/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include #include "vpx_dsp/vpx_dsp_common.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vpx_ports/system_state.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_ratectrl.h" // Max rate target for 1080P and below encodes under normal circumstances // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB #define MAX_MB_RATE 250 #define MAXRATE_1080P 2025000 #define DEFAULT_KF_BOOST 2000 #define DEFAULT_GF_BOOST 2000 #define LIMIT_QRANGE_FOR_ALTREF_AND_KEY 1 #define MIN_BPB_FACTOR 0.005 #define MAX_BPB_FACTOR 50 #define FRAME_OVERHEAD_BITS 200 #define LIMIT_QP_ONEPASS_VBR_LAG 0 #if CONFIG_VP9_HIGHBITDEPTH #define ASSIGN_MINQ_TABLE(bit_depth, name) \ do { \ switch (bit_depth) { \ case VPX_BITS_8: \ name = name##_8; \ break; \ case VPX_BITS_10: \ name = name##_10; \ break; \ case VPX_BITS_12: \ name = name##_12; \ break; \ default: \ assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10" \ " or VPX_BITS_12"); \ name = NULL; \ } \ } while (0) #else #define ASSIGN_MINQ_TABLE(bit_depth, name) \ do { \ (void) bit_depth; \ name = name##_8; \ } while (0) #endif // Tables relating active max Q to active min Q static int kf_low_motion_minq_8[QINDEX_RANGE]; static int kf_high_motion_minq_8[QINDEX_RANGE]; static int arfgf_low_motion_minq_8[QINDEX_RANGE]; static int arfgf_high_motion_minq_8[QINDEX_RANGE]; static int inter_minq_8[QINDEX_RANGE]; static int rtc_minq_8[QINDEX_RANGE]; #if CONFIG_VP9_HIGHBITDEPTH static int kf_low_motion_minq_10[QINDEX_RANGE]; static int kf_high_motion_minq_10[QINDEX_RANGE]; static int arfgf_low_motion_minq_10[QINDEX_RANGE]; static int arfgf_high_motion_minq_10[QINDEX_RANGE]; static int inter_minq_10[QINDEX_RANGE]; static int rtc_minq_10[QINDEX_RANGE]; static int kf_low_motion_minq_12[QINDEX_RANGE]; static int kf_high_motion_minq_12[QINDEX_RANGE]; static int arfgf_low_motion_minq_12[QINDEX_RANGE]; static int arfgf_high_motion_minq_12[QINDEX_RANGE]; static int inter_minq_12[QINDEX_RANGE]; static int rtc_minq_12[QINDEX_RANGE]; #endif static int gf_high = 2000; static int gf_low = 400; static int kf_high = 5000; static int kf_low = 400; // Functions to compute the active minq lookup table entries based on a // formulaic approach to facilitate easier adjustment of the Q tables. // The formulae were derived from computing a 3rd order polynomial best // fit to the original data (after plotting real maxq vs minq (not q index)) static int get_minq_index(double maxq, double x3, double x2, double x1, vpx_bit_depth_t bit_depth) { int i; const double minqtarget = VPXMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); // Special case handling to deal with the step from q2.0 // down to lossless mode represented by q 1.0. if (minqtarget <= 2.0) return 0; for (i = 0; i < QINDEX_RANGE; i++) { if (minqtarget <= vp9_convert_qindex_to_q(i, bit_depth)) return i; } return QINDEX_RANGE - 1; } static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, int *arfgf_high, int *inter, int *rtc, vpx_bit_depth_t bit_depth) { int i; for (i = 0; i < QINDEX_RANGE; i++) { const double maxq = vp9_convert_qindex_to_q(i, bit_depth); kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); } } void vp9_rc_init_minq_luts(void) { init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, inter_minq_8, rtc_minq_8, VPX_BITS_8); #if CONFIG_VP9_HIGHBITDEPTH init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, inter_minq_10, rtc_minq_10, VPX_BITS_10); init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, inter_minq_12, rtc_minq_12, VPX_BITS_12); #endif } // These functions use formulaic calculations to make playing with the // quantizer tables easier. If necessary they can be replaced by lookup // tables if and when things settle down in the experimental bitstream double vp9_convert_qindex_to_q(int qindex, vpx_bit_depth_t bit_depth) { // Convert the index to a real Q value (scaled down to match old Q values) #if CONFIG_VP9_HIGHBITDEPTH switch (bit_depth) { case VPX_BITS_8: return vp9_ac_quant(qindex, 0, bit_depth) / 4.0; case VPX_BITS_10: return vp9_ac_quant(qindex, 0, bit_depth) / 16.0; case VPX_BITS_12: return vp9_ac_quant(qindex, 0, bit_depth) / 64.0; default: assert(0 && "bit_depth should be VPX_BITS_8, VPX_BITS_10 or VPX_BITS_12"); return -1.0; } #else return vp9_ac_quant(qindex, 0, bit_depth) / 4.0; #endif } int vp9_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, double correction_factor, vpx_bit_depth_t bit_depth) { const double q = vp9_convert_qindex_to_q(qindex, bit_depth); int enumerator = frame_type == KEY_FRAME ? 2700000 : 1800000; assert(correction_factor <= MAX_BPB_FACTOR && correction_factor >= MIN_BPB_FACTOR); // q based adjustment to baseline enumerator enumerator += (int)(enumerator * q) >> 12; return (int)(enumerator * correction_factor / q); } int vp9_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, double correction_factor, vpx_bit_depth_t bit_depth) { const int bpm = (int)(vp9_rc_bits_per_mb(frame_type, q, correction_factor, bit_depth)); return VPXMAX(FRAME_OVERHEAD_BITS, (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); } int vp9_rc_clamp_pframe_target_size(const VP9_COMP *const cpi, int target) { const RATE_CONTROL *rc = &cpi->rc; const VP9EncoderConfig *oxcf = &cpi->oxcf; const int min_frame_target = VPXMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); if (target < min_frame_target) target = min_frame_target; if (cpi->refresh_golden_frame && rc->is_src_frame_alt_ref) { // If there is an active ARF at this location use the minimum // bits on this frame even if it is a constructed arf. // The active maximum quantizer insures that an appropriate // number of bits will be spent if needed for constructed ARFs. target = min_frame_target; } // Clip the frame target to the maximum allowed value. if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; if (oxcf->rc_max_inter_bitrate_pct) { const int max_rate = rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; target = VPXMIN(target, max_rate); } return target; } int vp9_rc_clamp_iframe_target_size(const VP9_COMP *const cpi, int target) { const RATE_CONTROL *rc = &cpi->rc; const VP9EncoderConfig *oxcf = &cpi->oxcf; if (oxcf->rc_max_intra_bitrate_pct) { const int max_rate = rc->avg_frame_bandwidth * oxcf->rc_max_intra_bitrate_pct / 100; target = VPXMIN(target, max_rate); } if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; return target; } // Update the buffer level for higher temporal layers, given the encoded current // temporal layer. static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { int i = 0; int current_temporal_layer = svc->temporal_layer_id; for (i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) { const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate - encoded_frame_size); lrc->bits_off_target += bits_off_for_this_layer; // Clip buffer level to maximum buffer size for the layer. lrc->bits_off_target = VPXMIN(lrc->bits_off_target, lrc->maximum_buffer_size); lrc->buffer_level = lrc->bits_off_target; } } // Update the buffer level: leaky bucket model. static void update_buffer_level(VP9_COMP *cpi, int encoded_frame_size) { const VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; // Non-viewable frames are a special case and are treated as pure overhead. if (!cm->show_frame) { rc->bits_off_target -= encoded_frame_size; } else { rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; } // Clip the buffer level to the maximum specified buffer size. rc->bits_off_target = VPXMIN(rc->bits_off_target, rc->maximum_buffer_size); // For screen-content mode, and if frame-dropper is off, don't let buffer // level go below threshold, given here as -rc->maximum_ buffer_size. if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && cpi->oxcf.drop_frames_water_mark == 0) rc->bits_off_target = VPXMAX(rc->bits_off_target, -rc->maximum_buffer_size); rc->buffer_level = rc->bits_off_target; if (is_one_pass_cbr_svc(cpi)) { update_layer_buffer_level(&cpi->svc, encoded_frame_size); } } int vp9_rc_get_default_min_gf_interval( int width, int height, double framerate) { // Assume we do not need any constraint lower than 4K 20 fps static const double factor_safe = 3840 * 2160 * 20.0; const double factor = width * height * framerate; const int default_interval = clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); if (factor <= factor_safe) return default_interval; else return VPXMAX(default_interval, (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); // Note this logic makes: // 4K24: 5 // 4K30: 6 // 4K60: 12 } int vp9_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { int interval = VPXMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); interval += (interval & 0x01); // Round to even value return VPXMAX(interval, min_gf_interval); } void vp9_rc_init(const VP9EncoderConfig *oxcf, int pass, RATE_CONTROL *rc) { int i; if (pass == 0 && oxcf->rc_mode == VPX_CBR) { rc->avg_frame_qindex[KEY_FRAME] = oxcf->worst_allowed_q; rc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; } else { rc->avg_frame_qindex[KEY_FRAME] = (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; rc->avg_frame_qindex[INTER_FRAME] = (oxcf->worst_allowed_q + oxcf->best_allowed_q) / 2; } rc->last_q[KEY_FRAME] = oxcf->best_allowed_q; rc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; rc->buffer_level = rc->starting_buffer_level; rc->bits_off_target = rc->starting_buffer_level; rc->rolling_target_bits = rc->avg_frame_bandwidth; rc->rolling_actual_bits = rc->avg_frame_bandwidth; rc->long_rolling_target_bits = rc->avg_frame_bandwidth; rc->long_rolling_actual_bits = rc->avg_frame_bandwidth; rc->total_actual_bits = 0; rc->total_target_bits = 0; rc->total_target_vs_actual = 0; rc->avg_frame_low_motion = 0; rc->count_last_scene_change = 0; rc->af_ratio_onepass_vbr = 10; rc->prev_avg_source_sad_lag = 0; rc->high_source_sad = 0; rc->high_source_sad_lagindex = -1; rc->fac_active_worst_inter = 150; rc->fac_active_worst_gf = 100; rc->force_qpmin = 0; for (i = 0; i < MAX_LAG_BUFFERS; ++i) rc->avg_source_sad[i] = 0; rc->frames_since_key = 8; // Sensible default for first frame. rc->this_key_frame_forced = 0; rc->next_key_frame_forced = 0; rc->source_alt_ref_pending = 0; rc->source_alt_ref_active = 0; rc->frames_till_gf_update_due = 0; rc->ni_av_qi = oxcf->worst_allowed_q; rc->ni_tot_qi = 0; rc->ni_frames = 0; rc->tot_q = 0.0; rc->avg_q = vp9_convert_qindex_to_q(oxcf->worst_allowed_q, oxcf->bit_depth); for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { rc->rate_correction_factors[i] = 1.0; } rc->min_gf_interval = oxcf->min_gf_interval; rc->max_gf_interval = oxcf->max_gf_interval; if (rc->min_gf_interval == 0) rc->min_gf_interval = vp9_rc_get_default_min_gf_interval( oxcf->width, oxcf->height, oxcf->init_framerate); if (rc->max_gf_interval == 0) rc->max_gf_interval = vp9_rc_get_default_max_gf_interval( oxcf->init_framerate, rc->min_gf_interval); rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; } int vp9_rc_drop_frame(VP9_COMP *cpi) { const VP9EncoderConfig *oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; if (!oxcf->drop_frames_water_mark || (is_one_pass_cbr_svc(cpi) && cpi->svc.spatial_layer_id > cpi->svc.first_spatial_layer_to_encode)) { return 0; } else { if (rc->buffer_level < 0) { // Always drop if buffer is below 0. return 1; } else { // If buffer is below drop_mark, for now just drop every other frame // (starting with the next frame) until it increases back over drop_mark. int drop_mark = (int)(oxcf->drop_frames_water_mark * rc->optimal_buffer_level / 100); if ((rc->buffer_level > drop_mark) && (rc->decimation_factor > 0)) { --rc->decimation_factor; } else if (rc->buffer_level <= drop_mark && rc->decimation_factor == 0) { rc->decimation_factor = 1; } if (rc->decimation_factor > 0) { if (rc->decimation_count > 0) { --rc->decimation_count; return 1; } else { rc->decimation_count = rc->decimation_factor; return 0; } } else { rc->decimation_count = 0; return 0; } } } } static double get_rate_correction_factor(const VP9_COMP *cpi) { const RATE_CONTROL *const rc = &cpi->rc; double rcf; if (cpi->common.frame_type == KEY_FRAME) { rcf = rc->rate_correction_factors[KF_STD]; } else if (cpi->oxcf.pass == 2) { RATE_FACTOR_LEVEL rf_lvl = cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; rcf = rc->rate_correction_factors[rf_lvl]; } else { if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && !rc->is_src_frame_alt_ref && !cpi->use_svc && (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) rcf = rc->rate_correction_factors[GF_ARF_STD]; else rcf = rc->rate_correction_factors[INTER_NORMAL]; } rcf *= rcf_mult[rc->frame_size_selector]; return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); } static void set_rate_correction_factor(VP9_COMP *cpi, double factor) { RATE_CONTROL *const rc = &cpi->rc; // Normalize RCF to account for the size-dependent scaling factor. factor /= rcf_mult[cpi->rc.frame_size_selector]; factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); if (cpi->common.frame_type == KEY_FRAME) { rc->rate_correction_factors[KF_STD] = factor; } else if (cpi->oxcf.pass == 2) { RATE_FACTOR_LEVEL rf_lvl = cpi->twopass.gf_group.rf_level[cpi->twopass.gf_group.index]; rc->rate_correction_factors[rf_lvl] = factor; } else { if ((cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) && !rc->is_src_frame_alt_ref && !cpi->use_svc && (cpi->oxcf.rc_mode != VPX_CBR || cpi->oxcf.gf_cbr_boost_pct > 20)) rc->rate_correction_factors[GF_ARF_STD] = factor; else rc->rate_correction_factors[INTER_NORMAL] = factor; } } void vp9_rc_update_rate_correction_factors(VP9_COMP *cpi) { const VP9_COMMON *const cm = &cpi->common; int correction_factor = 100; double rate_correction_factor = get_rate_correction_factor(cpi); double adjustment_limit; int projected_size_based_on_q = 0; // Do not update the rate factors for arf overlay frames. if (cpi->rc.is_src_frame_alt_ref) return; // Clear down mmx registers to allow floating point in what follows vpx_clear_system_state(); // Work out how big we would have expected the frame to be at this Q given // the current correction factor. // Stay in double to avoid int overflow when values are large if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { projected_size_based_on_q = vp9_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); } else { projected_size_based_on_q = vp9_estimate_bits_at_q(cpi->common.frame_type, cm->base_qindex, cm->MBs, rate_correction_factor, cm->bit_depth); } // Work out a size correction factor. if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) correction_factor = (int)((100 * (int64_t)cpi->rc.projected_frame_size) / projected_size_based_on_q); // More heavily damped adjustment used if we have been oscillating either side // of target. adjustment_limit = 0.25 + 0.5 * VPXMIN(1, fabs(log10(0.01 * correction_factor))); cpi->rc.q_2_frame = cpi->rc.q_1_frame; cpi->rc.q_1_frame = cm->base_qindex; cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; if (correction_factor > 110) cpi->rc.rc_1_frame = -1; else if (correction_factor < 90) cpi->rc.rc_1_frame = 1; else cpi->rc.rc_1_frame = 0; // Turn off oscilation detection in the case of massive overshoot. if (cpi->rc.rc_1_frame == -1 && cpi->rc.rc_2_frame == 1 && correction_factor > 1000) { cpi->rc.rc_2_frame = 0; } if (correction_factor > 102) { // We are not already at the worst allowable quality correction_factor = (int)(100 + ((correction_factor - 100) * adjustment_limit)); rate_correction_factor = (rate_correction_factor * correction_factor) / 100; // Keep rate_correction_factor within limits if (rate_correction_factor > MAX_BPB_FACTOR) rate_correction_factor = MAX_BPB_FACTOR; } else if (correction_factor < 99) { // We are not already at the best allowable quality correction_factor = (int)(100 - ((100 - correction_factor) * adjustment_limit)); rate_correction_factor = (rate_correction_factor * correction_factor) / 100; // Keep rate_correction_factor within limits if (rate_correction_factor < MIN_BPB_FACTOR) rate_correction_factor = MIN_BPB_FACTOR; } set_rate_correction_factor(cpi, rate_correction_factor); } int vp9_rc_regulate_q(const VP9_COMP *cpi, int target_bits_per_frame, int active_best_quality, int active_worst_quality) { const VP9_COMMON *const cm = &cpi->common; int q = active_worst_quality; int last_error = INT_MAX; int i, target_bits_per_mb, bits_per_mb_at_this_q; const double correction_factor = get_rate_correction_factor(cpi); // Calculate required scaling factor based on target frame size and size of // frame produced using previous Q. target_bits_per_mb = ((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / cm->MBs; i = active_best_quality; do { if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && cpi->svc.temporal_layer_id == 0) { bits_per_mb_at_this_q = (int)vp9_cyclic_refresh_rc_bits_per_mb(cpi, i, correction_factor); } else { bits_per_mb_at_this_q = (int)vp9_rc_bits_per_mb(cm->frame_type, i, correction_factor, cm->bit_depth); } if (bits_per_mb_at_this_q <= target_bits_per_mb) { if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) q = i; else q = i - 1; break; } else { last_error = bits_per_mb_at_this_q - target_bits_per_mb; } } while (++i <= active_worst_quality); // In CBR mode, this makes sure q is between oscillating Qs to prevent // resonance. if (cpi->oxcf.rc_mode == VPX_CBR && (cpi->rc.rc_1_frame * cpi->rc.rc_2_frame == -1) && cpi->rc.q_1_frame != cpi->rc.q_2_frame) { q = clamp(q, VPXMIN(cpi->rc.q_1_frame, cpi->rc.q_2_frame), VPXMAX(cpi->rc.q_1_frame, cpi->rc.q_2_frame)); } return q; } static int get_active_quality(int q, int gfu_boost, int low, int high, int *low_motion_minq, int *high_motion_minq) { if (gfu_boost > high) { return low_motion_minq[q]; } else if (gfu_boost < low) { return high_motion_minq[q]; } else { const int gap = high - low; const int offset = high - gfu_boost; const int qdiff = high_motion_minq[q] - low_motion_minq[q]; const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; return low_motion_minq[q] + adjustment; } } static int get_kf_active_quality(const RATE_CONTROL *const rc, int q, vpx_bit_depth_t bit_depth) { int *kf_low_motion_minq; int *kf_high_motion_minq; ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); return get_active_quality(q, rc->kf_boost, kf_low, kf_high, kf_low_motion_minq, kf_high_motion_minq); } static int get_gf_active_quality(const RATE_CONTROL *const rc, int q, vpx_bit_depth_t bit_depth) { int *arfgf_low_motion_minq; int *arfgf_high_motion_minq; ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); return get_active_quality(q, rc->gfu_boost, gf_low, gf_high, arfgf_low_motion_minq, arfgf_high_motion_minq); } static int calc_active_worst_quality_one_pass_vbr(const VP9_COMP *cpi) { const RATE_CONTROL *const rc = &cpi->rc; const unsigned int curr_frame = cpi->common.current_video_frame; int active_worst_quality; if (cpi->common.frame_type == KEY_FRAME) { active_worst_quality = curr_frame == 0 ? rc->worst_quality : rc->last_q[KEY_FRAME] << 1; } else { if (!rc->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] * 5 >> 2 : rc->last_q[INTER_FRAME] * rc->fac_active_worst_gf / 100; } else { active_worst_quality = curr_frame == 1 ? rc->last_q[KEY_FRAME] << 1 : rc->avg_frame_qindex[INTER_FRAME] * rc->fac_active_worst_inter / 100; } } return VPXMIN(active_worst_quality, rc->worst_quality); } // Adjust active_worst_quality level based on buffer level. static int calc_active_worst_quality_one_pass_cbr(const VP9_COMP *cpi) { // Adjust active_worst_quality: If buffer is above the optimal/target level, // bring active_worst_quality down depending on fullness of buffer. // If buffer is below the optimal level, let the