/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "./vp10_rtcd.h" #include "./vpx_dsp_rtcd.h" #include "vp10/common/blockd.h" #include "vp10/common/enums.h" #include "vp10/common/idct.h" #include "vp10/common/vp10_inv_txfm2d_cfg.h" #include "vpx_dsp/inv_txfm.h" #include "vpx_ports/mem.h" int get_tx_scale(const MACROBLOCKD *const xd, const TX_TYPE tx_type, const TX_SIZE tx_size) { (void) tx_type; #if CONFIG_VPX_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { return tx_size == TX_32X32; } #else (void)xd; #endif return tx_size == TX_32X32; } #if CONFIG_EXT_TX static void iidtx4_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 4; ++i) output[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } static void iidtx8_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 8; ++i) output[i] = input[i] * 2; } static void iidtx16_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 16; ++i) output[i] = (tran_low_t)dct_const_round_shift(input[i] * 2 * Sqrt2); } static void iidtx32_c(const tran_low_t *input, tran_low_t *output) { int i; for (i = 0; i < 32; ++i) output[i] = input[i] * 4; } // For use in lieu of DST static void ihalfright32_c(const tran_low_t *input, tran_low_t *output) { int i; tran_low_t inputhalf[16]; for (i = 0; i < 16; ++i) { output[i] = input[16 + i] * 4; } // Multiply input by sqrt(2) for (i = 0; i < 16; ++i) { inputhalf[i] = (tran_low_t)dct_const_round_shift(input[i] * Sqrt2); } idct16_c(inputhalf, output + 16); // Note overall scaling factor is 4 times orthogonal } #if CONFIG_VPX_HIGHBITDEPTH static void highbd_iidtx4_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; for (i = 0; i < 4; ++i) output[i] = HIGHBD_WRAPLOW( highbd_dct_const_round_shift(input[i] * Sqrt2), bd); } static void highbd_iidtx8_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; (void) bd; for (i = 0; i < 8; ++i) output[i] = input[i] * 2; } static void highbd_iidtx16_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; for (i = 0; i < 16; ++i) output[i] = HIGHBD_WRAPLOW( highbd_dct_const_round_shift(input[i] * 2 * Sqrt2), bd); } static void highbd_iidtx32_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; (void) bd; for (i = 0; i < 32; ++i) output[i] = input[i] * 4; } static void highbd_ihalfright32_c(const tran_low_t *input, tran_low_t *output, int bd) { int i; tran_low_t inputhalf[16]; for (i = 0; i < 16; ++i) { output[i] = input[16 + i] * 4; } // Multiply input by sqrt(2) for (i = 0; i < 16; ++i) { inputhalf[i] = HIGHBD_WRAPLOW( highbd_dct_const_round_shift(input[i] * Sqrt2), bd); } vpx_highbd_idct16_c(inputhalf, output + 16, bd); // Note overall scaling factor is 4 times orthogonal } #endif // CONFIG_VPX_HIGHBITDEPTH // Inverse identity transform and add. static void inv_idtx_add_c(const tran_low_t *input, uint8_t *dest, int stride, int bs, int tx_type) { int r, c; const int shift = bs < 32 ? 3 : 2; if (tx_type == IDTX) { for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dest[c] = clip_pixel_add(dest[c], input[c] >> shift); dest += stride; input += bs; } } } #define FLIPUD_PTR(dest, stride, size) do { \ (dest) = (dest) + ((size) - 1) * (stride); \ (stride) = - (stride); \ } while (0) static void maybe_flip_strides(uint8_t **dst, int *dstride, tran_low_t **src, int *sstride, int tx_type, int sizey, int sizex) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: case V_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); break; case DCT_FLIPADST: case ADST_FLIPADST: case H_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; default: assert(0); break; } } #if CONFIG_VPX_HIGHBITDEPTH void highbd_idst4_c(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step[4]; tran_high_t temp1, temp2; (void) bd; // stage 1 temp1 = (input[3] + input[1]) * cospi_16_64; temp2 = (input[3] - input[1]) * cospi_16_64; step[0] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step[1] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[2] * cospi_24_64 - input[0] * cospi_8_64; temp2 = input[2] * cospi_8_64 + input[0] * cospi_24_64; step[2] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step[3] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 output[0] = HIGHBD_WRAPLOW(step[0] + step[3], bd); output[1] = HIGHBD_WRAPLOW(-step[1] - step[2], bd); output[2] = HIGHBD_WRAPLOW(step[1] - step[2], bd); output[3] = HIGHBD_WRAPLOW(step[3] - step[0], bd); } void highbd_idst8_c(const tran_low_t *input, tran_low_t *output, int bd) { tran_low_t step1[8], step2[8]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[7]; step1[2] = input[3]; step1[1] = input[5]; step1[3] = input[1]; temp1 = input[6] * cospi_28_64 - input[0] * cospi_4_64; temp2 = input[6] * cospi_4_64 + input[0] * cospi_28_64; step1[4] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = input[2] * cospi_12_64 - input[4] * cospi_20_64; temp2 = input[2] * cospi_20_64 + input[4] * cospi_12_64; step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); // stage 2 temp1 = (step1[0] + step1[2]) * cospi_16_64; temp2 = (step1[0] - step1[2]) * cospi_16_64; step2[0] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[1] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[1] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = HIGHBD_WRAPLOW(step1[4] + step1[5], bd); step2[5] = HIGHBD_WRAPLOW(step1[4] - step1[5], bd); step2[6] = HIGHBD_WRAPLOW(-step1[6] + step1[7], bd); step2[7] = HIGHBD_WRAPLOW(step1[6] + step1[7], bd); // stage 3 step1[0] = HIGHBD_WRAPLOW(step2[0] + step2[3], bd); step1[1] = HIGHBD_WRAPLOW(step2[1] + step2[2], bd); step1[2] = HIGHBD_WRAPLOW(step2[1] - step2[2], bd); step1[3] = HIGHBD_WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; // stage 4 output[0] = HIGHBD_WRAPLOW(step1[0] + step1[7], bd); output[1] = HIGHBD_WRAPLOW(-step1[1] - step1[6], bd); output[2] = HIGHBD_WRAPLOW(step1[2] + step1[5], bd); output[3] = HIGHBD_WRAPLOW(-step1[3] - step1[4], bd); output[4] = HIGHBD_WRAPLOW(step1[3] - step1[4], bd); output[5] = HIGHBD_WRAPLOW(-step1[2] + step1[5], bd); output[6] = HIGHBD_WRAPLOW(step1[1] - step1[6], bd); output[7] = HIGHBD_WRAPLOW(-step1[0] + step1[7], bd); } void highbd_idst16_c(const tran_low_t *input, tran_low_t *output, int bd) { // vp9_highbd_igentx16(input, output, bd, Tx16); tran_low_t step1[16], step2[16]; tran_high_t temp1, temp2; (void) bd; // stage 1 step1[0] = input[15]; step1[1] = input[7]; step1[2] = input[11]; step1[3] = input[3]; step1[4] = input[13]; step1[5] = input[5]; step1[6] = input[9]; step1[7] = input[1]; step1[8] = input[14]; step1[9] = input[6]; step1[10] = input[10]; step1[11] = input[2]; step1[12] = input[12]; step1[13] = input[4]; step1[14] = input[8]; step1[15] = input[0]; // stage 2 step2[0] = step1[0]; step2[1] = step1[1]; step2[2] = step1[2]; step2[3] = step1[3]; step2[4] = step1[4]; step2[5] = step1[5]; step2[6] = step1[6]; step2[7] = step1[7]; temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64; temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64; step2[8] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[15] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64; temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64; step2[9] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64; temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64; step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64; temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64; step2[11] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); // stage 3 step1[0] = step2[0]; step1[1] = step2[1]; step1[2] = step2[2]; step1[3] = step2[3]; temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64; temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64; step1[4] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step1[7] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64; temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64; step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step1[8] = HIGHBD_WRAPLOW(step2[8] + step2[9], bd); step1[9] = HIGHBD_WRAPLOW(step2[8] - step2[9], bd); step1[10] = HIGHBD_WRAPLOW(-step2[10] + step2[11], bd); step1[11] = HIGHBD_WRAPLOW(step2[10] + step2[11], bd); step1[12] = HIGHBD_WRAPLOW(step2[12] + step2[13], bd); step1[13] = HIGHBD_WRAPLOW(step2[12] - step2[13], bd); step1[14] = HIGHBD_WRAPLOW(-step2[14] + step2[15], bd); step1[15] = HIGHBD_WRAPLOW(step2[14] + step2[15], bd); // stage 4 temp1 = (step1[0] + step1[1]) * cospi_16_64; temp2 = (step1[0] - step1[1]) * cospi_16_64; step2[0] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[1] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64; temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64; step2[2] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[3] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step2[4] = HIGHBD_WRAPLOW(step1[4] + step1[5], bd); step2[5] = HIGHBD_WRAPLOW(step1[4] - step1[5], bd); step2[6] = HIGHBD_WRAPLOW(-step1[6] + step1[7], bd); step2[7] = HIGHBD_WRAPLOW(step1[6] + step1[7], bd); step2[8] = step1[8]; step2[15] = step1[15]; temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64; temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64; step2[9] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[14] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64; temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64; step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step2[11] = step1[11]; step2[12] = step1[12]; // stage 5 step1[0] = HIGHBD_WRAPLOW(step2[0] + step2[3], bd); step1[1] = HIGHBD_WRAPLOW(step2[1] + step2[2], bd); step1[2] = HIGHBD_WRAPLOW(step2[1] - step2[2], bd); step1[3] = HIGHBD_WRAPLOW(step2[0] - step2[3], bd); step1[4] = step2[4]; temp1 = (step2[6] - step2[5]) * cospi_16_64; temp2 = (step2[5] + step2[6]) * cospi_16_64; step1[5] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step1[6] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step1[7] = step2[7]; step1[8] = HIGHBD_WRAPLOW(step2[8] + step2[11], bd); step1[9] = HIGHBD_WRAPLOW(step2[9] + step2[10], bd); step1[10] = HIGHBD_WRAPLOW(step2[9] - step2[10], bd); step1[11] = HIGHBD_WRAPLOW(step2[8] - step2[11], bd); step1[12] = HIGHBD_WRAPLOW(-step2[12] + step2[15], bd); step1[13] = HIGHBD_WRAPLOW(-step2[13] + step2[14], bd); step1[14] = HIGHBD_WRAPLOW(step2[13] + step2[14], bd); step1[15] = HIGHBD_WRAPLOW(step2[12] + step2[15], bd); // stage 