/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP10_COMMON_ONYXC_INT_H_ #define VP10_COMMON_ONYXC_INT_H_ #include "./vpx_config.h" #include "vpx/internal/vpx_codec_internal.h" #include "vpx_util/vpx_thread.h" #include "./vp10_rtcd.h" #include "vp10/common/alloccommon.h" #include "vp10/common/loopfilter.h" #include "vp10/common/entropymv.h" #include "vp10/common/entropy.h" #include "vp10/common/entropymode.h" #include "vp10/common/mv.h" #include "vp10/common/frame_buffers.h" #include "vp10/common/quant_common.h" #include "vp10/common/tile_common.h" #include "vp10/common/restoration.h" #ifdef __cplusplus extern "C" { #endif #define REF_FRAMES_LOG2 3 #define REF_FRAMES (1 << REF_FRAMES_LOG2) // 4 scratch frames for the new frames to support a maximum of 4 cores decoding // in parallel, 3 for scaled references on the encoder. // TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number // of framebuffers. // TODO(jkoleszar): These 3 extra references could probably come from the // normal reference pool. #define FRAME_BUFFERS (REF_FRAMES + 7) #if CONFIG_EXT_REFS #define FRAME_CONTEXTS_LOG2 3 #else #define FRAME_CONTEXTS_LOG2 2 #endif #define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2) #define NUM_PING_PONG_BUFFERS 2 typedef enum { SINGLE_REFERENCE = 0, COMPOUND_REFERENCE = 1, REFERENCE_MODE_SELECT = 2, REFERENCE_MODES = 3, } REFERENCE_MODE; typedef enum { RESET_FRAME_CONTEXT_NONE = 0, RESET_FRAME_CONTEXT_CURRENT = 1, RESET_FRAME_CONTEXT_ALL = 2, } RESET_FRAME_CONTEXT_MODE; typedef enum { /** * Update frame context to values resulting from forward probability * updates signaled in the frame header */ REFRESH_FRAME_CONTEXT_FORWARD, /** * Update frame context to values resulting from backward probability * updates based on entropy/counts in the decoded frame */ REFRESH_FRAME_CONTEXT_BACKWARD, } REFRESH_FRAME_CONTEXT_MODE; typedef struct { int_mv mv[2]; MV_REFERENCE_FRAME ref_frame[2]; } MV_REF; typedef struct { int ref_count; MV_REF *mvs; int mi_rows; int mi_cols; vpx_codec_frame_buffer_t raw_frame_buffer; YV12_BUFFER_CONFIG buf; // The Following variables will only be used in frame parallel decode. // frame_worker_owner indicates which FrameWorker owns this buffer. NULL means // that no FrameWorker owns, or is decoding, this buffer. VPxWorker *frame_worker_owner; // row and col indicate which position frame has been decoded to in real // pixel unit. They are reset to -1 when decoding begins and set to INT_MAX // when the frame is fully decoded. int row; int col; } RefCntBuffer; typedef struct BufferPool { // Protect BufferPool from being accessed by several FrameWorkers at // the same time during frame parallel decode. // TODO(hkuang): Try to use atomic variable instead of locking the whole pool. #if CONFIG_MULTITHREAD pthread_mutex_t pool_mutex; #endif // Private data associated with the frame buffer callbacks. void *cb_priv; vpx_get_frame_buffer_cb_fn_t get_fb_cb; vpx_release_frame_buffer_cb_fn_t release_fb_cb; RefCntBuffer frame_bufs[FRAME_BUFFERS]; // Frame buffers allocated internally by the codec. InternalFrameBufferList int_frame_buffers; } BufferPool; typedef struct VP10Common { struct vpx_internal_error_info error; vpx_color_space_t color_space; int color_range; int width; int height; int render_width; int render_height; int last_width; int last_height; // TODO(jkoleszar): this implies chroma ss right now, but could vary per // plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to // support additional planes. int subsampling_x; int subsampling_y; #if CONFIG_VPX_HIGHBITDEPTH // Marks if we need to use 16bit frame buffers (1: yes, 0: no). int use_highbitdepth; #endif YV12_BUFFER_CONFIG *frame_to_show; RefCntBuffer *prev_frame; // TODO(hkuang): Combine this with cur_buf in macroblockd. RefCntBuffer *cur_frame; int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */ // Prepare ref_frame_map for the next frame. // Only used in frame parallel decode. int