active_worst_quality go from // ambient Q (at buffer = optimal level) to worst_quality level // (at buffer = critical level). const VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *rc = &cpi->rc; // Buffer level below which we push active_worst to worst_quality. int64_t critical_level = rc->optimal_buffer_level >> 3; int64_t buff_lvl_step = 0; int adjustment = 0; int active_worst_quality; int ambient_qp; unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers; if (cm->frame_type == KEY_FRAME) return rc->worst_quality; // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] // for the first few frames following key frame. These are both initialized // to worst_quality and updated with (3/4, 1/4) average in postencode_update. // So for first few frames following key, the qp of that key frame is weighted // into the active_worst_quality setting. ambient_qp = (cm->current_video_frame < num_frames_weight_key) ? VPXMIN(rc->avg_frame_qindex[INTER_FRAME], rc->avg_frame_qindex[KEY_FRAME]) : rc->avg_frame_qindex[INTER_FRAME]; active_worst_quality = VPXMIN(rc->worst_quality, ambient_qp * 5 >> 2); if (rc->buffer_level > rc->optimal_buffer_level) { // Adjust down. // Maximum limit for down adjustment, ~30%. int max_adjustment_down = active_worst_quality / 3; if (max_adjustment_down) { buff_lvl_step = ((rc->maximum_buffer_size - rc->optimal_buffer_level) / max_adjustment_down); if (buff_lvl_step) adjustment = (int)((rc->buffer_level - rc->optimal_buffer_level) / buff_lvl_step); active_worst_quality -= adjustment; } } else if (rc->buffer_level > critical_level) { // Adjust up from ambient Q. if (critical_level) { buff_lvl_step = (rc->optimal_buffer_level - critical_level); if (buff_lvl_step) { adjustment = (int)((rc->worst_quality - ambient_qp) * (rc->optimal_buffer_level - rc->buffer_level) / buff_lvl_step); } active_worst_quality = ambient_qp + adjustment; } } else { // Set to worst_quality if buffer is below critical level. active_worst_quality = rc->worst_quality; } return active_worst_quality; } static int rc_pick_q_and_bounds_one_pass_cbr(const VP9_COMP *cpi, int *bottom_index, int *top_index) { const VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; int active_best_quality; int active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); int q; int *rtc_minq; ASSIGN_MINQ_TABLE(cm->bit_depth, rtc_minq); if (frame_is_intra_only(cm)) { active_best_quality = rc->best_quality; // Handle the special case for key frames forced when we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping. if (rc->this_key_frame_forced) { int qindex = rc->last_boosted_qindex; double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, (last_boosted_q * 0.75), cm->bit_depth); active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); } else if (cm->current_video_frame > 0) { // not first frame of one pass and kf_boost is set double q_adj_factor = 1.0; double q_val; active_best_quality = get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth); // Allow somewhat lower kf minq with small image formats. if ((cm->width * cm->height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Convert the adjustment factor to a qindex delta // on active_best_quality. q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); active_best_quality += vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); } } else if (!rc->is_src_frame_alt_ref && !cpi->use_svc && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { // Use the lower of active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. if (rc->frames_since_key > 1 && rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { q = rc->avg_frame_qindex[INTER_FRAME]; } else { q = active_worst_quality; } active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); } else { // Use the lower of active_worst_quality and recent/average Q. if (cm->current_video_frame > 1) { if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) active_best_quality = rtc_minq[rc->avg_frame_qindex[INTER_FRAME]]; else active_best_quality = rtc_minq[active_worst_quality]; } else { if (rc->avg_frame_qindex[KEY_FRAME] < active_worst_quality) active_best_quality = rtc_minq[rc->avg_frame_qindex[KEY_FRAME]]; else active_best_quality = rtc_minq[active_worst_quality]; } } // Clip the active best and worst quality values to limits active_best_quality = clamp(active_best_quality, rc->best_quality, rc->worst_quality); active_worst_quality = clamp(active_worst_quality, active_best_quality, rc->worst_quality); *top_index = active_worst_quality; *bottom_index = active_best_quality; #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY // Limit Q range for the adaptive loop. if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && !(cm->current_video_frame == 0)) { int qdelta = 0; vpx_clear_system_state(); qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth); *top_index = active_worst_quality + qdelta; *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; } #endif // Special case code to try and match quality with forced key frames if (cm->frame_type == KEY_FRAME && rc->this_key_frame_forced) { q = rc->last_boosted_qindex; } else { q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, active_worst_quality); if (q > *top_index) { // Special case when we are targeting the max allowed rate if (rc->this_frame_target >= rc->max_frame_bandwidth) *top_index = q; else q = *top_index; } } assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } static int get_active_cq_level_one_pass( const RATE_CONTROL *rc, const VP9EncoderConfig *const oxcf) { static const double cq_adjust_threshold = 0.1; int active_cq_level = oxcf->cq_level; if (oxcf->rc_mode == VPX_CQ && rc->total_target_bits > 0) { const double x = (double)rc->total_actual_bits / rc->total_target_bits; if (x < cq_adjust_threshold) { active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); } } return active_cq_level; } #define SMOOTH_PCT_MIN 0.1 #define SMOOTH_PCT_DIV 0.05 static int get_active_cq_level_two_pass( const TWO_PASS *twopass, const RATE_CONTROL *rc, const VP9EncoderConfig *const oxcf) { static const double cq_adjust_threshold = 0.1; int active_cq_level = oxcf->cq_level; if (oxcf->rc_mode == VPX_CQ) { if (twopass->mb_smooth_pct > SMOOTH_PCT_MIN) { active_cq_level -= (int)((twopass->mb_smooth_pct - SMOOTH_PCT_MIN) / SMOOTH_PCT_DIV); active_cq_level = VPXMAX(active_cq_level, 0); } if (rc->total_target_bits > 0) { const double x = (double)rc->total_actual_bits / rc->total_target_bits; if (x < cq_adjust_threshold) { active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); } } } return active_cq_level; } static int rc_pick_q_and_bounds_one_pass_vbr(const VP9_COMP *cpi, int *bottom_index, int *top_index) { const VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; const int cq_level = get_active_cq_level_one_pass(rc, oxcf); int active_best_quality; int active_worst_quality = calc_active_worst_quality_one_pass_vbr(cpi); int q; int *inter_minq; ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); if (frame_is_intra_only(cm)) { if (oxcf->rc_mode == VPX_Q) { int qindex = cq_level; double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); int delta_qindex = vp9_compute_qdelta(rc, q, q * 0.25, cm->bit_depth); active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); } else if (rc->this_key_frame_forced) { // Handle the special case for key frames forced when we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping. int qindex = rc->last_boosted_qindex; double last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); int delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth); active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); } else { // not first frame of one pass and kf_boost is set double q_adj_factor = 1.0; double q_val; active_best_quality = get_kf_active_quality(rc, rc->avg_frame_qindex[KEY_FRAME], cm->bit_depth); // Allow somewhat lower kf minq with small image formats. if ((cm->width * cm->height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Convert the adjustment factor to a qindex delta // on active_best_quality. q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); active_best_quality += vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); } } else if (!rc->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { // Use the lower of active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. if (rc->frames_since_key > 1) { if (rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { q = rc->avg_frame_qindex[INTER_FRAME]; } else { q = active_worst_quality; } } else { q = rc->avg_frame_qindex[KEY_FRAME]; } // For constrained quality dont allow Q less than the cq level if (oxcf->rc_mode == VPX_CQ) { if (q < cq_level) q = cq_level; active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); // Constrained quality use slightly lower active best. active_best_quality = active_best_quality * 15 / 16; } else if (oxcf->rc_mode == VPX_Q) { int qindex = cq_level; double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); int delta_qindex; if (cpi->refresh_alt_ref_frame) delta_qindex = vp9_compute_qdelta(rc, q, q * 0.40, cm->bit_depth); else delta_qindex = vp9_compute_qdelta(rc, q, q * 0.50, cm->bit_depth); active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); } else { active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); } } else { if (oxcf->rc_mode == VPX_Q) { int qindex = cq_level; double q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); double delta_rate[FIXED_GF_INTERVAL] = {0.50, 1.0, 0.85, 1.0, 0.70, 1.0, 0.85, 1.0}; int delta_qindex = vp9_compute_qdelta(rc, q, q * delta_rate[cm->current_video_frame % FIXED_GF_INTERVAL], cm->bit_depth); active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); } else { // Use the min of the average Q and active_worst_quality as basis for // active_best. if (cm->current_video_frame > 1) { q = VPXMIN(rc->avg_frame_qindex[INTER_FRAME], active_worst_quality); active_best_quality = inter_minq[q]; } else { active_best_quality = inter_minq[rc->avg_frame_qindex[KEY_FRAME]]; } // For the constrained quality mode we don't want // q to fall below the cq level. if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) { active_best_quality = cq_level; } } } // Clip the active best and worst quality values to limits active_best_quality = clamp(active_best_quality, rc->best_quality, rc->worst_quality); active_worst_quality = clamp(active_worst_quality, active_best_quality, rc->worst_quality); #if LIMIT_QP_ONEPASS_VBR_LAG if (oxcf->lag_in_frames > 0 && oxcf->rc_mode == VPX_VBR) { if (rc->force_qpmin > 0 && active_best_quality < rc->force_qpmin) active_best_quality = clamp(active_best_quality, rc->force_qpmin, rc->worst_quality); } #endif *top_index = active_worst_quality; *bottom_index = active_best_quality; #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY { int qdelta = 0; vpx_clear_system_state(); // Limit Q range for the adaptive loop. if (cm->frame_type == KEY_FRAME && !rc->this_key_frame_forced && !