6 step2[0] = HIGHBD_WRAPLOW(step1[0] + step1[7], bd); step2[1] = HIGHBD_WRAPLOW(step1[1] + step1[6], bd); step2[2] = HIGHBD_WRAPLOW(step1[2] + step1[5], bd); step2[3] = HIGHBD_WRAPLOW(step1[3] + step1[4], bd); step2[4] = HIGHBD_WRAPLOW(step1[3] - step1[4], bd); step2[5] = HIGHBD_WRAPLOW(step1[2] - step1[5], bd); step2[6] = HIGHBD_WRAPLOW(step1[1] - step1[6], bd); step2[7] = HIGHBD_WRAPLOW(step1[0] - step1[7], bd); step2[8] = step1[8]; step2[9] = step1[9]; temp1 = (-step1[10] + step1[13]) * cospi_16_64; temp2 = (step1[10] + step1[13]) * cospi_16_64; step2[10] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[13] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); temp1 = (-step1[11] + step1[12]) * cospi_16_64; temp2 = (step1[11] + step1[12]) * cospi_16_64; step2[11] = HIGHBD_WRAPLOW(dct_const_round_shift(temp1), bd); step2[12] = HIGHBD_WRAPLOW(dct_const_round_shift(temp2), bd); step2[14] = step1[14]; step2[15] = step1[15]; // stage 7 output[0] = HIGHBD_WRAPLOW(step2[0] + step2[15], bd); output[1] = HIGHBD_WRAPLOW(-step2[1] - step2[14], bd); output[2] = HIGHBD_WRAPLOW(step2[2] + step2[13], bd); output[3] = HIGHBD_WRAPLOW(-step2[3] - step2[12], bd); output[4] = HIGHBD_WRAPLOW(step2[4] + step2[11], bd); output[5] = HIGHBD_WRAPLOW(-step2[5] - step2[10], bd); output[6] = HIGHBD_WRAPLOW(step2[6] + step2[9], bd); output[7] = HIGHBD_WRAPLOW(-step2[7] - step2[8], bd); output[8] = HIGHBD_WRAPLOW(step2[7] - step2[8], bd); output[9] = HIGHBD_WRAPLOW(-step2[6] + step2[9], bd); output[10] = HIGHBD_WRAPLOW(step2[5] - step2[10], bd); output[11] = HIGHBD_WRAPLOW(-step2[4] + step2[11], bd); output[12] = HIGHBD_WRAPLOW(step2[3] - step2[12], bd); output[13] = HIGHBD_WRAPLOW(-step2[2] + step2[13], bd); output[14] = HIGHBD_WRAPLOW(step2[1] - step2[14], bd); output[15] = HIGHBD_WRAPLOW(-step2[0] + step2[15], bd); } static void highbd_inv_idtx_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int bs, int tx_type, int bd) { int r, c; const int shift = bs < 32 ? 3 : 2; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); if (tx_type == IDTX) { for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) dest[c] = highbd_clip_pixel_add(dest[c], input[c] >> shift, bd); dest += stride; input += bs; } } } static void maybe_flip_strides16(uint16_t **dst, int *dstride, tran_low_t **src, int *sstride, int tx_type, int sizey, int sizex) { // Note that the transpose of src will be added to dst. In order to LR // flip the addends (in dst coordinates), we UD flip the src. To UD flip // the addends, we UD flip the dst. switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: case IDTX: case V_DCT: case H_DCT: case V_ADST: case H_ADST: break; case FLIPADST_DCT: case FLIPADST_ADST: case V_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); break; case DCT_FLIPADST: case ADST_FLIPADST: case H_FLIPADST: // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; case FLIPADST_FLIPADST: // flip UD FLIPUD_PTR(*dst, *dstride, sizey); // flip LR FLIPUD_PTR(*src, *sstride, sizex); break; default: assert(0); break; } } #endif // CONFIG_VPX_HIGHBITDEPTH #endif // CONFIG_EXT_TX void vp10_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_4[] = { { idct4_c, idct4_c }, // DCT_DCT { iadst4_c, idct4_c }, // ADST_DCT { idct4_c, iadst4_c }, // DCT_ADST { iadst4_c, iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst4_c, idct4_c }, // FLIPADST_DCT { idct4_c, iadst4_c }, // DCT_FLIPADST { iadst4_c, iadst4_c }, // FLIPADST_FLIPADST { iadst4_c, iadst4_c }, // ADST_FLIPADST { iadst4_c, iadst4_c }, // FLIPADST_ADST { iidtx4_c, iidtx4_c }, // IDTX { idct4_c, iidtx4_c }, // V_DCT { iidtx4_c, idct4_c }, // H_DCT { iadst4_c, iidtx4_c }, // V_ADST { iidtx4_c, iadst4_c }, // H_ADST { iadst4_c, iidtx4_c }, // V_FLIPADST { iidtx4_c, iadst4_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].rows(input, out[i]); input += 4; } // transpose for (i = 1 ; i < 4; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { IHT_4[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4)); } } } void vp10_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_4x8[] = { { idct8_c, idct4_c }, // DCT_DCT { iadst8_c, idct4_c }, // ADST_DCT { idct8_c, iadst4_c }, // DCT_ADST { iadst8_c, iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst8_c, idct4_c }, // FLIPADST_DCT { idct8_c, iadst4_c }, // DCT_FLIPADST { iadst8_c, iadst4_c }, // FLIPADST_FLIPADST { iadst8_c, iadst4_c }, // ADST_FLIPADST { iadst8_c, iadst4_c }, // FLIPADST_ADST { iidtx8_c, iidtx4_c }, // IDTX { idct8_c, iidtx4_c }, // V_DCT { iidtx8_c, idct4_c }, // H_DCT { iadst8_c, iidtx4_c }, // V_ADST { iidtx8_c, iadst4_c }, // H_ADST { iadst8_c, iidtx4_c }, // V_FLIPADST { iidtx8_c, iadst4_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t out[4][8], outtmp[4]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors and transpose for (i = 0; i < 