y)); i = 0; // Unlike the normal case - in here we have to keep track of the // row and column of the blocks we use so that we know if we are in // the unrestricted motion border.. for (r = 0; r < (1 << sh); r += (1 << tx_size)) { for (c = 0; c < (1 << sw); c += (1 << tx_size)) { if (r < max_blocks_high && c < max_blocks_wide) visit(plane, i, bsize, txfrm_size_b, arg); i += step; } } } else { for (i = 0; i < (1 << ss_block_size); i += step) { visit(plane, i, bsize, txfrm_size_b, arg); } } } static INLINE void foreach_transformed_block( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_transformed_block_visitor visit, void *arg) { int plane; for (plane = 0; plane < MAX_MB_PLANE; plane++) { foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); } } static INLINE void foreach_transformed_block_uv( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_transformed_block_visitor visit, void *arg) { int plane; for (plane = 1; plane < MAX_MB_PLANE; plane++) { foreach_transformed_block_in_plane(xd, bsize, plane, visit, arg); } } // TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could // calculate the subsampled BLOCK_SIZE_TYPE, but that type isn't defined for // sizes smaller than 16x16 yet. typedef void (*foreach_predicted_block_visitor)(int plane, int block, BLOCK_SIZE_TYPE bsize, int pred_w, int pred_h, void *arg); static INLINE void foreach_predicted_block_in_plane( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, int plane, foreach_predicted_block_visitor visit, void *arg) { int i, x, y; // block sizes in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // subsampled size of the block const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; // size of the predictor to use. int pred_w, pred_h; if (xd->mode_info_context->mbmi.sb_type < BLOCK_SIZE_SB8X8) { assert(bsize == BLOCK_SIZE_SB8X8); pred_w = 0; pred_h = 0; } else { pred_w = bwl; pred_h = bhl; } assert(pred_w <= bwl); assert(pred_h <= bhl); // visit each subblock in raster order i = 0; for (y = 0; y < 1 << bhl; y += 1 << pred_h) { for (x = 0; x < 1 << bwl; x += 1 << pred_w) { visit(plane, i, bsize, pred_w, pred_h, arg); i += 1 << pred_w; } i += (1 << (bwl + pred_h)) - (1 << bwl); } } static INLINE void foreach_predicted_block( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_predicted_block_visitor visit, void *arg) { int plane; for (plane = 0; plane < MAX_MB_PLANE; plane++) { foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg); } } static INLINE void foreach_predicted_block_uv( const MACROBLOCKD* const xd, BLOCK_SIZE_TYPE bsize, foreach_predicted_block_visitor visit, void *arg) { int plane; for (plane = 1; plane < MAX_MB_PLANE; plane++) { foreach_predicted_block_in_plane(xd, bsize, plane, visit, arg); } } static int raster_block_offset(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, int stride) { const int bw = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int y = 4 * (block >> bw), x = 4 * (block & ((1 << bw) - 1)); return y * stride + x; } static int16_t* raster_block_offset_int16(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, int16_t *base) { const int stride = plane_block_width(bsize, &xd->plane[plane]); return base + raster_block_offset(xd, bsize, plane, block, stride); } static uint8_t* raster_block_offset_uint8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, uint8_t *base, int stride) { return base + raster_block_offset(xd, bsize, plane, block, stride); } static int txfrm_block_to_raster_block(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, int ss_txfrm_size) { const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int txwl = ss_txfrm_size / 2; const int tx_cols_log2 = bwl - txwl; const int tx_cols = 1 << tx_cols_log2; const int raster_mb = block >> ss_txfrm_size; const int x = (raster_mb & (tx_cols - 1)) << (txwl); const int y = raster_mb >> tx_cols_log2 << (txwl); return x + (y << bwl); } static void txfrm_block_to_raster_xy(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int block, int ss_txfrm_size, int *x, int *y) { const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int txwl = ss_txfrm_size / 2; const int tx_cols_log2 = bwl - txwl; const int tx_cols = 1 << tx_cols_log2; const int raster_mb = block >> ss_txfrm_size; *x = (raster_mb & (tx_cols - 1)) << (txwl); *y = raster_mb >> tx_cols_log2 << (txwl); } static void extend_for_intra(MACROBLOCKD* const xd, int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size) { const int bw = plane_block_width(bsize, &xd->plane[plane]); const int bh = plane_block_height(bsize, &xd->plane[plane]); int x, y; txfrm_block_to_raster_xy(xd, bsize, plane, block, ss_txfrm_size, &x, &y); x = x * 4 - 1; y = y * 4 - 1; // Copy a pixel into the umv if we are in a situation where the block size // extends into the UMV. // TODO(JBB): Should be able to do the full extend in place so we don't have // to do this multiple times. if (xd->mb_to_right_edge < 0) { int umv_border_start = bw + (xd->mb_to_right_edge >> (3 + xd->plane[plane].subsampling_x)); if (x + bw > umv_border_start) vpx_memset( xd->plane[plane].dst.buf + y * xd->plane[plane].dst.stride + umv_border_start, *(xd->plane[plane].dst.buf + y * xd->plane[plane].dst.stride + umv_border_start - 1), bw); } if (xd->mb_to_bottom_edge < 0) { int umv_border_start = bh + (xd->mb_to_bottom_edge >> (3 + xd->plane[plane].subsampling_y)); int i; uint8_t c = *(xd->plane[plane].dst.buf + (umv_border_start - 1) * xd->plane[plane].dst.stride + x); uint8_t *d = xd->plane[plane].dst.buf + umv_border_start * xd->plane[plane].dst.stride + x; if (y + bh > umv_border_start) for (i = 0; i < bh; i++, d += xd->plane[plane].dst.stride) *d = c; } } static void set_contexts_on_border(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane, int ss_tx_size, int eob, int aoff, int loff, ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L) { const int bw = b_width_log2(bsize), bh = b_height_log2(bsize); const int sw = bw - xd->plane[plane].subsampling_x; const int sh = bh - xd->plane[plane].subsampling_y; int mi_blocks_wide = 1 << sw; int mi_blocks_high = 1 << sh; int tx_size_in_blocks = (1 << ss_tx_size); int above_contexts = tx_size_in_blocks; int left_contexts = tx_size_in_blocks; int pt; // xd->mb_to_right_edge is in units of pixels * 8. This converts // it to 4x4 block sizes. if (xd->mb_to_right_edge < 0) { mi_blocks_wide += (xd->mb_to_right_edge >> (5 + xd->plane[plane].subsampling_x)); } // this code attempts to avoid copying into contexts that are outside // our border. Any blocks that do are set to 0... if (above_contexts + aoff > mi_blocks_wide) above_contexts = mi_blocks_wide - aoff; if (xd->mb_to_bottom_edge < 0) { mi_blocks_high += (xd->mb_to_bottom_edge >> (5 + xd->plane[plane].subsampling_y)); } if (left_contexts + loff > mi_blocks_high) { left_contexts = mi_blocks_high - loff; } for (pt = 0; pt < above_contexts; pt++) A[pt] = eob > 0; for (pt = above_contexts; pt < (1 << ss_tx_size); pt++) A[pt] = 0; for (pt = 0; pt < left_contexts; pt++) L[pt] = eob > 0; for (pt = left_contexts; pt < (1 << ss_tx_size); pt++) L[pt] = 0; } #endif // VP9_COMMON_VP9_BLOCKD_H_