(cm->current_video_frame == 0)) { qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, active_worst_quality, 2.0, cm->bit_depth); } else if (!rc->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, cm->frame_type, active_worst_quality, 1.75, cm->bit_depth); } *top_index = active_worst_quality + qdelta; *top_index = (*top_index > *bottom_index) ? *top_index : *bottom_index; } #endif if (oxcf->rc_mode == VPX_Q) { q = active_best_quality; // Special case code to try and match quality with forced key frames } else if ((cm->frame_type == KEY_FRAME) && rc->this_key_frame_forced) { q = rc->last_boosted_qindex; } else { q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, active_worst_quality); if (q > *top_index) { // Special case when we are targeting the max allowed rate if (rc->this_frame_target >= rc->max_frame_bandwidth) *top_index = q; else q = *top_index; } } assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } int vp9_frame_type_qdelta(const VP9_COMP *cpi, int rf_level, int q) { static const double rate_factor_deltas[RATE_FACTOR_LEVELS] = { 1.00, // INTER_NORMAL 1.00, // INTER_HIGH 1.50, // GF_ARF_LOW 1.75, // GF_ARF_STD 2.00, // KF_STD }; static const FRAME_TYPE frame_type[RATE_FACTOR_LEVELS] = {INTER_FRAME, INTER_FRAME, INTER_FRAME, INTER_FRAME, KEY_FRAME}; const VP9_COMMON *const cm = &cpi->common; int qdelta = vp9_compute_qdelta_by_rate(&cpi->rc, frame_type[rf_level], q, rate_factor_deltas[rf_level], cm->bit_depth); return qdelta; } #define STATIC_MOTION_THRESH 95 static int rc_pick_q_and_bounds_two_pass(const VP9_COMP *cpi, int *bottom_index, int *top_index) { const VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; const GF_GROUP *gf_group = &cpi->twopass.gf_group; const int cq_level = get_active_cq_level_two_pass(&cpi->twopass, rc, oxcf); int active_best_quality; int active_worst_quality = cpi->twopass.active_worst_quality; int q; int *inter_minq; ASSIGN_MINQ_TABLE(cm->bit_depth, inter_minq); if (frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) { // Handle the special case for key frames forced when we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping. if (rc->this_key_frame_forced) { double last_boosted_q; int delta_qindex; int qindex; if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { qindex = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex); active_best_quality = qindex; last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, last_boosted_q * 1.25, cm->bit_depth); active_worst_quality = VPXMIN(qindex + delta_qindex, active_worst_quality); } else { qindex = rc->last_boosted_qindex; last_boosted_q = vp9_convert_qindex_to_q(qindex, cm->bit_depth); delta_qindex = vp9_compute_qdelta(rc, last_boosted_q, last_boosted_q * 0.75, cm->bit_depth); active_best_quality = VPXMAX(qindex + delta_qindex, rc->best_quality); } } else { // Not forced keyframe. double q_adj_factor = 1.0; double q_val; // Baseline value derived from cpi->active_worst_quality and kf boost. active_best_quality = get_kf_active_quality(rc, active_worst_quality, cm->bit_depth); // Allow somewhat lower kf minq with small image formats. if ((cm->width * cm->height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Make a further adjustment based on the kf zero motion measure. q_adj_factor += 0.05 - (0.001 * (double)cpi->twopass.kf_zeromotion_pct); // Convert the adjustment factor to a qindex delta // on active_best_quality. q_val = vp9_convert_qindex_to_q(active_best_quality, cm->bit_depth); active_best_quality += vp9_compute_qdelta(rc, q_val, q_val * q_adj_factor, cm->bit_depth); } } else if (!rc->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) { // Use the lower of active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. if (rc->frames_since_key > 1 && rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { q = rc->avg_frame_qindex[INTER_FRAME]; } else { q = active_worst_quality; } // For constrained quality dont allow Q less than the cq level if (oxcf->rc_mode == VPX_CQ) { if (q < cq_level) q = cq_level; active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); // Constrained quality use slightly lower active best. active_best_quality = active_best_quality * 15 / 16; } else if (oxcf->rc_mode == VPX_Q) { if (!cpi->refresh_alt_ref_frame) { active_best_quality = cq_level; } else { active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); // Modify best quality for second level arfs. For mode VPX_Q this // becomes the baseline frame q. if (gf_group->rf_level[gf_group->index] == GF_ARF_LOW) active_best_quality = (active_best_quality + cq_level + 1) / 2; } } else { active_best_quality = get_gf_active_quality(rc, q, cm->bit_depth); } } else { if (oxcf->rc_mode == VPX_Q) { active_best_quality = cq_level; } else { active_best_quality = inter_minq[active_worst_quality]; // For the constrained quality mode we don't want // q to fall below the cq level. if ((oxcf->rc_mode == VPX_CQ) && (active_best_quality < cq_level)) { active_best_quality = cq_level; } } } // Extension to max or min Q if undershoot or overshoot is outside // the permitted range. if (cpi->oxcf.rc_mode != VPX_Q) { if (frame_is_intra_only(cm) || (!rc->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { active_best_quality -= (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast); active_worst_quality += (cpi->twopass.extend_maxq / 2); } else { active_best_quality -= (cpi->twopass.extend_minq + cpi->twopass.extend_minq_fast) / 2; active_worst_quality += cpi->twopass.extend_maxq; } } #if LIMIT_QRANGE_FOR_ALTREF_AND_KEY vpx_clear_system_state(); // Static forced key frames Q restrictions dealt with elsewhere. if (!((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi))) || !rc->this_key_frame_forced || (cpi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { int qdelta = vp9_frame_type_qdelta(cpi, gf_group->rf_level[gf_group->index], active_worst_quality); active_worst_quality = VPXMAX(active_worst_quality + qdelta, active_best_quality); } #endif // Modify active_best_quality for downscaled normal frames. if (rc->frame_size_selector != UNSCALED && !frame_is_kf_gf_arf(cpi)) { int qdelta = vp9_compute_qdelta_by_rate(rc, cm->frame_type, active_best_quality, 2.0, cm->bit_depth); active_best_quality = VPXMAX(active_best_quality + qdelta, rc->best_quality); } active_best_quality = clamp(active_best_quality, rc->best_quality, rc->worst_quality); active_worst_quality = clamp(active_worst_quality, active_best_quality, rc->worst_quality); if (oxcf->rc_mode == VPX_Q) { q = active_best_quality; // Special case code to try and match quality with forced key frames. } else if ((frame_is_intra_only(cm) || vp9_is_upper_layer_key_frame(cpi)) && rc->this_key_frame_forced) { // If static since last kf use better of last boosted and last kf q. if (cpi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { q = VPXMIN(rc->last_kf_qindex, rc->last_boosted_qindex); } else { q = rc->last_boosted_qindex; } } else { q = vp9_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, active_worst_quality); if (q > active_worst_quality) { // Special case when we are targeting the max allowed rate. if (rc->this_frame_target >= rc->max_frame_bandwidth) active_worst_quality = q; else q = active_worst_quality; } } clamp(q, active_best_quality, active_worst_quality); *top_index = active_worst_quality; *bottom_index = active_best_quality; assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } int vp9_rc_pick_q_and_bounds(const VP9_COMP *cpi, int *bottom_index, int *top_index) { int q; if (cpi->oxcf.pass == 0) { if (cpi->oxcf.rc_mode == VPX_CBR) q = rc_pick_q_and_bounds_one_pass_cbr(cpi, bottom_index, top_index); else q = rc_pick_q_and_bounds_one_pass_vbr(cpi, bottom_index, top_index); } else { q = rc_pick_q_and_bounds_two_pass(cpi, bottom_index, top_index); } if (cpi->sf.use_nonrd_pick_mode) { if (cpi->sf.force_frame_boost == 1) q -= cpi->sf.max_delta_qindex; if (q < *bottom_index) *bottom_index = q; else if (q > *top_index) *top_index = q; } return q; } void vp9_rc_compute_frame_size_bounds(const VP9_COMP *cpi, int frame_target, int *frame_under_shoot_limit, int *frame_over_shoot_limit) { if (cpi->oxcf.rc_mode == VPX_Q) { *frame_under_shoot_limit = 0; *frame_over_shoot_limit = INT_MAX; } else { // For very small rate targets where the fractional adjustment // may be tiny make sure there is at least a minimum range. const int tolerance = (cpi->sf.recode_tolerance * frame_target) / 100; *frame_under_shoot_limit = VPXMAX(frame_target - tolerance - 200, 0); *frame_over_shoot_limit = VPXMIN(frame_target + tolerance + 200, cpi->rc.max_frame_bandwidth); } } void vp9_rc_set_frame_target(VP9_COMP *cpi, int target) { const VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; rc->this_frame_target = target; // Modify frame size target when down-scaling. if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC && rc->frame_size_selector != UNSCALED) rc->this_frame_target = (int)(rc->this_frame_target * rate_thresh_mult[rc->frame_size_selector]); // Target rate per SB64 (including partial SB64s. rc->sb64_target_rate = ((int64_t)rc->this_frame_target * 64 * 64) / (cm->width * cm->height); } static void update_alt_ref_frame_stats(VP9_COMP *cpi) { // this frame refreshes means next frames don't unless specified by user RATE_CONTROL *const rc = &cpi->rc; rc->frames_since_golden = 0; // Mark the alt ref as done (setting to 0 means no further alt refs pending). rc->source_alt_ref_pending = 0; // Set the alternate reference frame active flag rc->source_alt_ref_active = 1; } static void update_golden_frame_stats(VP9_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; // Update the Golden frame usage counts. if (cpi->refresh_golden_frame) { // this frame refreshes means next frames don't unless specified by user rc->frames_since_golden = 0; // If we are not using alt ref in the up and coming group clear the arf // active flag. In multi arf group case, if the index is not 0 then // we are overlaying a mid group arf so should not reset the flag. if (cpi->oxcf.pass == 2) { if (!rc->source_alt_ref_pending && (cpi->twopass.gf_group.index == 0)) rc->source_alt_ref_active = 0; } else if (!rc->source_alt_ref_pending) { rc->source_alt_ref_active = 0; } // Decrement count down till next gf if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--; } else if (!cpi->refresh_alt_ref_frame) { // Decrement count down till next gf if (rc->frames_till_gf_update_due > 0) rc->frames_till_gf_update_due--; rc->frames_since_golden++; } } static void compute_frame_low_motion(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; int mi_row, mi_col; MODE_INFO **mi = cm->mi_grid_visible; RATE_CONTROL *const rc = &cpi->rc; const int rows = cm->mi_rows, cols = cm->mi_cols; int cnt_zeromv = 0; for (mi_row = 0; mi_row < rows; mi_row++) { for (mi_col = 0; mi_col < cols; mi_col++) { if (abs(mi[0]->mv[0].as_mv.row) < 16 && abs(mi[0]->mv[0].as_mv.col) < 16) cnt_zeromv++; mi++; } mi += 8; } cnt_zeromv = 100 * cnt_zeromv / (rows * cols); rc->avg_frame_low_motion = (3 * rc->avg_frame_low_motion + cnt_zeromv) >> 2; } void vp9_rc_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { const VP9_COMMON *const cm = &cpi->common; const VP9EncoderConfig *const oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; const int qindex = cm->base_qindex; if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) { vp9_cyclic_refresh_postencode(cpi); } // Update rate control heuristics rc->projected_frame_size = (int)(bytes_used << 3); // Post encode loop adjustment of Q prediction. vp9_rc_update_rate_correction_factors(cpi); // Keep a record of last Q and ambient average Q. if (cm->frame_type == KEY_FRAME) { rc->last_q[KEY_FRAME] = qindex; rc->avg_frame_qindex[KEY_FRAME] = ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); if (cpi->use_svc) { int i = 0; SVC *svc = &cpi->svc; for (i = 0; i < svc->number_temporal_layers; ++i) { const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; lrc->last_q[KEY_FRAME] = rc->last_q[KEY_FRAME]; lrc->avg_frame_qindex[KEY_FRAME] = rc->avg_frame_qindex[KEY_FRAME]; } } } else { if ((cpi->use_svc && oxcf->rc_mode == VPX_CBR) || (!rc->is_src_frame_alt_ref && !(cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) { rc->last_q[INTER_FRAME] = qindex; rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO(3 * rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); rc->ni_frames++; rc->tot_q += vp9_convert_qindex_to_q(qindex, cm->bit_depth); rc->avg_q = rc->tot_q / rc->ni_frames; // Calculate the average Q for normal inter frames (not key or GFU // frames). rc->ni_tot_qi += qindex; rc->ni_av_qi = rc->ni_tot_qi / rc->ni_frames; } } // Keep record of last boosted (KF/KF/ARF) Q value. // If the current frame is coded at a lower Q then we also update it. // If all mbs in this group are skipped only update if the Q value is // better than that already stored. // This is used to help set quality in forced key frames to reduce popping if ((qindex < rc->last_boosted_qindex) || (cm->frame_type == KEY_FRAME) || (!rc->constrained_gf_group && (cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !rc->is_src_frame_alt_ref)))) { rc->last_boosted_qindex = qindex; } if (cm->frame_type == KEY_FRAME) rc->last_kf_qindex = qindex; update_buffer_level(cpi, rc->projected_frame_size); // Rolling monitors of whether we are over or underspending used to help // regulate min and Max Q in two pass. if (cm->frame_type != KEY_FRAME) { rc->rolling_target_bits = ROUND_POWER_OF_TWO( rc->rolling_target_bits * 3 + rc->this_frame_target, 2); rc->rolling_actual_bits = ROUND_POWER_OF_TWO( rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); rc->long_rolling_target_bits = ROUND_POWER_OF_TWO( rc->long_rolling_target_bits * 31 + rc->this_frame_target, 5); rc->long_rolling_actual_bits = ROUND_POWER_OF_TWO( rc->long_rolling_actual_bits * 31 + rc->projected_frame_size, 5); } // Actual bits spent rc->total_actual_bits += rc->projected_frame_size; rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; rc->total_target_vs_actual = rc->total_actual_bits - rc->total_target_bits; if (!cpi->use_svc || is_two_pass_svc(cpi)) { if (is_altref_enabled(cpi) && cpi->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME)) // Update the alternate reference frame stats as appropriate. update_alt_ref_frame_stats(cpi); else // Update the Golden frame stats as appropriate. update_golden_frame_stats(cpi); } if (cm->frame_type == KEY_FRAME) rc->frames_since_key = 0; if (cm->show_frame) { rc->frames_since_key++; rc->frames_to_key--; } // Trigger the resizing of the next frame if it is scaled. if (oxcf->pass != 0) { cpi->resize_pending = rc->next_frame_size_selector != rc->frame_size_selector; rc->frame_size_selector = rc->next_frame_size_selector; } if (oxcf->pass == 0) { if (cm->frame_type != KEY_FRAME) compute_frame_low_motion(cpi); } } void vp9_rc_postencode_update_drop_frame(VP9_COMP *cpi) { // Update buffer level with zero size, update frame counters, and return. update_buffer_level(cpi, 0); cpi->rc.frames_since_key++; cpi->rc.frames_to_key--; cpi->rc.rc_2_frame = 0; cpi->rc.rc_1_frame = 0; } // Use this macro to turn on/off use of alt-refs in one-pass mode. #define USE_ALTREF_FOR_ONE_PASS 1 static int calc_pframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { const RATE_CONTROL *const rc = &cpi->rc; int target; const int af_ratio = rc->af_ratio_onepass_vbr; #if USE_ALTREF_FOR_ONE_PASS target = (!rc->is_src_frame_alt_ref && (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)) ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio) / (rc->baseline_gf_interval + af_ratio - 1) : (rc->avg_frame_bandwidth * rc->baseline_gf_interval) / (rc->baseline_gf_interval + af_ratio - 1); #else target = rc->avg_frame_bandwidth; #endif return vp9_rc_clamp_pframe_target_size(cpi, target); } static int calc_iframe_target_size_one_pass_vbr(const VP9_COMP *const cpi) { static const int kf_ratio = 25; const RATE_CONTROL *rc = &cpi->rc; const int target = rc->avg_frame_bandwidth * kf_ratio; return vp9_rc_clamp_iframe_target_size(cpi, target); } static void adjust_gfint_frame_constraint(VP9_COMP *cpi, int frame_constraint) { RATE_CONTROL *const rc = &cpi->rc; rc->constrained_gf_group = 0; // Reset gf interval to make more equal spacing for frame_constraint. if ((frame_constraint <= 7 * rc->baseline_gf_interval >> 2) && (frame_constraint > rc->baseline_gf_interval)) { rc->baseline_gf_interval = frame_constraint >> 1; if (rc->baseline_gf_interval < 5) rc->baseline_gf_interval = frame_constraint; rc->constrained_gf_group = 1; } else { // Reset to keep gf_interval <= frame_constraint. if (rc->baseline_gf_interval > frame_constraint) { rc->baseline_gf_interval = frame_constraint; rc->constrained_gf_group = 1; } } } void vp9_rc_get_one_pass_vbr_params(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int target; // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. if (!cpi->refresh_alt_ref_frame && (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { cm->frame_type = KEY_FRAME; rc->this_key_frame_forced = cm->current_video_frame != 0 && rc->frames_to_key == 0; rc->frames_to_key = cpi->oxcf.key_freq; rc->kf_boost = DEFAULT_KF_BOOST; rc->source_alt_ref_active = 0; } else { cm->frame_type = INTER_FRAME; } if (rc->frames_till_gf_update_due == 0) { double rate_err = 1.0; rc->gfu_boost = DEFAULT_GF_BOOST; if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) { vp9_cyclic_refresh_set_golden_update(cpi); } else { rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; } rc->af_ratio_onepass_vbr = 10; if (rc->rolling_target_bits > 0) rate_err = (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits; if (cm->current_video_frame > 30) { if (rc->avg_frame_qindex[INTER_FRAME] > (7 * rc->worst_quality) >> 3 && rate_err > 3.5) { rc->baseline_gf_interval = VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1); } else if (rc->avg_frame_low_motion < 20) { // Decrease gf interval for high motion case. rc->baseline_gf_interval = VPXMAX(5, rc->baseline_gf_interval >> 1); } // Adjust boost and af_ratio based on avg_frame_low_motion, which varies // between 0 and 100 (stationary, 100% zero/small motion). rc->gfu_boost = VPXMAX(500, DEFAULT_GF_BOOST * (rc->avg_frame_low_motion << 1) / (rc->avg_frame_low_motion + 100)); rc->af_ratio_onepass_vbr = VPXMIN(15, VPXMAX(5, 3 * rc->gfu_boost / 400)); } adjust_gfint_frame_constraint(cpi, rc->frames_to_key); rc->frames_till_gf_update_due = rc->baseline_gf_interval; cpi->refresh_golden_frame = 1; rc->source_alt_ref_pending = USE_ALTREF_FOR_ONE_PASS; } if (cm->frame_type == KEY_FRAME) target = calc_iframe_target_size_one_pass_vbr(cpi); else target = calc_pframe_target_size_one_pass_vbr(cpi); vp9_rc_set_frame_target(cpi, target); if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cpi->oxcf.pass == 0) vp9_cyclic_refresh_update_parameters(cpi); } static int calc_pframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { const VP9EncoderConfig *oxcf = &cpi->oxcf; const RATE_CONTROL *rc = &cpi->rc; const SVC *const svc = &cpi->svc; const int64_t diff = rc->optimal_buffer_level - rc->buffer_level; const int64_t one_pct_bits = 1 + rc->optimal_buffer_level / 100; int min_frame_target = VPXMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); int target; if (oxcf->gf_cbr_boost_pct) { const int af_ratio_pct = oxcf->gf_cbr_boost_pct + 100; target = cpi->refresh_golden_frame ? (rc->avg_frame_bandwidth * rc->baseline_gf_interval * af_ratio_pct) / (rc->baseline_gf_interval * 100 + af_ratio_pct - 100) : (rc->avg_frame_bandwidth * rc->baseline_gf_interval * 100) / (rc->baseline_gf_interval * 100 + af_ratio_pct - 100); } else { target = rc->avg_frame_bandwidth; } if (is_one_pass_cbr_svc(cpi)) { // Note that for layers, avg_frame_bandwidth is the cumulative // per-frame-bandwidth. For the target size of this frame, use the // layer average frame size (i.e., non-cumulative per-frame-bw). int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, svc->number_temporal_layers); const LAYER_CONTEXT *lc = &svc->layer_context[layer]; target = lc->avg_frame_size; min_frame_target = VPXMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); } if (diff > 0) { // Lower the target bandwidth for this frame. const int pct_low = (int)VPXMIN(diff / one_pct_bits, oxcf->under_shoot_pct); target -= (target * pct_low) / 200; } else if (diff < 0) { // Increase the target bandwidth for this frame. const int pct_high = (int)VPXMIN(-diff / one_pct_bits, oxcf->over_shoot_pct); target += (target * pct_high) / 200; } if (oxcf->rc_max_inter_bitrate_pct) { const int max_rate = rc->avg_frame_bandwidth * oxcf->rc_max_inter_bitrate_pct / 100; target = VPXMIN(target, max_rate); } return VPXMAX(min_frame_target, target); } static int calc_iframe_target_size_one_pass_cbr(const VP9_COMP *cpi) { const RATE_CONTROL *rc = &cpi->rc; const VP9EncoderConfig *oxcf = &cpi->oxcf; const SVC *const svc = &cpi->svc; int target; if (cpi->common.current_video_frame == 0) { target = ((rc->starting_buffer_level / 2) > INT_MAX) ? INT_MAX : (int)(rc->starting_buffer_level / 2); } else { int kf_boost = 32; double framerate = cpi->framerate; if (svc->number_temporal_layers > 1 && oxcf->rc_mode == VPX_CBR) { // Use the layer framerate for temporal layers CBR mode. const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, svc->number_temporal_layers); const LAYER_CONTEXT *lc = &svc->layer_context[layer]; framerate = lc->framerate; } kf_boost = VPXMAX(kf_boost, (int)(2 * framerate - 16)); if (rc->frames_since_key < framerate / 2) { kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); } target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; } return vp9_rc_clamp_iframe_target_size(cpi, target); } void vp9_rc_get_svc_params(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int target = rc->avg_frame_bandwidth; int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); // Periodic key frames is based on the super-frame counter // (svc.current_superframe), also only base spatial layer is key frame. if ((cm->current_video_frame == 0) || (cpi->frame_flags & FRAMEFLAGS_KEY) || (cpi->oxcf.auto_key && (cpi->svc.current_superframe % cpi->oxcf.key_freq == 0) && cpi->svc.spatial_layer_id == 0)) { cm->frame_type = KEY_FRAME; rc->source_alt_ref_active = 0; if (is_two_pass_svc(cpi)) { cpi->svc.layer_context[layer].is_key_frame = 1; cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); } else if (is_one_pass_cbr_svc(cpi)) { if (cm->current_video_frame > 0) vp9_svc_reset_key_frame(cpi); layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); cpi->svc.layer_context[layer].is_key_frame = 1; cpi->ref_frame_flags &= (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG); // Assumption here is that LAST_FRAME is being updated for a keyframe. // Thus no change in update flags. target = calc_iframe_target_size_one_pass_cbr(cpi); } } else { cm->frame_type = INTER_FRAME; if (is_two_pass_svc(cpi)) { LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; if (cpi->svc.spatial_layer_id == 0) { lc->is_key_frame = 0; } else { lc->is_key_frame = cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; if (lc->is_key_frame) cpi->ref_frame_flags &= (~VP9_LAST_FLAG); } cpi->ref_frame_flags &= (~VP9_ALT_FLAG); } else if (is_one_pass_cbr_svc(cpi)) { LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; if (cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode) { lc->is_key_frame = 0; } else { lc->is_key_frame = cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame; } target = calc_pframe_target_size_one_pass_cbr(cpi); } } // Any update/change of global cyclic refresh parameters (amount/delta-qp) // should be done here, before the frame qp is selected. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_update_parameters(cpi); vp9_rc_set_frame_target(cpi, target); rc->frames_till_gf_update_due = INT_MAX; rc->baseline_gf_interval = INT_MAX; } void vp9_rc_get_one_pass_cbr_params(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int target; // TODO(yaowu): replace the "auto_key && 0" below with proper decision logic. if ((cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY) || rc->frames_to_key == 0 || (cpi->oxcf.auto_key && 0))) { cm->frame_type = KEY_FRAME; rc->this_key_frame_forced = cm->current_video_frame != 0 && rc->frames_to_key == 0; rc->frames_to_key = cpi->oxcf.key_freq; rc->kf_boost = DEFAULT_KF_BOOST; rc->source_alt_ref_active = 0; } else { cm->frame_type = INTER_FRAME; } if (rc->frames_till_gf_update_due == 0) { if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_set_golden_update(cpi); else rc->baseline_gf_interval = (rc->min_gf_interval + rc->max_gf_interval) / 2; rc->frames_till_gf_update_due = rc->baseline_gf_interval; // NOTE: frames_till_gf_update_due must be <= frames_to_key. if (rc->frames_till_gf_update_due > rc->frames_to_key) rc->frames_till_gf_update_due = rc->frames_to_key; cpi->refresh_golden_frame = 1; rc->gfu_boost = DEFAULT_GF_BOOST; } // Any update/change of global cyclic refresh parameters (amount/delta-qp) // should be done here, before the frame qp is selected. if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_update_parameters(cpi); if (cm->frame_type == KEY_FRAME) target = calc_iframe_target_size_one_pass_cbr(cpi); else target = calc_pframe_target_size_one_pass_cbr(cpi); vp9_rc_set_frame_target(cpi, target); if (cpi->oxcf.resize_mode == RESIZE_DYNAMIC) cpi->resize_pending = vp9_resize_one_pass_cbr(cpi); else cpi->resize_pending = 0; } int vp9_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, vpx_bit_depth_t bit_depth) { int start_index = rc->worst_quality; int target_index = rc->worst_quality; int i; // Convert the average q value to an index. for (i = rc->best_quality; i < rc->worst_quality; ++i) { start_index = i; if (vp9_convert_qindex_to_q(i, bit_depth) >= qstart) break; } // Convert the q target to an index for (i = rc->best_quality; i < rc->worst_quality; ++i) { target_index = i; if (vp9_convert_qindex_to_q(i, bit_depth) >= qtarget) break; } return target_index - start_index; } int vp9_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, int qindex, double rate_target_ratio, vpx_bit_depth_t bit_depth) { int target_index = rc->worst_quality; int i; // Look up the current projected bits per block for the base index const int base_bits_per_mb = vp9_rc_bits_per_mb(frame_type, qindex, 1.0, bit_depth); // Find the target bits per mb based on the base value and given ratio. const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); // Convert the q target to an index for (i = rc->best_quality; i < rc->worst_quality; ++i) { if (vp9_rc_bits_per_mb(frame_type, i, 1.0, bit_depth) <= target_bits_per_mb) { target_index = i; break; } } return target_index - qindex; } void vp9_rc_set_gf_interval_range(const VP9_COMP *const cpi, RATE_CONTROL *const rc) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; // Special case code for 1 pass fixed Q mode tests if ((oxcf->pass == 0) && (oxcf->rc_mode == VPX_Q)) { rc->max_gf_interval = FIXED_GF_INTERVAL; rc->min_gf_interval = FIXED_GF_INTERVAL; rc->static_scene_max_gf_interval = FIXED_GF_INTERVAL; } else { // Set Maximum gf/arf interval rc->max_gf_interval = oxcf->max_gf_interval; rc->min_gf_interval = oxcf->min_gf_interval; if (rc->min_gf_interval == 0) rc->min_gf_interval = vp9_rc_get_default_min_gf_interval( oxcf->width, oxcf->height, cpi->framerate); if (rc->max_gf_interval == 0) rc->max_gf_interval = vp9_rc_get_default_max_gf_interval( cpi->framerate, rc->min_gf_interval); // Extended interval for genuinely static scenes rc->static_scene_max_gf_interval = MAX_LAG_BUFFERS * 2; if (is_altref_enabled(cpi)) { if (rc->static_scene_max_gf_interval > oxcf->lag_in_frames - 1) rc->static_scene_max_gf_interval = oxcf->lag_in_frames - 1; } if (rc->max_gf_interval > rc->static_scene_max_gf_interval) rc->max_gf_interval = rc->static_scene_max_gf_interval; // Clamp min to max rc->min_gf_interval = VPXMIN(rc->min_gf_interval, rc->max_gf_interval); } } void vp9_rc_update_framerate(VP9_COMP *cpi) { const VP9_COMMON *const cm = &cpi->common; const VP9EncoderConfig *const oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; int vbr_max_bits; rc->avg_frame_bandwidth = (int)(oxcf->target_bandwidth / cpi->framerate); rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); rc->min_frame_bandwidth = VPXMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); // A maximum bitrate for a frame is defined. // The