8; ++i) { IHT_4x8[tx_type].rows(input, outtmp); for (j = 0; j < 4; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += 4; } // inverse transform column vectors for (i = 0; i < 4; ++i) { IHT_4x8[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8, 4); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void vp10_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_8x4[] = { { idct4_c, idct8_c }, // DCT_DCT { iadst4_c, idct8_c }, // ADST_DCT { idct4_c, iadst8_c }, // DCT_ADST { iadst4_c, iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst4_c, idct8_c }, // FLIPADST_DCT { idct4_c, iadst8_c }, // DCT_FLIPADST { iadst4_c, iadst8_c }, // FLIPADST_FLIPADST { iadst4_c, iadst8_c }, // ADST_FLIPADST { iadst4_c, iadst8_c }, // FLIPADST_ADST { iidtx4_c, iidtx8_c }, // IDTX { idct4_c, iidtx8_c }, // V_DCT { iidtx4_c, idct8_c }, // H_DCT { iadst4_c, iidtx8_c }, // V_ADST { iidtx4_c, iadst8_c }, // H_ADST { iadst4_c, iidtx8_c }, // V_FLIPADST { iidtx4_c, iadst8_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t out[8][4], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors and transpose for (i = 0; i < 4; ++i) { IHT_8x4[tx_type].rows(input, outtmp); for (j = 0; j < 8; ++j) out[j][i] = (tran_low_t)dct_const_round_shift(outtmp[j] * Sqrt2); input += 8; } // inverse transform column vectors for (i = 0; i < 8; ++i) { IHT_8x4[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 4, 8); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void vp10_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_8[] = { { idct8_c, idct8_c }, // DCT_DCT { iadst8_c, idct8_c }, // ADST_DCT { idct8_c, iadst8_c }, // DCT_ADST { iadst8_c, iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst8_c, idct8_c }, // FLIPADST_DCT { idct8_c, iadst8_c }, // DCT_FLIPADST { iadst8_c, iadst8_c }, // FLIPADST_FLIPADST { iadst8_c, iadst8_c }, // ADST_FLIPADST { iadst8_c, iadst8_c }, // FLIPADST_ADST { iidtx8_c, iidtx8_c }, // IDTX { idct8_c, iidtx8_c }, // V_DCT { iidtx8_c, idct8_c }, // H_DCT { iadst8_c, iidtx8_c }, // V_ADST { iidtx8_c, iadst8_c }, // H_ADST { iadst8_c, iidtx8_c }, // V_FLIPADST { iidtx8_c, iadst8_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors for (i = 0; i < 8; ++i) { IHT_8[tx_type].rows(input, out[i]); input += 8; } // transpose for (i = 1 ; i < 8; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { IHT_8[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 8, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5)); } } } void vp10_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_16[] = { { idct16_c, idct16_c }, // DCT_DCT { iadst16_c, idct16_c }, // ADST_DCT { idct16_c, iadst16_c }, // DCT_ADST { iadst16_c, iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { iadst16_c, idct16_c }, // FLIPADST_DCT { idct16_c, iadst16_c }, // DCT_FLIPADST { iadst16_c, iadst16_c }, // FLIPADST_FLIPADST { iadst16_c, iadst16_c }, // ADST_FLIPADST { iadst16_c, iadst16_c }, // FLIPADST_ADST { iidtx16_c, iidtx16_c }, // IDTX { idct16_c, iidtx16_c }, // V_DCT { iidtx16_c, idct16_c }, // H_DCT { iadst16_c, iidtx16_c }, // V_ADST { iidtx16_c, iadst16_c }, // H_ADST { iadst16_c, iidtx16_c }, // V_FLIPADST { iidtx16_c, iadst16_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; int i, j; tran_low_t tmp; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { IHT_16[tx_type].rows(input, out[i]); input += 16; } // transpose for (i = 1 ; i < 16; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 16; ++i) { IHT_16[tx_type].cols(out[i], out[i]); } #if CONFIG_EXT_TX maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 16, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } #if CONFIG_EXT_TX void vp10_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest, int stride, int tx_type) { static const transform_2d IHT_32[] = { { idct32_c, idct32_c }, // DCT_DCT { ihalfright32_c, idct32_c }, // ADST_DCT { idct32_c, ihalfright32_c }, // DCT_ADST { ihalfright32_c, ihalfright32_c }, // ADST_ADST { ihalfright32_c, idct32_c }, // FLIPADST_DCT { idct32_c, ihalfright32_c }, // DCT_FLIPADST { ihalfright32_c, ihalfright32_c }, // FLIPADST_FLIPADST { ihalfright32_c, ihalfright32_c }, // ADST_FLIPADST { ihalfright32_c, ihalfright32_c }, // FLIPADST_ADST { iidtx32_c, iidtx32_c }, // IDTX { idct32_c, iidtx32_c }, // V_DCT { iidtx32_c, idct32_c }, // H_DCT { ihalfright32_c, iidtx16_c }, // V_ADST { iidtx16_c, ihalfright32_c }, // H_ADST { ihalfright32_c, iidtx16_c }, // V_FLIPADST { iidtx16_c, ihalfright32_c }, // H_FLIPADST }; int i, j; tran_low_t tmp; tran_low_t out[32][32]; tran_low_t *outp = &out[0][0]; int outstride = 32; // inverse transform row vectors for (i = 0; i < 32; ++i) { IHT_32[tx_type].rows(input, out[i]); input += 32; } // transpose for (i = 1 ; i < 32; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 32; ++i) { IHT_32[tx_type].cols(out[i], out[i]); } maybe_flip_strides(&dest, &stride, &outp, &outstride, tx_type, 32, 32); // Sum with the destination for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6)); } } } #endif // CONFIG_EXT_TX // idct void