next_ref_frame_map[REF_FRAMES]; // TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and // roll new_fb_idx into it. // Each Inter frame can reference INTER_REFS_PER_FRAME buffers RefBuffer frame_refs[INTER_REFS_PER_FRAME]; int new_fb_idx; #if CONFIG_LOOP_RESTORATION YV12_BUFFER_CONFIG tmp_loop_buf; #endif // CONFIG_LOOP_RESTORATION FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/ #if CONFIG_EXT_REFS // frame type of the frame before last frame FRAME_TYPE last2_frame_type; // TODO(zoeliu): To check whether last3_frame_type is still needed. // frame type of the frame two frames before last frame FRAME_TYPE last3_frame_type; #endif // CONFIG_EXT_REFS FRAME_TYPE frame_type; int show_frame; int last_show_frame; int show_existing_frame; #if CONFIG_EXT_REFS // Flag for a frame used as a reference - not written to the bitstream int is_reference_frame; #endif // CONFIG_EXT_REFS // Flag signaling that the frame is encoded using only INTRA modes. uint8_t intra_only; uint8_t last_intra_only; int allow_high_precision_mv; int allow_screen_content_tools; // Flag signaling which frame contexts should be reset to default values. RESET_FRAME_CONTEXT_MODE reset_frame_context; // MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in // MODE_INFO (8-pixel) units. int MBs; int mb_rows, mi_rows; int mb_cols, mi_cols; int mi_stride; /* profile settings */ TX_MODE tx_mode; int base_qindex; int y_dc_delta_q; int uv_dc_delta_q; int uv_ac_delta_q; int16_t y_dequant[MAX_SEGMENTS][2]; int16_t uv_dequant[MAX_SEGMENTS][2]; #if CONFIG_NEW_QUANT dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS]; #endif /* We allocate a MODE_INFO struct for each macroblock, together with an extra row on top and column on the left to simplify prediction. */ int mi_alloc_size; MODE_INFO *mip; /* Base of allocated array */ MODE_INFO *mi; /* Corresponds to upper left visible macroblock */ // TODO(agrange): Move prev_mi into encoder structure. // prev_mip and prev_mi will only be allocated in encoder. MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */ MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */ // Separate mi functions between encoder and decoder. int (*alloc_mi)(struct VP10Common *cm, int mi_size); void (*free_mi)(struct VP10Common *cm); void (*setup_mi)(struct VP10Common *cm); // Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible // area will be NULL. MODE_INFO **mi_grid_base; MODE_INFO **mi_grid_visible; MODE_INFO **prev_mi_grid_base; MODE_INFO **prev_mi_grid_visible; // Whether to use previous frame's motion vectors for prediction. int use_prev_frame_mvs; // Persistent mb segment id map used in prediction. int seg_map_idx; int prev_seg_map_idx; uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS]; uint8_t *last_frame_seg_map; uint8_t *current_frame_seg_map; int seg_map_alloc_size; INTERP_FILTER interp_filter; loop_filter_info_n lf_info; #if CONFIG_LOOP_RESTORATION RestorationInfo rst_info; RestorationInternal rst_internal; #endif // CONFIG_LOOP_RESTORATION // Flag signaling how frame contexts should be updated at the end of // a frame decode REFRESH_FRAME_CONTEXT_MODE refresh_frame_context; int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */ struct loopfilter lf; struct segmentation seg; int frame_parallel_decode; // frame-based threading. // Context probabilities for reference frame prediction #if CONFIG_EXT_REFS MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS]; MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS]; #else MV_REFERENCE_FRAME comp_fixed_ref; MV_REFERENCE_FRAME comp_var_ref[COMP_REFS]; #endif // CONFIG_EXT_REFS REFERENCE_MODE reference_mode; FRAME_CONTEXT *fc; /* this frame entropy */ FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS unsigned int frame_context_idx; /* Context to use/update */ FRAME_COUNTS counts; #if CONFIG_ENTROPY // The initial probabilities for a frame, before any subframe backward update, // and after forward update. vp10_coeff_probs_model