baseline for this aligns with HW implementations that // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits // per 16x16 MB (averaged over a frame). However this limit is extended if // a very high rate is given on the command line or the the rate cannnot // be acheived because of a user specificed max q (e.g. when the user // specifies lossless encode. vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / 100); rc->max_frame_bandwidth = VPXMAX(VPXMAX((cm->MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); vp9_rc_set_gf_interval_range(cpi, rc); } #define VBR_PCT_ADJUSTMENT_LIMIT 50 // For VBR...adjustment to the frame target based on error from previous frames static void vbr_rate_correction(VP9_COMP *cpi, int *this_frame_target) { RATE_CONTROL *const rc = &cpi->rc; int64_t vbr_bits_off_target = rc->vbr_bits_off_target; int max_delta; int frame_window = VPXMIN(16, ((int)cpi->twopass.total_stats.count - cpi->common.current_video_frame)); // Calcluate the adjustment to rate for this frame. if (frame_window > 0) { max_delta = (vbr_bits_off_target > 0) ? (int)(vbr_bits_off_target / frame_window) : (int)(-vbr_bits_off_target / frame_window); max_delta = VPXMIN(max_delta, ((*this_frame_target * VBR_PCT_ADJUSTMENT_LIMIT) / 100)); // vbr_bits_off_target > 0 means we have extra bits to spend if (vbr_bits_off_target > 0) { *this_frame_target += (vbr_bits_off_target > max_delta) ? max_delta : (int)vbr_bits_off_target; } else { *this_frame_target -= (vbr_bits_off_target < -max_delta) ? max_delta : (int)-vbr_bits_off_target; } } // Fast redistribution of bits arising from massive local undershoot. // Dont do it for kf,arf,gf or overlay frames. if (!frame_is_kf_gf_arf(cpi) && !rc->is_src_frame_alt_ref && rc->vbr_bits_off_target_fast) { int one_frame_bits = VPXMAX(rc->avg_frame_bandwidth, *this_frame_target); int fast_extra_bits; fast_extra_bits = (int)VPXMIN(rc->vbr_bits_off_target_fast, one_frame_bits); fast_extra_bits = (int)VPXMIN( fast_extra_bits, VPXMAX(one_frame_bits / 8, rc->vbr_bits_off_target_fast / 8)); *this_frame_target += (int)fast_extra_bits; rc->vbr_bits_off_target_fast -= fast_extra_bits; } } void vp9_set_target_rate(VP9_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; int target_rate = rc->base_frame_target; if (cpi->common.frame_type == KEY_FRAME) target_rate = vp9_rc_clamp_iframe_target_size(cpi, target_rate); else target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate); // Correction to rate target based on prior over or under shoot. if (cpi->oxcf.rc_mode == VPX_VBR || cpi->oxcf.rc_mode == VPX_CQ) vbr_rate_correction(cpi, &target_rate); vp9_rc_set_frame_target(cpi, target_rate); } // Check if we should resize, based on average QP from past x frames. // Only allow for resize at most one scale down for now, scaling factor is 2. int vp9_resize_one_pass_cbr(VP9_COMP *cpi) { const VP9_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; RESIZE_ACTION resize_action = NO_RESIZE; int avg_qp_thr1 = 70; int avg_qp_thr2 = 50; int min_width = 180; int min_height = 180; int down_size_on = 1; cpi->resize_scale_num = 1; cpi->resize_scale_den = 1; // Don't resize on key frame; reset the counters on key frame. if (cm->frame_type == KEY_FRAME) { cpi->resize_avg_qp = 0; cpi->resize_count = 0; return 0; } // Check current frame reslution to avoid generating frames smaller than // the minimum resolution. if (ONEHALFONLY_RESIZE) { if ((cm->width >> 1) < min_width || (cm->height >> 1) < min_height) down_size_on = 0; } else { if (cpi->resize_state == ORIG && (cm->width * 3 / 4 < min_width || cm->height * 3 / 4 < min_height)) return 0; else if (cpi->resize_state == THREE_QUARTER && ((cpi->oxcf.width >> 1) < min_width || (cpi->oxcf.height >> 1) < min_height)) down_size_on = 0; } #if CONFIG_VP9_TEMPORAL_DENOISING // If denoiser is on, apply a smaller qp threshold. if (cpi->oxcf.noise_sensitivity > 0) { avg_qp_thr1 = 60; avg_qp_thr2 = 40; } #endif // Resize based on average buffer underflow and QP over some window. // Ignore samples close to key frame, since QP is usually high after key. if (cpi->rc.frames_since_key > 2 * cpi->framerate) { const int window = (int)(4 * cpi->framerate); cpi->resize_avg_qp += cm->base_qindex; if (cpi->rc.buffer_level < (int)(30 * rc->optimal_buffer_level / 100)) ++cpi->resize_buffer_underflow; ++cpi->resize_count; // Check for resize action every "window" frames. if (cpi->resize_count >= window) { int avg_qp = cpi->resize_avg_qp / cpi->resize_count; // Resize down if buffer level has underflowed sufficient amount in past // window, and we are at original or 3/4 of original resolution. // Resize back up if average QP is low, and we are currently in a resized // down state, i.e. 1/2 or 3/4 of original resolution. // Currently, use a flag to turn 3/4 resizing feature on/off. if (cpi->resize_buffer_underflow > (cpi->resize_count >> 2)) { if (cpi->resize_state == THREE_QUARTER && down_size_on) { resize_action = DOWN_ONEHALF; cpi->resize_state = ONE_HALF; } else if (cpi->resize_state == ORIG) { resize_action = ONEHALFONLY_RESIZE ? DOWN_ONEHALF : DOWN_THREEFOUR; cpi->resize_state = ONEHALFONLY_RESIZE ? ONE_HALF : THREE_QUARTER; } } else if (cpi->resize_state != ORIG && avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) { if (cpi->resize_state == THREE_QUARTER || avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100 || ONEHALFONLY_RESIZE) { resize_action = UP_ORIG; cpi->resize_state = ORIG; } else if (cpi->resize_state == ONE_HALF) { resize_action = UP_THREEFOUR; cpi->resize_state = THREE_QUARTER; } } // Reset for next window measurement. cpi->resize_avg_qp = 0; cpi->resize_count = 0; cpi->resize_buffer_underflow = 0; } } // If decision is to resize, reset some quantities, and check is we should // reduce rate correction factor, if (resize_action != NO_RESIZE) { int target_bits_per_frame; int active_worst_quality; int qindex; int tot_scale_change; if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) { cpi->resize_scale_num = 3; cpi->resize_scale_den = 4; } else if (resize_action == DOWN_ONEHALF) { cpi->resize_scale_num = 1; cpi->resize_scale_den = 2; } else { // UP_ORIG or anything else cpi->resize_scale_num = 1; cpi->resize_scale_den = 1; } tot_scale_change = (cpi->resize_scale_den * cpi->resize_scale_den) / (cpi->resize_scale_num * cpi->resize_scale_num); // Reset buffer level to optimal, update target size. rc->buffer_level = rc->optimal_buffer_level; rc->bits_off_target = rc->optimal_buffer_level; rc->this_frame_target = calc_pframe_target_size_one_pass_cbr(cpi); // Get the projected qindex, based on the scaled target frame size (scaled // so target_bits_per_mb in vp9_rc_regulate_q will be correct target). target_bits_per_frame = (resize_action >= 0) ? rc->this_frame_target * tot_scale_change : rc->this_frame_target / tot_scale_change; active_worst_quality = calc_active_worst_quality_one_pass_cbr(cpi); qindex = vp9_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality, active_worst_quality); // If resize is down, check if projected q index is close to worst_quality, // and if so, reduce the rate correction factor (since likely can afford // lower q for resized frame). if (resize_action > 0 && qindex > 90 * cpi->rc.worst_quality / 100) { rc->rate_correction_factors[INTER_NORMAL] *= 0.85; } // If resize is back up, check if projected q index is too much above the // current base_qindex, and if so, reduce the rate correction factor // (since prefer to keep q for resized frame at least close to previous q). if (resize_action < 0 && qindex > 130 * cm->base_qindex / 100) { rc->rate_correction_factors[INTER_NORMAL] *= 0.9; } } return resize_action; } void adjust_gf_boost_lag_one_pass_vbr(VP9_COMP *cpi, uint64_t avg_sad_current) { VP9_COMMON * const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int target; int found = 0; int found2 = 0; int frame; int i; uint64_t avg_source_sad_lag = avg_sad_current; int high_source_sad_lagindex = -1; int steady_sad_lagindex = -1; uint32_t sad_thresh1 = 60000; uint32_t sad_thresh2 = 120000; int low_content = 0; int high_content = 0; double rate_err = 1.0; // Get measure of complexity over the future frames, and get the first // future frame with high_source_sad/scene-change. int tot_frames = vp9_lookahead_depth(cpi->lookahead) - 1; for (frame = tot_frames; frame >= 1; --frame) { const int lagframe_idx = tot_frames - frame + 1; uint64_t reference_sad = rc->avg_source_sad[0]; for (i = 1; i < lagframe_idx; ++i) { if (rc->avg_source_sad[i] > 0) reference_sad = (3 * reference_sad + rc->avg_source_sad[i]) >> 2; } // Detect up-coming scene change. if (!found && (rc->avg_source_sad[lagframe_idx] > VPXMAX(sad_thresh1, (unsigned int)(reference_sad << 1)) || rc->avg_source_sad[lagframe_idx] > VPXMAX(3 * sad_thresh1 >> 2, (unsigned int)(reference_sad << 2)))) { high_source_sad_lagindex = lagframe_idx; found = 1; } // Detect change from motion to steady. if (!found2 && lagframe_idx > 1 && lagframe_idx < tot_frames && rc->avg_source_sad[lagframe_idx - 1] > (sad_thresh1 >> 2)) { found2 = 1; for (i = lagframe_idx; i < tot_frames; ++i) { if (!