vp10_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vpx_idct4x4_16_add(input, dest, stride); else vpx_idct4x4_1_add(input, dest, stride); } void vp10_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob > 1) vpx_iwht4x4_16_add(input, dest, stride); else vpx_iwht4x4_1_add(input, dest, stride); } void vp10_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp10_short_idct8x8_c. // Combine that with code here. if (eob == 1) // DC only DCT coefficient vpx_idct8x8_1_add(input, dest, stride); else if (eob <= 12) vpx_idct8x8_12_add(input, dest, stride); else vpx_idct8x8_64_add(input, dest, stride); } void vp10_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { /* The calculation can be simplified if there are not many non-zero dct * coefficients. Use eobs to separate different cases. */ if (eob == 1) /* DC only DCT coefficient. */ vpx_idct16x16_1_add(input, dest, stride); else if (eob <= 10) vpx_idct16x16_10_add(input, dest, stride); else vpx_idct16x16_256_add(input, dest, stride); } void vp10_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob) { if (eob == 1) vpx_idct32x32_1_add(input, dest, stride); else if (eob <= 34) // non-zero coeff only in upper-left 8x8 vpx_idct32x32_34_add(input, dest, stride); else vpx_idct32x32_1024_add(input, dest, stride); } void vp10_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type, int lossless) { if (lossless) { assert(tx_type == DCT_DCT); vp10_iwht4x4_add(input, dest, stride, eob); return; } switch (tx_type) { case DCT_DCT: vp10_idct4x4_add(input, dest, stride, eob); break; case ADST_DCT: case DCT_ADST: case ADST_ADST: vp10_iht4x4_16_add(input, dest, stride, tx_type); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: vp10_iht4x4_16_add(input, dest, stride, tx_type); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code vp10_iht4x4_16_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 4, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #if CONFIG_EXT_TX void vp10_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void) eob; vp10_iht8x4_32_add(input, dest, stride, tx_type); } void vp10_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { (void) eob; vp10_iht4x8_32_add(input, dest, stride, tx_type); } #endif // CONFIG_EXT_TX void vp10_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { switch (tx_type) { case DCT_DCT: vp10_idct8x8_add(input, dest, stride, eob); break; case ADST_DCT: case DCT_ADST: case ADST_ADST: vp10_iht8x8_64_add(input, dest, stride, tx_type); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: vp10_iht8x8_64_add(input, dest, stride, tx_type); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code vp10_iht8x8_64_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 8, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void vp10_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { switch (tx_type) { case DCT_DCT: vp10_idct16x16_add(input, dest, stride, eob); break; case ADST_DCT: case DCT_ADST: case ADST_ADST: vp10_iht16x16_256_add(input, dest, stride, tx_type); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: vp10_iht16x16_256_add(input, dest, stride, tx_type); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code vp10_iht16x16_256_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 16, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void vp10_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride, int eob, TX_TYPE tx_type) { switch (tx_type) { case DCT_DCT: vp10_idct32x32_add(input, dest, stride, eob); break; #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: vp10_iht32x32_1024_add_c(input, dest, stride, tx_type); break; case IDTX: inv_idtx_add_c(input, dest, stride, 32, tx_type); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #if CONFIG_VPX_HIGHBITDEPTH void vp10_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_4[] = { { vpx_highbd_idct4_c, vpx_highbd_idct4_c }, // DCT_DCT { vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // ADST_DCT { vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_ADST { vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // ADST_ADST #if CONFIG_EXT_TX { vpx_highbd_iadst4_c, vpx_highbd_idct4_c }, // FLIPADST_DCT { vpx_highbd_idct4_c, vpx_highbd_iadst4_c }, // DCT_FLIPADST { vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // FLIPADST_FLIPADST { vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // ADST_FLIPADST { vpx_highbd_iadst4_c, vpx_highbd_iadst4_c }, // FLIPADST_ADST { highbd_iidtx4_c, highbd_iidtx4_c }, // IDTX { vpx_highbd_idct4_c, highbd_iidtx4_c }, // V_DCT { highbd_iidtx4_c, vpx_highbd_idct4_c }, // H_DCT { vpx_highbd_iadst4_c, highbd_iidtx4_c }, // V_ADST { highbd_iidtx4_c, vpx_highbd_iadst4_c }, // H_ADST { vpx_highbd_iadst4_c, highbd_iidtx4_c }, // V_FLIPADST { highbd_iidtx4_c, vpx_highbd_iadst4_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[4][4]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4[tx_type].rows(input, out[i], bd); input += 4; } // transpose for (i = 1 ; i < 4; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 4, 4); #endif // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 4), bd); } } } #if CONFIG_EXT_TX void vp10_highbd_iht4x8_32_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_4x8[] = { { vpx_highbd_idct8_c, vpx_highbd_idct4_c }, // DCT_DCT { vpx_highbd_iadst8_c, vpx_highbd_idct4_c }, // ADST_DCT { vpx_highbd_idct8_c, vpx_highbd_iadst4_c }, // DCT_ADST { vpx_highbd_iadst8_c, vpx_highbd_iadst4_c }, // ADST_ADST { vpx_highbd_iadst8_c, vpx_highbd_idct4_c }, // FLIPADST_DCT { vpx_highbd_idct8_c, vpx_highbd_iadst4_c }, // DCT_FLIPADST { vpx_highbd_iadst8_c, vpx_highbd_iadst4_c }, // FLIPADST_FLIPADST { vpx_highbd_iadst8_c, vpx_highbd_iadst4_c }, // ADST_FLIPADST { vpx_highbd_iadst8_c, vpx_highbd_iadst4_c }, // FLIPADST_ADST { highbd_iidtx8_c, highbd_iidtx4_c }, // IDTX { vpx_highbd_idct8_c, highbd_iidtx4_c }, // V_DCT { highbd_iidtx8_c, vpx_highbd_idct4_c }, // H_DCT { vpx_highbd_iadst8_c, highbd_iidtx4_c }, // V_ADST { highbd_iidtx8_c, vpx_highbd_iadst4_c }, // H_ADST { vpx_highbd_iadst8_c, highbd_iidtx4_c }, // V_FLIPADST { highbd_iidtx8_c, vpx_highbd_iadst4_c }, // H_FLIPADST }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[4][8], outtmp[4]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors, and transpose for (i = 0; i < 8; ++i) { HIGH_IHT_4x8[tx_type].rows(input, outtmp, bd); for (j = 0; j < 4; ++j) { out[j][i] = HIGHBD_WRAPLOW( highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); } input += 4; } // inverse transform column vectors for (i = 0; i < 4; ++i) { HIGH_IHT_4x8[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 8, 4); // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 4; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } void vp10_highbd_iht8x4_32_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_8x4[] = { { vpx_highbd_idct4_c, vpx_highbd_idct8_c }, // DCT_DCT { vpx_highbd_iadst4_c, vpx_highbd_idct8_c }, // ADST_DCT { vpx_highbd_idct4_c, vpx_highbd_iadst8_c }, // DCT_ADST { vpx_highbd_iadst4_c, vpx_highbd_iadst8_c }, // ADST_ADST { vpx_highbd_iadst4_c, vpx_highbd_idct8_c }, // FLIPADST_DCT { vpx_highbd_idct4_c, vpx_highbd_iadst8_c }, // DCT_FLIPADST { vpx_highbd_iadst4_c, vpx_highbd_iadst8_c }, // FLIPADST_FLIPADST { vpx_highbd_iadst4_c, vpx_highbd_iadst8_c }, // ADST_FLIPADST { vpx_highbd_iadst4_c, vpx_highbd_iadst8_c }, // FLIPADST_ADST { highbd_iidtx4_c, highbd_iidtx8_c }, // IDTX { vpx_highbd_idct4_c, highbd_iidtx8_c }, // V_DCT { highbd_iidtx4_c, vpx_highbd_idct8_c }, // H_DCT { vpx_highbd_iadst4_c, highbd_iidtx8_c }, // V_ADST { highbd_iidtx4_c, vpx_highbd_iadst8_c }, // H_ADST { vpx_highbd_iadst4_c, highbd_iidtx8_c }, // V_FLIPADST { highbd_iidtx4_c, vpx_highbd_iadst8_c }, // H_FLIPADST }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t out[8][4], outtmp[8]; tran_low_t *outp = &out[0][0]; int outstride = 4; // inverse transform row vectors, and transpose for (i = 0; i < 4; ++i) { HIGH_IHT_8x4[tx_type].rows(input, outtmp, bd); for (j = 0; j < 8; ++j) { out[j][i] = HIGHBD_WRAPLOW( highbd_dct_const_round_shift(outtmp[j] * Sqrt2), bd); } input += 8; } // inverse transform column vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8x4[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 4, 8); // Sum with the destination for (i = 0; i < 4; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } #endif // CONFIG_EXT_TX void vp10_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_8[] = { { vpx_highbd_idct8_c, vpx_highbd_idct8_c }, // DCT_DCT { vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // ADST_DCT { vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_ADST { vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // ADST_ADST #if CONFIG_EXT_TX { vpx_highbd_iadst8_c, vpx_highbd_idct8_c }, // FLIPADST_DCT { vpx_highbd_idct8_c, vpx_highbd_iadst8_c }, // DCT_FLIPADST { vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // FLIPADST_FLIPADST { vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // ADST_FLIPADST { vpx_highbd_iadst8_c, vpx_highbd_iadst8_c }, // FLIPADST_ADST { highbd_iidtx8_c, highbd_iidtx8_c }, // IDTX { vpx_highbd_idct8_c, highbd_iidtx8_c }, // V_DCT { highbd_iidtx8_c, vpx_highbd_idct8_c }, // H_DCT { vpx_highbd_iadst8_c, highbd_iidtx8_c }, // V_ADST { highbd_iidtx8_c, vpx_highbd_iadst8_c }, // H_ADST { vpx_highbd_iadst8_c, highbd_iidtx8_c }, // V_FLIPADST { highbd_iidtx8_c, vpx_highbd_iadst8_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[8][8]; tran_low_t *outp = &out[0][0]; int outstride = 8; // inverse transform row vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8[tx_type].rows(input, out[i], bd); input += 8; } // transpose for (i = 1 ; i < 8; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 8; ++i) { HIGH_IHT_8[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 8, 8); #endif // Sum with the destination for (i = 0; i < 8; ++i) { for (j = 0; j < 8; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 5), bd); } } } void vp10_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_16[] = { { vpx_highbd_idct16_c, vpx_highbd_idct16_c }, // DCT_DCT { vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // ADST_DCT { vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_ADST { vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // ADST_ADST #if CONFIG_EXT_TX { vpx_highbd_iadst16_c, vpx_highbd_idct16_c }, // FLIPADST_DCT { vpx_highbd_idct16_c, vpx_highbd_iadst16_c }, // DCT_FLIPADST { vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // FLIPADST_FLIPADST { vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // ADST_FLIPADST { vpx_highbd_iadst16_c, vpx_highbd_iadst16_c }, // FLIPADST_ADST { highbd_iidtx16_c, highbd_iidtx16_c }, // IDTX { vpx_highbd_idct16_c, highbd_iidtx16_c }, // V_DCT { highbd_iidtx16_c, vpx_highbd_idct16_c }, // H_DCT { vpx_highbd_iadst16_c, highbd_iidtx16_c }, // V_ADST { highbd_iidtx16_c, vpx_highbd_iadst16_c }, // H_ADST { vpx_highbd_iadst16_c, highbd_iidtx16_c }, // V_FLIPADST { highbd_iidtx16_c, vpx_highbd_iadst16_c }, // H_FLIPADST #endif // CONFIG_EXT_TX }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[16][16]; tran_low_t *outp = &out[0][0]; int outstride = 16; // inverse transform row vectors for (i = 0; i < 16; ++i) { HIGH_IHT_16[tx_type].rows(input, out[i], bd); input += 16; } // transpose for (i = 1 ; i < 16; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 16; ++i) { HIGH_IHT_16[tx_type].cols(out[i], out[i], bd); } #if CONFIG_EXT_TX maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 16, 16); #endif // Sum with the destination for (i = 0; i < 16; ++i) { for (j = 0; j < 16; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } #if CONFIG_EXT_TX void vp10_highbd_iht32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8, int stride, int tx_type, int bd) { static const highbd_transform_2d HIGH_IHT_32[] = { { vpx_highbd_idct32_c, vpx_highbd_idct32_c }, // DCT_DCT { highbd_ihalfright32_c, vpx_highbd_idct32_c }, // ADST_DCT { vpx_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_ADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_ADST { highbd_ihalfright32_c, vpx_highbd_idct32_c }, // FLIPADST_DCT { vpx_highbd_idct32_c, highbd_ihalfright32_c }, // DCT_FLIPADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_FLIPADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // ADST_FLIPADST { highbd_ihalfright32_c, highbd_ihalfright32_c }, // FLIPADST_ADST { highbd_iidtx32_c, highbd_iidtx32_c }, // IDTX { vpx_highbd_idct32_c, highbd_iidtx32_c }, // V_DCT { highbd_iidtx32_c, vpx_highbd_idct32_c }, // H_DCT { highbd_ihalfright32_c, highbd_iidtx32_c }, // V_ADST { highbd_iidtx32_c, highbd_ihalfright32_c }, // H_ADST { highbd_ihalfright32_c, highbd_iidtx32_c }, // V_FLIPADST { highbd_iidtx32_c, highbd_ihalfright32_c }, // H_FLIPADST }; uint16_t *dest = CONVERT_TO_SHORTPTR(dest8); int i, j; tran_low_t tmp; tran_low_t out[32][32]; tran_low_t *outp = &out[0][0]; int outstride = 32; // inverse transform row vectors for (i = 0; i < 32; ++i) { HIGH_IHT_32[tx_type].rows(input, out[i], bd); input += 32; } // transpose for (i = 1 ; i < 32; i++) { for (j = 0; j < i; j++) { tmp = out[i][j]; out[i][j] = out[j][i]; out[j][i] = tmp; } } // inverse transform column vectors for (i = 0; i < 32; ++i) { HIGH_IHT_32[tx_type].cols(out[i], out[i], bd); } maybe_flip_strides16(&dest, &stride, &outp, &outstride, tx_type, 32, 32); // Sum with the destination for (i = 0; i < 32; ++i) { for (j = 0; j < 32; ++j) { int d = i * stride + j; int s = j * outstride + i; dest[d] = highbd_clip_pixel_add(dest[d], ROUND_POWER_OF_TWO(outp[s], 6), bd); } } } #endif // CONFIG_EXT_TX // idct void vp10_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) vpx_highbd_idct4x4_16_add(input, dest, stride, bd); else vpx_highbd_idct4x4_1_add(input, dest, stride, bd); } void vp10_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { if (eob > 1) vpx_highbd_iwht4x4_16_add(input, dest, stride, bd); else vpx_highbd_iwht4x4_1_add(input, dest, stride, bd); } void vp10_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // If dc is 1, then input[0] is the reconstructed value, do not need // dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1. // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to decide what to do. // TODO(yunqingwang): "eobs = 1" case is also handled in vp10_short_idct8x8_c. // Combine that with code here. // DC only DCT coefficient if (eob == 1) { vpx_highbd_idct8x8_1_add(input, dest, stride, bd); } else if (eob <= 10) { vpx_highbd_idct8x8_10_add(input, dest, stride, bd); } else { vpx_highbd_idct8x8_64_add(input, dest, stride, bd); } } void vp10_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // The calculation can be simplified if there are not many non-zero dct // coefficients. Use eobs to separate different cases. // DC only DCT coefficient. if (eob == 1) { vpx_highbd_idct16x16_1_add(input, dest, stride, bd); } else if (eob <= 10) { vpx_highbd_idct16x16_10_add(input, dest, stride, bd); } else { vpx_highbd_idct16x16_256_add(input, dest, stride, bd); } } void vp10_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd) { // Non-zero coeff only in upper-left 8x8 if (eob == 