starting_coef_probs[TX_SIZES][PLANE_TYPES]; // Number of subframe backward updates already done uint8_t coef_probs_update_idx; // Signal if the backward update is subframe or end-of-frame uint8_t partial_prob_update; // Frame level flag to turn on/off subframe backward update uint8_t do_subframe_update; #endif // CONFIG_ENTROPY unsigned int current_video_frame; BITSTREAM_PROFILE profile; // VPX_BITS_8 in profile 0 or 1, VPX_BITS_10 or VPX_BITS_12 in profile 2 or 3. vpx_bit_depth_t bit_depth; vpx_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer int error_resilient_mode; #if !CONFIG_EXT_TILE int log2_tile_cols, log2_tile_rows; #endif // !CONFIG_EXT_TILE int tile_cols, tile_rows; int tile_width, tile_height; // In MI units int byte_alignment; int skip_loop_filter; // Private data associated with the frame buffer callbacks. void *cb_priv; vpx_get_frame_buffer_cb_fn_t get_fb_cb; vpx_release_frame_buffer_cb_fn_t release_fb_cb; // Handles memory for the codec. InternalFrameBufferList int_frame_buffers; // External BufferPool passed from outside. BufferPool *buffer_pool; PARTITION_CONTEXT *above_seg_context; ENTROPY_CONTEXT *above_context[MAX_MB_PLANE]; #if CONFIG_VAR_TX TXFM_CONTEXT *above_txfm_context; TXFM_CONTEXT left_txfm_context[MAX_MIB_SIZE]; #endif int above_context_alloc_cols; // scratch memory for intraonly/keyframe forward updates from default tables // - this is intentionally not placed in FRAME_CONTEXT since it's reset upon // each keyframe and not used afterwards vpx_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1]; #if CONFIG_GLOBAL_MOTION Global_Motion_Params global_motion[TOTAL_REFS_PER_FRAME]; #endif BLOCK_SIZE sb_size; // Size of the superblock used for this frame int mib_size; // Size of the superblock in units of MI blocks int mib_size_log2; // Log 2 of above. } VP10_COMMON; // TODO(hkuang): Don't need to lock the whole pool after implementing atomic // frame reference count. static void lock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_lock(&pool->pool_mutex); #else (void)pool; #endif } static void unlock_buffer_pool(BufferPool *const pool) { #if CONFIG_MULTITHREAD pthread_mutex_unlock(&pool->pool_mutex); #else (void)pool; #endif } static INLINE YV12_BUFFER_CONFIG *get_ref_frame(VP10_COMMON *cm, int index) { if (index < 0 || index >= REF_FRAMES) return NULL; if (cm->ref_frame_map[index] < 0) return NULL; assert(cm->ref_frame_map[index] < FRAME_BUFFERS); return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf; } static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer( const VP10_COMMON *const cm) { return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf; } static INLINE int get_free_fb(VP10_COMMON *cm) { RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; int i; lock_buffer_pool(cm->buffer_pool); for (i = 0; i < FRAME_BUFFERS; ++i) if (frame_bufs[i].ref_count == 0) break; if (i != FRAME_BUFFERS) { frame_bufs[i].ref_count = 1; } else { // Reset i to be INVALID_IDX to indicate no free buffer found. i = INVALID_IDX; } unlock_buffer_pool(cm->buffer_pool); return i; } static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) { const int ref_index = *idx; if (ref_index >= 0 && bufs[ref_index].ref_count > 0) bufs[ref_index].ref_count--; *idx = new_idx; bufs[new_idx].ref_count++; } static INLINE int mi_cols_aligned_to_sb(const VP10_COMMON *cm) { return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2); } static INLINE int mi_rows_aligned_to_sb(const VP10_COMMON *cm) { return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2); } static INLINE int frame_is_intra_only(const VP10_COMMON *const cm) { return cm->frame_type == KEY_FRAME || cm->intra_only; } static INLINE void vp10_init_macroblockd(VP10_COMMON *cm, MACROBLOCKD *xd, tran_low_t *dqcoeff) { int i; for (i = 0; i < MAX_MB_PLANE; ++i) { xd->plane[i].dqcoeff = dqcoeff; xd->above_context[i] = cm->above_context[i]; if (xd->plane[i].plane_type == PLANE_TYPE_Y) { memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant)); #if CONFIG_NEW_QUANT memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq, sizeof(cm->y_dequant_nuq)); #endif } else { memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant)); #if CONFIG_NEW_QUANT memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq, sizeof(cm->uv_dequant_nuq)); #endif } xd->fc = cm->fc; } xd->above_seg_context = cm->above_seg_context; #if CONFIG_VAR_TX xd->above_txfm_context = cm->above_txfm_context; #endif xd->mi_stride = cm->mi_stride; xd->error_info = &cm->error; } static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) { const int above_idx = mi_col * 2; const int left_idx = (mi_row * 2) & MAX_MIB_MASK_2; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x]; pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y]; } } static INLINE int calc_mi_size(int len) { // len is in mi units. return len + MAX_MIB_SIZE; } static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile, int mi_row, int bh, int mi_col, int bw, int mi_rows, int mi_cols) { xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; // Are edges available for intra prediction? xd->up_available = (mi_row > tile->mi_row_start); xd->left_available = (mi_col > tile->mi_col_start); if (xd->up_available) { xd->above_mi = xd->mi[-xd->mi_stride]; // above_mi may be NULL in encoder's first pass. xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL; } else { xd->above_mi = NULL; xd->above_mbmi = NULL; } if (xd->left_available) { xd->left_mi = xd->mi[-1]; // left_mi may be NULL in encoder's first pass. xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL; } else { xd->left_mi = NULL; xd->left_mbmi = NULL; } xd->n8_h = bh; xd->n8_w = bw; #if CONFIG_REF_MV xd->is_sec_rect = 0; if (xd->n8_w < xd->n8_h) if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1; if (xd->n8_w > xd->n8_h) if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1; #endif } static INLINE const vpx_prob *get_y_mode_probs(const VP10_COMMON *cm, const MODE_INFO *mi, const MODE_INFO *above_mi, const MODE_INFO *left_mi, int block) { const PREDICTION_MODE above = vp10_above_block_mode(mi, above_mi, block); const PREDICTION_MODE left = vp10_left_block_mode(mi, left_mi, block); return cm->kf_y_prob[above][left]; } static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, BLOCK_SIZE bsize) { PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col; PARTITION_CONTEXT *const left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); #if CONFIG_EXT_PARTITION_TYPES const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; memset(above_ctx, partition_context_lookup[subsize].above, bw); memset(left_ctx, partition_context_lookup[subsize].left, bh); #else // num_4x4_blocks_wide_lookup[bsize] / 2 const int bs = num_8x8_blocks_wide_lookup[bsize]; // update the partition context at the end notes. set partition bits // of block sizes larger than the current one to be one, and partition // bits of smaller block sizes to be zero. memset(above_ctx, partition_context_lookup[subsize].above, bs); memset(left_ctx, partition_context_lookup[subsize].left, bs); #endif // CONFIG_EXT_PARTITION_TYPES } #if CONFIG_EXT_PARTITION_TYPES static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE subsize, BLOCK_SIZE bsize, PARTITION_TYPE partition) { if (bsize >= BLOCK_8X8) { const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4; BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT); switch (partition) { case PARTITION_SPLIT: if (bsize != BLOCK_8X8) break; case PARTITION_NONE: case PARTITION_HORZ: case PARTITION_VERT: update_partition_context(xd, mi_row, mi_col, subsize, bsize); break; case PARTITION_HORZ_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize); break; case PARTITION_HORZ_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize); break; case PARTITION_VERT_A: update_partition_context(xd, mi_row, mi_col, bsize2, subsize); update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize); break; case