(rc->avg_source_sad[i] > 0 && rc->avg_source_sad[i] < (sad_thresh1 >> 2) && rc->avg_source_sad[i] < (rc->avg_source_sad[lagframe_idx - 1] >> 1))) { found2 = 0; i = tot_frames; } } if (found2) steady_sad_lagindex = lagframe_idx; } avg_source_sad_lag += rc->avg_source_sad[lagframe_idx]; } if (tot_frames > 0) avg_source_sad_lag = avg_source_sad_lag / tot_frames; // Constrain distance between detected scene cuts. if (high_source_sad_lagindex != -1 && high_source_sad_lagindex != rc->high_source_sad_lagindex - 1 && abs(high_source_sad_lagindex - rc->high_source_sad_lagindex) < 4) rc->high_source_sad_lagindex = -1; else rc->high_source_sad_lagindex = high_source_sad_lagindex; // Adjust some factors for the next GF group, ignore initial key frame, // and only for lag_in_frames not too small. if (cpi->refresh_golden_frame == 1 && cm->frame_type != KEY_FRAME && cm->current_video_frame > 30 && cpi->oxcf.lag_in_frames > 8) { int frame_constraint; if (rc->rolling_target_bits > 0) rate_err = (double)rc->rolling_actual_bits / (double)rc->rolling_target_bits; high_content = high_source_sad_lagindex != -1 || avg_source_sad_lag > (rc->prev_avg_source_sad_lag << 1) || avg_source_sad_lag > sad_thresh2; low_content = high_source_sad_lagindex == -1 && ((avg_source_sad_lag < (rc->prev_avg_source_sad_lag >> 1)) || (avg_source_sad_lag < sad_thresh1)); if (low_content) { rc->gfu_boost = DEFAULT_GF_BOOST; rc->baseline_gf_interval = VPXMIN(15, (3 * rc->baseline_gf_interval) >> 1); } else if (high_content) { rc->gfu_boost = DEFAULT_GF_BOOST >> 1; rc->baseline_gf_interval = VPXMAX(5, rc->baseline_gf_interval >> 1); } // Check for constraining gf_interval for up-coming scene/content changes, // or for up-coming key frame, whichever is closer. frame_constraint = rc->frames_to_key; if (rc->high_source_sad_lagindex > 0 && frame_constraint > rc->high_source_sad_lagindex) frame_constraint = rc->high_source_sad_lagindex; if (steady_sad_lagindex > 0 && steady_sad_lagindex > 2 && frame_constraint > steady_sad_lagindex) frame_constraint = steady_sad_lagindex; adjust_gfint_frame_constraint(cpi, frame_constraint); rc->frames_till_gf_update_due = rc->baseline_gf_interval; // Adjust factors for active_worst setting & af_ratio for next gf interval. rc->fac_active_worst_inter = 150; // corresponds to 3/2 (= 150 /100). rc->fac_active_worst_gf = 100; if (rate_err < 1.5 && !high_content) { rc->fac_active_worst_inter = 120; rc->fac_active_worst_gf = 90; } if (low_content && rc->avg_frame_low_motion > 80) { rc->af_ratio_onepass_vbr = 15; } else if (high_content || rc->avg_frame_low_motion < 30) { rc->af_ratio_onepass_vbr = 5; rc->gfu_boost = DEFAULT_GF_BOOST >> 2; } target = calc_pframe_target_size_one_pass_vbr(cpi); vp9_rc_set_frame_target(cpi, target); #if LIMIT_QP_ONEPASS_VBR_LAG if (rc->avg_frame_low_motion > 85 && avg_source_sad_lag < (sad_thresh1 >> 1)) rc->force_qpmin = 48; else rc->force_qpmin = 0; #endif } rc->prev_avg_source_sad_lag = avg_source_sad_lag; } // Compute average source sad (temporal sad: between current source and // previous source) over a subset of superblocks. Use this is detect big changes // in content and allow rate control to react. // This function also handles special case of lag_in_frames, to measure content // level in #future frames set by the lag_in_frames. void vp9_avg_source_sad(VP9_COMP *cpi) { VP9_COMMON * const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; rc->high_source_sad = 0; if (cpi->Last_Source != NULL && cpi->Last_Source->y_width == cpi->Source->y_width && cpi->Last_Source->y_height == cpi->Source->y_height) { YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS] = {NULL}; uint8_t *src_y = cpi->Source->y_buffer; int src_ystride = cpi->Source->y_stride; uint8_t *last_src_y = cpi->Last_Source->y_buffer; int last_src_ystride = cpi->Last_Source->y_stride; int start_frame = 0; int frames_to_buffer = 1; int frame = 0; uint64_t avg_sad_current = 0; uint32_t min_thresh = 4000; float thresh = 8.0f; if (cpi->oxcf.rc_mode == VPX_VBR) { min_thresh = 60000; thresh = 2.1f; } if (cpi->oxcf.lag_in_frames > 0) { frames_to_buffer = (cm->current_video_frame == 1) ? vp9_lookahead_depth(cpi->lookahead) - 1: 2; start_frame = vp9_lookahead_depth(cpi->lookahead) - 1; for (frame = 0; frame < frames_to_buffer; ++frame) { const int lagframe_idx = start_frame - frame; if (lagframe_idx >= 0) { struct lookahead_entry *buf = vp9_lookahead_peek(cpi->lookahead, lagframe_idx); frames[frame] = &buf->img; } } // The avg_sad for this current frame is the value of frame#1 // (first future frame) from previous frame. avg_sad_current = rc->avg_source_sad[1]; if (avg_sad_current > VPXMAX(min_thresh, (unsigned int)(rc->avg_source_sad[0] * thresh)) && cm->current_video_frame > (unsigned int)cpi->oxcf.lag_in_frames) rc->high_source_sad = 1; else rc->high_source_sad = 0; // Update recursive average for current frame. if (avg_sad_current > 0) rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad_current) >> 2; // Shift back data, starting at frame#1. for (frame = 1; frame < cpi->oxcf.lag_in_frames - 1; ++frame) rc->avg_source_sad[frame] = rc->avg_source_sad[frame + 1]; } for (frame = 0; frame < frames_to_buffer; ++frame) { if (cpi->oxcf.lag_in_frames == 0 || (frames[frame] != NULL && frames[frame + 1] != NULL && frames[frame]->y_width == frames[frame + 1]->y_width && frames[frame]->y_height == frames[frame + 1]->y_height)) { int sbi_row, sbi_col; const int lagframe_idx = (cpi->oxcf.lag_in_frames == 0) ? 0 : start_frame - frame + 1; const BLOCK_SIZE bsize = BLOCK_64X64; // Loop over sub-sample of frame, compute average sad over 64x64 blocks. uint64_t avg_sad = 0; int num_samples = 0; int sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; int sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; if (cpi->oxcf.lag_in_frames > 0) { src_y = frames[frame]->y_buffer; src_ystride = frames[frame]->y_stride; last_src_y = frames[frame + 1]->y_buffer; last_src_ystride = frames[frame + 1]->y_stride; } for (sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { for (sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { // Checker-board pattern, ignore boundary. if ((sbi_row > 0 && sbi_col > 0) && (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) && ((sbi_row % 2 == 0 && sbi_col % 2 == 0) || (sbi_row % 2 != 0 && sbi_col % 2 != 0))) { num_samples++; avg_sad += cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride); } src_y += 64; last_src_y += 64; } src_y += (src_ystride << 6) - (sb_cols << 6); last_src_y += (last_src_ystride << 6) - (sb_cols << 6); } if (num_samples > 0) avg_sad = avg_sad / num_samples; // Set high_source_sad flag if we detect very high increase in avg_sad // between current and previous frame value(s). Use minimum threshold // for cases where there is small change from content that is completely // static. if (lagframe_idx == 0) { if (avg_sad > VPXMAX(min_thresh, (unsigned int)(rc->avg_source_sad[0] * thresh)) && rc->frames_since_key > 1) rc->high_source_sad = 1; else rc->high_source_sad = 0; if (avg_sad > 0 || cpi->oxcf.rc_mode == VPX_CBR) rc->avg_source_sad[0] = (3 * rc->avg_source_sad[0] + avg_sad) >> 2; } else { rc->avg_source_sad[lagframe_idx] = avg_sad; } } } // For VBR, under scene change/high content change, force golden refresh. if (cpi->oxcf.rc_mode == VPX_VBR && cm->frame_type != KEY_FRAME && rc->high_source_sad && rc->frames_to_key > 3 && rc->count_last_scene_change > 4 && cpi->ext_refresh_frame_flags_pending == 0) { int target; cpi->refresh_golden_frame = 1; rc->gfu_boost = DEFAULT_GF_BOOST >> 1; rc->baseline_gf_interval = VPXMIN(20, VPXMAX(10, rc->baseline_gf_interval)); adjust_gfint_frame_constraint(cpi, rc->frames_to_key); rc->frames_till_gf_update_due = rc->baseline_gf_interval; target = calc_pframe_target_size_one_pass_vbr(cpi); vp9_rc_set_frame_target(cpi, target); rc->count_last_scene_change = 0; } else { rc->count_last_scene_change++; } // If lag_in_frame is used, set the gf boost and interval. if (cpi->oxcf.lag_in_frames > 0) adjust_gf_boost_lag_one_pass_vbr(cpi, avg_sad_current); } } // Test if encoded frame will significantly overshoot the target bitrate, and // if so, set the QP, reset/adjust some rate control parameters, and return 1. int vp9_encodedframe_overshoot(VP9_COMP *cpi, int frame_size, int *q) { VP9_COMMON * const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; int thresh_qp = 3 * (rc->worst_quality >> 2); int thresh_rate = rc->avg_frame_bandwidth * 10; if (cm->base_qindex < thresh_qp && frame_size > thresh_rate) { double rate_correction_factor = cpi->rc.rate_correction_factors[INTER_NORMAL]; const int target_size = cpi->rc.avg_frame_bandwidth; double new_correction_factor; int target_bits_per_mb; double q2; int enumerator; // Force a re-encode, and for now use max-QP. *q = cpi->rc.worst_quality; // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as // these parameters will affect QP selection for subsequent frames. If they // have settled down to a very different (low QP) state, then not adjusting // them may cause next frame to select low QP and overshoot again. cpi->rc.avg_frame_qindex[INTER_FRAME] = *q; rc->buffer_level = rc->optimal_buffer_level; rc->bits_off_target = rc->optimal_buffer_level; // Reset rate under/over-shoot flags. cpi->rc.rc_1_frame = 0; cpi->rc.rc_2_frame = 0; // Adjust rate correction factor. target_bits_per_mb = ((uint64_t)target_size << BPER_MB_NORMBITS) / cm->MBs; // Rate correction factor based on target_bits_per_mb and qp (==max_QP). // This comes from the inverse computation of vp9_rc_bits_per_mb(). q2 = vp9_convert_qindex_to_q(*q, cm->bit_depth); enumerator = 1800000; // Factor for inter frame. enumerator += (int)(enumerator * q2) >> 12; new_correction_factor = (double)target_bits_per_mb * q2 / enumerator; if (new_correction_factor > rate_correction_factor) { rate_correction_factor = VPXMIN(2.0 * rate_correction_factor, new_correction_factor); if (rate_correction_factor > MAX_BPB_FACTOR) rate_correction_factor = MAX_BPB_FACTOR; cpi->rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor; } // For temporal layers, reset the rate control parametes across all // temporal layers. if (cpi->use_svc) { int i = 0; SVC *svc = &cpi->svc; for (i = 0; i < svc->number_temporal_layers; ++i) { const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; lrc->avg_frame_qindex[INTER_FRAME] = *q; lrc->buffer_level = rc->optimal_buffer_level; lrc->bits_off_target = rc->optimal_buffer_level; lrc->rc_1_frame = 0; lrc->rc_2_frame = 0; lrc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor; } } return 1; } else { return 0; } }