/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "onyx_int.h" #include "vp8/common/threading.h" #include "vp8/common/common.h" #include "vp8/common/extend.h" #if CONFIG_MULTITHREAD extern int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset); extern int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x, int ok_to_skip); extern void vp8_build_block_offsets(MACROBLOCK *x); extern void vp8_setup_block_ptrs(MACROBLOCK *x); extern void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm); static THREAD_FUNCTION loopfilter_thread(void *p_data) { VP8_COMP *cpi = (VP8_COMP *)(((LPFTHREAD_DATA *)p_data)->ptr1); VP8_COMMON *cm = &cpi->common; while (1) { if (cpi->b_multi_threaded == 0) break; if (sem_wait(&cpi->h_event_start_lpf) == 0) { if (cpi->b_multi_threaded == 0) // we're shutting down break; loopfilter_frame(cpi, cm); sem_post(&cpi->h_event_end_lpf); } } return 0; } static THREAD_FUNCTION thread_encoding_proc(void *p_data) { int ithread = ((ENCODETHREAD_DATA *)p_data)->ithread; VP8_COMP *cpi = (VP8_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr1); MB_ROW_COMP *mbri = (MB_ROW_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr2); ENTROPY_CONTEXT_PLANES mb_row_left_context; const int nsync = cpi->mt_sync_range; //printf("Started thread %d\n", ithread); while (1) { if (cpi->b_multi_threaded == 0) break; //if(WaitForSingleObject(cpi->h_event_mbrencoding[ithread], INFINITE) == WAIT_OBJECT_0) if (sem_wait(&cpi->h_event_start_encoding[ithread]) == 0) { VP8_COMMON *cm = &cpi->common; int mb_row; MACROBLOCK *x = &mbri->mb; MACROBLOCKD *xd = &x->e_mbd; TOKENEXTRA *tp ; int *segment_counts = mbri->segment_counts; int *totalrate = &mbri->totalrate; if (cpi->b_multi_threaded == 0) // we're shutting down break; for (mb_row = ithread + 1; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int map_index = (mb_row * cm->mb_cols); volatile int *last_row_current_mb_col; tp = cpi->tok + (mb_row * (cm->mb_cols * 16 * 24)); last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; // reset above block coeffs xd->above_context = cm->above_context; xd->left_context = &mb_row_left_context; vp8_zero(mb_row_left_context); xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); cpi->tplist[mb_row].start = tp; //printf("Thread mb_row = %d\n", mb_row); // Set the mb activity pointer to the start of the row. x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { if ((mb_col & (nsync - 1)) == 0) { while (mb_col > (*last_row_current_mb_col - nsync) && *last_row_current_mb_col != cm->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; // Set up limit values for motion vectors used to prevent them extending outside the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; //Copy current mb to a buffer vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); // Is segmentation enabled // MB level adjutment to quantizer if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id for current MB (with range checking) if (cpi->segmentation_map[map_index + mb_col] <= 3) xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index + mb_col]; else xd->mode_info_context->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x, 1); } else xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default x->active_ptr = cpi->active_map + map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macro_block(cpi, x, &tp); #ifdef MODE_STATS y_modes[xd->mbmi.mode] ++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock(cpi, x, &tp, recon_yoffset, recon_uvoffset); #ifdef MODE_STATS inter_y_modes[xd->mbmi.mode] ++; if (xd->mbmi.mode == SPLITMV) { int b; for (b = 0; b < xd->mbmi.partition_count; b++) { inter_b_modes[x->partition->bmi[b].mode] ++; } } #endif // Count of last ref frame 0,0 useage if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) cpi->inter_zz_count++; // Special case code for cyclic refresh // If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode // during vp8cx_encode_inter_macroblock()) back into the global sgmentation map if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled) { const MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi; cpi->segmentation_map[map_index + mb_col] = mbmi->segment_id; // If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh): // Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0) // else mark it as dirty (1). if (mbmi->segment_id) cpi->cyclic_refresh_map[map_index + mb_col] = -1; else if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) cpi->cyclic_refresh_map[map_index + mb_col] = 0; } else cpi->cyclic_refresh_map[map_index + mb_col] = 1; } } cpi->tplist[mb_row].stop = tp; // Increment pointer into gf useage flags structure. x->gf_active_ptr++; // Increment the activity mask pointers. x->mb_activity_ptr++; // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; // Keep track of segment useage segment_counts[xd->mode_info_context->mbmi.segment_id]++; // skip to next mb xd->mode_info_context++; x->partition_info++; xd->above_context++; cpi->mt_current_mb_col[mb_row] = mb_col; } //extend the recon for intra prediction vp8_extend_mb_row( &cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); // this is to account for the border xd->mode_info_context++; x->partition_info++; x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; if (mb_row == cm->mb_rows - 1) { //SetEvent(cpi->h_event_main); sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */ } } } } //printf("exit thread %d\n", ithread); return 0; } static void setup_mbby_copy(MACROBLOCK *mbdst, MACROBLOCK *mbsrc) { MACROBLOCK *x = mbsrc; MACROBLOCK *z = mbdst; int i; z->ss = x->ss; z->ss_count = x->ss_count; z->searches_per_step = x->searches_per_step; z->errorperbit = x->errorperbit; z->sadperbit16 = x->sadperbit16; z->sadperbit4 = x->sadperbit4; /* z->mv_col_min = x->mv_col_min; z->mv_col_max = x->mv_col_max; z->mv_row_min = x->mv_row_min; z->mv_row_max = x->mv_row_max; */ z->short_fdct4x4 = x->short_fdct4x4; z->short_fdct8x4 = x->short_fdct8x4; z->short_walsh4x4 = x->short_walsh4x4; z->quantize_b = x->quantize_b; z->quantize_b_pair = x->quantize_b_pair; z->optimize = x->optimize; /* z->mvc = x->mvc; z->src.y_buffer = x->src.y_buffer; z->src.u_buffer = x->src.u_buffer; z->src.v_buffer = x->src.v_buffer; */ vpx_memcpy(z->mvcosts, x->mvcosts, sizeof(x->mvcosts)); z->mvcost[0] = &z->mvcosts[0][mv_max+1]; z->mvcost[1] = &z->mvcosts[1][mv_max+1]; z->mvsadcost[0] = &z->mvsadcosts[0][mvfp_max+1]; z->mvsadcost[1] = &z->mvsadcosts[1][mvfp_max+1]; vpx_memcpy(z->token_costs, x->token_costs, sizeof(x->token_costs)); vpx_memcpy(z->inter_bmode_costs, x->inter_bmode_costs, sizeof(x->inter_bmode_costs)); //memcpy(z->mvcosts, x->mvcosts, sizeof(x->mvcosts)); //memcpy(z->mvcost, x->mvcost, sizeof(x->mvcost)); vpx_memcpy(z->mbmode_cost, x->mbmode_cost, sizeof(x->mbmode_cost)); vpx_memcpy(z->intra_uv_mode_cost, x->intra_uv_mode_cost, sizeof(x->intra_uv_mode_cost)); vpx_memcpy(z->bmode_costs, x->bmode_costs, sizeof(x->bmode_costs)); for (i = 0; i < 25; i++) { z->block[i].quant = x->block[i].quant; z->block[i].quant_fast = x->block[i].quant_fast; z->block[i].quant_shift = x->block[i].quant_shift; z->block[i].zbin = x->block[i].zbin; z->block[i].zrun_zbin_boost = x->block[i].zrun_zbin_boost; z->block[i].round = x->block[i].round; z->q_index = x->q_index; z->act_zbin_adj = x->act_zbin_adj; z->last_act_zbin_adj = x->last_act_zbin_adj; /* z->block[i].src = x->block[i].src; */ z->block[i].src_stride = x->block[i].src_stride; } { MACROBLOCKD *xd = &x->e_mbd; MACROBLOCKD *zd = &z->e_mbd; /* zd->mode_info_context = xd->mode_info_context; zd->mode_info = xd->mode_info; zd->mode_info_stride = xd->mode_info_stride; zd->frame_type = xd->frame_type; zd->up_available = xd->up_available ; zd->left_available = xd->left_available; zd->left_context = xd->left_context; zd->last_frame_dc = xd->last_frame_dc; zd->last_frame_dccons = xd->last_frame_dccons; zd->gold_frame_dc = xd->gold_frame_dc; zd->gold_frame_dccons = xd->gold_frame_dccons; zd->mb_to_left_edge = xd->mb_to_left_edge; zd->mb_to_right_edge = xd->mb_to_right_edge; zd->mb_to_top_edge = xd->mb_to_top_edge ; zd->mb_to_bottom_edge = xd->mb_to_bottom_edge; zd->gf_active_ptr = xd->gf_active_ptr; zd->frames_since_golden = xd->frames_since_golden; zd->frames_till_alt_ref_frame = xd->frames_till_alt_ref_frame; */ zd->subpixel_predict = xd->subpixel_predict; zd->subpixel_predict8x4 = xd->subpixel_predict8x4; zd->subpixel_predict8x8 = xd->subpixel_predict8x8; zd->subpixel_predict16x16 = xd->subpixel_predict16x16; zd->segmentation_enabled = xd->segmentation_enabled; zd->mb_segement_abs_delta = xd->mb_segement_abs_delta; vpx_memcpy(zd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); vpx_memcpy(zd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc)); vpx_memcpy(zd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1)); vpx_memcpy(zd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2)); vpx_memcpy(zd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv)); #if 