PARTITION_VERT_B: update_partition_context(xd, mi_row, mi_col, subsize, subsize); update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize); break; default: assert(0 && "Invalid partition type"); } } } #endif // CONFIG_EXT_PARTITION_TYPES static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col; const PARTITION_CONTEXT *left_ctx = xd->left_seg_context + (mi_row & MAX_MIB_MASK); const int bsl = mi_width_log2_lookup[bsize]; int above = (*above_ctx >> bsl) & 1 , left = (*left_ctx >> bsl) & 1; assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]); assert(bsl >= 0); return (left * 2 + above) + bsl * PARTITION_PLOFFSET; } static INLINE void vp10_zero_above_context(VP10_COMMON *const cm, int mi_col_start, int mi_col_end) { const int width = mi_col_end - mi_col_start; const int offset_y = 2 * mi_col_start; const int width_y = 2 * width; const int offset_uv = offset_y >> cm->subsampling_x; const int width_uv = width_y >> cm->subsampling_x; vp10_zero_array(cm->above_context[0] + offset_y, width_y); vp10_zero_array(cm->above_context[1] + offset_uv, width_uv); vp10_zero_array(cm->above_context[2] + offset_uv, width_uv); vp10_zero_array(cm->above_seg_context + mi_col_start, width); #if CONFIG_VAR_TX vp10_zero_array(cm->above_txfm_context + mi_col_start, width); #endif // CONFIG_VAR_TX } static INLINE void vp10_zero_left_context(MACROBLOCKD *const xd) { vp10_zero(xd->left_context); vp10_zero(xd->left_seg_context); #if CONFIG_VAR_TX vp10_zero(xd->left_txfm_context_buffer); #endif } #if CONFIG_VAR_TX static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, TX_SIZE tx_size, int len) { int i; for (i = 0; i < len; ++i) txfm_ctx[i] = tx_size; } static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx, TXFM_CONTEXT *left_ctx, TX_SIZE tx_size) { BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; int bs = num_8x8_blocks_high_lookup[bsize]; int i; for (i = 0; i < bs; ++i) { above_ctx[i] = tx_size; left_ctx[i] = tx_size; } } static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx, TXFM_CONTEXT *left_ctx, TX_SIZE tx_size) { int above = *above_ctx < tx_size; int left = *left_ctx < tx_size; return (tx_size - 1) * 3 + above + left; } #endif static INLINE PARTITION_TYPE get_partition(const VP10_COMMON *const cm, const int mi_row, const int mi_col, const BLOCK_SIZE bsize) { if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) { return PARTITION_INVALID; } else { const int offset = mi_row * cm->mi_stride + mi_col; MODE_INFO **mi = cm->mi_grid_visible + offset; const MB_MODE_INFO *const mbmi = &mi[0]->mbmi; const int bsl = b_width_log2_lookup[bsize]; const PARTITION_TYPE partition = partition_lookup[bsl][mbmi->sb_type]; #if !CONFIG_EXT_PARTITION_TYPES return partition; #else const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2; assert(cm->mi_grid_visible[offset] == &cm->mi[offset]); if (partition != PARTITION_NONE && bsize > BLOCK_8X8 && mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { const BLOCK_SIZE h = get_subsize(bsize, PARTITION_HORZ_A); const BLOCK_SIZE v = get_subsize(bsize, PARTITION_VERT_A); const MB_MODE_INFO *const mbmi_right = &mi[hbs]->mbmi; const MB_MODE_INFO *const mbmi_below = &mi[hbs * cm->mi_stride]->mbmi; if (mbmi->sb_type == h) { return mbmi_below->sb_type == h ? PARTITION_HORZ : PARTITION_HORZ_B; } else if (mbmi->sb_type == v) { return mbmi_right->sb_type == v ? PARTITION_VERT : PARTITION_VERT_B; } else if (mbmi_below->sb_type == h) { return PARTITION_HORZ_A; } else if (mbmi_right->sb_type == v) { return PARTITION_VERT_A; } else { return PARTITION_SPLIT; } } return partition; #endif // !CONFIG_EXT_PARTITION_TYPES } } static INLINE void set_sb_size(VP10_COMMON *const cm, const BLOCK_SIZE sb_size) { cm->sb_size = sb_size; cm->mib_size = num_8x8_blocks_wide_lookup[cm->sb_size]; cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size]; } #ifdef __cplusplus } // extern "C" #endif #endif // VP10_COMMON_ONYXC_INT_H_