1) { vpx_highbd_idct32x32_1_add(input, dest, stride, bd); } else if (eob <= 34) { vpx_highbd_idct32x32_34_add(input, dest, stride, bd); } else { vpx_highbd_idct32x32_1024_add(input, dest, stride, bd); } } void vp10_highbd_inv_txfm_add_4x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type, int lossless) { if (lossless) { assert(tx_type == DCT_DCT); vp10_highbd_iwht4x4_add(input, dest, stride, eob, bd); return; } switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: vp10_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: vp10_inv_txfm2d_add_4x4(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code vp10_highbd_iht4x4_16_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 4, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #if CONFIG_EXT_TX void vp10_highbd_inv_txfm_add_8x4(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void) eob; vp10_highbd_iht8x4_32_add_c(input, dest, stride, tx_type, bd); } void vp10_highbd_inv_txfm_add_4x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void) eob; vp10_highbd_iht4x8_32_add_c(input, dest, stride, tx_type, bd); } #endif // CONFIG_EXT_TX void vp10_highbd_inv_txfm_add_8x8(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: vp10_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: vp10_inv_txfm2d_add_8x8(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code vp10_highbd_iht8x8_64_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 8, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void vp10_highbd_inv_txfm_add_16x16(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; switch (tx_type) { case DCT_DCT: case ADST_DCT: case DCT_ADST: case ADST_ADST: vp10_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; #if CONFIG_EXT_TX case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: vp10_inv_txfm2d_add_16x16(input, CONVERT_TO_SHORTPTR(dest), stride, tx_type, bd); break; case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: // Use C version since DST only exists in C code vp10_highbd_iht16x16_256_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 16, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } void vp10_highbd_inv_txfm_add_32x32(const tran_low_t *input, uint8_t *dest, int stride, int eob, int bd, TX_TYPE tx_type) { (void)eob; switch (tx_type) { case DCT_DCT: vp10_inv_txfm2d_add_32x32(input, CONVERT_TO_SHORTPTR(dest), stride, DCT_DCT, bd); break; #if CONFIG_EXT_TX case ADST_DCT: case DCT_ADST: case ADST_ADST: case FLIPADST_DCT: case DCT_FLIPADST: case FLIPADST_FLIPADST: case ADST_FLIPADST: case FLIPADST_ADST: case V_DCT: case H_DCT: case V_ADST: case H_ADST: case V_FLIPADST: case H_FLIPADST: vp10_highbd_iht32x32_1024_add_c(input, dest, stride, tx_type, bd); break; case IDTX: highbd_inv_idtx_add_c(input, dest, stride, 32, tx_type, bd); break; #endif // CONFIG_EXT_TX default: assert(0); break; } } #endif // CONFIG_VPX_HIGHBITDEPTH void inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride, INV_TXFM_PARAM *inv_txfm_param) { const TX_TYPE tx_type = inv_txfm_param->tx_type; const TX_SIZE tx_size = inv_txfm_param->tx_size; const int eob = inv_txfm_param->eob; const int lossless = inv_txfm_param->lossless; switch (tx_size) { case TX_32X32: vp10_inv_txfm_add_32x32(input, dest, stride, eob, tx_type); break; case TX_16X16: vp10_inv_txfm_add_16x16(input, dest, stride, eob, tx_type); break; case TX_8X8: vp10_inv_txfm_add_8x8(input, dest, stride, eob, tx_type); break; #if CONFIG_EXT_TX case TX_4X8: vp10_inv_txfm_add_4x8(input, dest, stride, eob, tx_type); break; case TX_8X4: vp10_inv_txfm_add_8x4(input, dest, stride, eob, tx_type); break; #endif // CONFIG_EXT_TX case TX_4X4: // this is like vp10_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. vp10_inv_txfm_add_4x4(input, dest, stride, eob, tx_type, lossless); break; default: assert(0 && "Invalid transform size"); break; } } #if CONFIG_VPX_HIGHBITDEPTH void highbd_inv_txfm_add(const tran_low_t *input, uint8_t *dest, int stride, INV_TXFM_PARAM *inv_txfm_param) { const TX_TYPE tx_type = inv_txfm_param->tx_type; const TX_SIZE tx_size = inv_txfm_param->tx_size; const int eob = inv_txfm_param->eob; const int bd = inv_txfm_param->bd; const int lossless = inv_txfm_param->lossless; switch (tx_size) { case TX_32X32: vp10_highbd_inv_txfm_add_32x32(input, dest, stride, eob, bd, tx_type); break; case TX_16X16: vp10_highbd_inv_txfm_add_16x16(input, dest, stride, eob, bd, tx_type); break; case TX_8X8: vp10_highbd_inv_txfm_add_8x8(input, dest, stride, eob, bd, tx_type); break; #if CONFIG_EXT_TX case TX_4X8: vp10_highbd_inv_txfm_add_4x8(input, dest, stride, eob, bd, tx_type); break; case TX_8X4: vp10_highbd_inv_txfm_add_8x4(input, dest, stride, eob, bd, tx_type); break; #endif // CONFIG_EXT_TX case TX_4X4: // this is like vp10_short_idct4x4 but has a special case around eob<=1 // which is significant (not just an optimization) for the lossless // case. vp10_highbd_inv_txfm_add_4x4(input, dest, stride, eob, bd, tx_type, lossless); break; default: assert(0 && "Invalid transform size"); break; } } #endif // CONFIG_VPX_HIGHBITDEPTH