1 /*TODO: Remove dequant from BLOCKD. This is a temporary solution until * the quantizer code uses a passed in pointer to the dequant constants. * This will also require modifications to the x86 and neon assembly. * */ for (i = 0; i < 16; i++) zd->block[i].dequant = zd->dequant_y1; for (i = 16; i < 24; i++) zd->block[i].dequant = zd->dequant_uv; zd->block[24].dequant = zd->dequant_y2; #endif } } void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, MB_ROW_COMP *mbr_ei, int mb_row, int count ) { VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; int i; (void) mb_row; for (i = 0; i < count; i++) { MACROBLOCK *mb = & mbr_ei[i].mb; MACROBLOCKD *mbd = &mb->e_mbd; mbd->subpixel_predict = xd->subpixel_predict; mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; mb->gf_active_ptr = x->gf_active_ptr; vpx_memset(mbr_ei[i].segment_counts, 0, sizeof(mbr_ei[i].segment_counts)); mbr_ei[i].totalrate = 0; mb->partition_info = x->pi + x->e_mbd.mode_info_stride * (i + 1); mbd->mode_info_context = cm->mi + x->e_mbd.mode_info_stride * (i + 1); mbd->mode_info_stride = cm->mode_info_stride; mbd->frame_type = cm->frame_type; mb->src = * cpi->Source; mbd->pre = cm->yv12_fb[cm->lst_fb_idx]; mbd->dst = cm->yv12_fb[cm->new_fb_idx]; mb->src.y_buffer += 16 * x->src.y_stride * (i + 1); mb->src.u_buffer += 8 * x->src.uv_stride * (i + 1); mb->src.v_buffer += 8 * x->src.uv_stride * (i + 1); vp8_build_block_offsets(mb); vp8_setup_block_dptrs(mbd); vp8_setup_block_ptrs(mb); mbd->left_context = &cm->left_context; mb->mvc = cm->fc.mvc; setup_mbby_copy(&mbr_ei[i].mb, x); mbd->fullpixel_mask = 0xffffffff; if(cm->full_pixel) mbd->fullpixel_mask = 0xfffffff8; } } void vp8cx_create_encoder_threads(VP8_COMP *cpi) { const VP8_COMMON * cm = &cpi->common; cpi->b_multi_threaded = 0; cpi->encoding_thread_count = 0; if (cm->processor_core_count > 1 && cpi->oxcf.multi_threaded > 1) { int ithread; int th_count = cpi->oxcf.multi_threaded - 1; /* don't allocate more threads than cores available */ if (cpi->oxcf.multi_threaded > cm->processor_core_count) th_count = cm->processor_core_count - 1; /* we have th_count + 1 (main) threads processing one row each */ /* no point to have more threads than the sync range allows */ if(th_count > ((cm->mb_cols / cpi->mt_sync_range) - 1)) { th_count = (cm->mb_cols / cpi->mt_sync_range) - 1; } if(th_count == 0) return; CHECK_MEM_ERROR(cpi->h_encoding_thread, vpx_malloc(sizeof(pthread_t) * th_count)); CHECK_MEM_ERROR(cpi->h_event_start_encoding, vpx_malloc(sizeof(sem_t) * th_count)); CHECK_MEM_ERROR(cpi->mb_row_ei, vpx_memalign(32, sizeof(MB_ROW_COMP) * th_count)); vpx_memset(cpi->mb_row_ei, 0, sizeof(MB_ROW_COMP) * th_count); CHECK_MEM_ERROR(cpi->en_thread_data, vpx_malloc(sizeof(ENCODETHREAD_DATA) * th_count)); CHECK_MEM_ERROR(cpi->mt_current_mb_col, vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows)); sem_init(&cpi->h_event_end_encoding, 0, 0); cpi->b_multi_threaded = 1; cpi->encoding_thread_count = th_count; /* printf("[VP8:] multi_threaded encoding is enabled with %d threads\n\n", (cpi->encoding_thread_count +1)); */ for (ithread = 0; ithread < th_count; ithread++) { ENCODETHREAD_DATA * ethd = &cpi->en_thread_data[ithread]; sem_init(&cpi->h_event_start_encoding[ithread], 0, 0); ethd->ithread = ithread; ethd->ptr1 = (void *)cpi; ethd->ptr2 = (void *)&cpi->mb_row_ei[ithread]; pthread_create(&cpi->h_encoding_thread[ithread], 0, thread_encoding_proc, ethd); } { LPFTHREAD_DATA * lpfthd = &cpi->lpf_thread_data; sem_init(&cpi->h_event_start_lpf, 0, 0); sem_init(&cpi->h_event_end_lpf, 0, 0); lpfthd->ptr1 = (void *)cpi; pthread_create(&cpi->h_filter_thread, 0, loopfilter_thread, lpfthd); } } } void vp8cx_remove_encoder_threads(VP8_COMP *cpi) { if (cpi->b_multi_threaded) { //shutdown other threads cpi->b_multi_threaded = 0; { int i; for (i = 0; i < cpi->encoding_thread_count; i++) { //SetEvent(cpi->h_event_mbrencoding[i]); sem_post(&cpi->h_event_start_encoding[i]); pthread_join(cpi->h_encoding_thread[i], 0); sem_destroy(&cpi->h_event_start_encoding[i]); } sem_post(&cpi->h_event_start_lpf); pthread_join(cpi->h_filter_thread, 0); } sem_destroy(&cpi->h_event_end_encoding); sem_destroy(&cpi->h_event_end_lpf); sem_destroy(&cpi->h_event_start_lpf); //free thread related resources vpx_free(cpi->h_event_start_encoding); vpx_free(cpi->h_encoding_thread); vpx_free(cpi->mb_row_ei); vpx_free(cpi->en_thread_data); vpx_free(cpi->mt_current_mb_col); } } #endif